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The longitudinal and transversal current-current correlation functions of simple classical liquids are

expressed in terms of restoring forces and frequency-dependent relaxation kernels within the frame-
wo«of Mori's theory. The spectra of the relaxation kernels are approximated by the decay of one-
mode excitation into pairs of two longitudinal modes and into pairs of one longitudinal and one
transversal mode. The decay vertex is given by an irreducible three-particle distribution function
which is approximately expressed in terms of two-particle distribution functions taking three-particle
hard-core correlations into account. The resulting nonlinear integral equations are solved by iteration
for liquid argon parameters and the obtained current excitation spectra are compared with the curves

found by computer simulations and by neutron scattering experiments.

I. INTRODUCTION

Liquid argon is an example of a simple classical
fluid whose excitation spectrum has been studied
extensively during the past years. By inelastic-
neutron-scattering experiments' ' the spectrum of
density fluctuations as a function of the excitation
wave number has been measured. Beginning with
the pioneering work of Rahman, ' 4 computer ex-
periments have been performed'' yielding the ex-
citation spectrum for longitudinal modes in quanti-
tative agreement with the scattering data; the ex-
citation spectrum for transverse modes has also
been determined. In this paper we want to develop
a microscopic theory for the abovementioned data.

The current-current correlation functions

x.s(q, z) = -«i.*(q);i8(q)))„

depending on wave vector q and frequency z, are
the appropriate mathematical quantities for de-
scribing the excitations in fluids. Here o., P denote
Cartesian components of the particle current j(q).
Rotational symmetry of simple liquids implies that
there are only two independent quantities: the
longitudinal susceptibility x~(q, z) and its trans-
verse counterpart Xr(q, z). Whereas Xz(q, z) de-
scribes fluctuations of density and longitudinal cur-
rent, xr(q, z) describes shear motion. They depend
on the modulus q= ~q ~

of the.wave vector only:

x.&(q, z) = (q.q8/q') xi(q, z)

+ (~.()
—q.q Olq') x,(q, z) .

spectral representation

)"(z) = J d(~/w)F" (~)/(~ -z),

The spectral function E"((d) is the discontinuity of
E(z) across the real axis,

F((da i0) = F'(&u) aiF" ((()) . (2b)

e,",(q, ~) = (q/~)'c 2 (q, ~).
The coherent-scattering cross section for neu-
trons with energy loss v and momentum transfer
q is proportional to van Hove's correlation func-
tion' S(q, (()). The generalized fluctuation dissipa-
tion theorem'

d«' '&&*(f)II&=-2(1 —e ") '«&*;&))"

The spectral functions for the currents 4)~ r(q, ~)
are real, non-negative, and even in u; they char-
acterize the longitudinal or transverse excitation
spectrum of the system. If 4) "(q, (d) is large exci-
tations with wave number q and frequency e can be
created easily whereas smallness of 4 "(q, ur)

means that there are no excitation states accessi-
ble. Peaks of 4 "(q, &u) at positions ~,„(q) in the
u-q half-plane represent propagating modes with
dispersion to„„.„(q) in the fluid, their lifetime being
given by the inverse of the width of the resonance.
The continuity equation connects the longitudinal
current function Cz,'(q, &u) with the density relaxa-
tion function 4$~(q, &u) by

In the following it is more convenient to work with
Kubo's relaxation function C (z) = [X(z) —X(z =0)]/z
instead of with the susceptibility x(z).

Since X(z) as well as C (z) are holomorphic func
tions F(z) for nonreal frequencies decreasing suf-
ficiently fast for large values of z they allow for a

simplifies for classical systems to

and thus it relates S(q, &u) to C zz(q, v) by

(4a)

(4b)
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S(q, ~) = 2TC ~~(q, &u)

(T denotes the temperature, units are chosen such
that Boltzmann's constant ks and h equal unity).
In the following we will develop a theory for
4z r(q, (d) for values of q between 0.5 and 4 A ';
these wave numbers are large enough not to be
in the regime of hydrodynamic motion and they
are small enough not to be in a regime of gas be-
havior; it is the regime covered by neutron scat-
tering experiments and by computer simulations. ' '

Provided there exist 2N moments of the spectral
function

C2„= d V m u) "4" e = —A*'"';A'"'

(«)
2nd since static susceptibilities correspond clas-
sically to equal time correlations one finds

c,„=(A*&"&A &" &} /T.
The zeroth moment of the current relaxation

functions in simple liquids yields the q-indepen-
dent number n/m, where n is the average particle
density and m is the particle mass:

du w u"4" u, n=0, 1, . . . , 2N 6a

the following high-frequency asymptotic series
can be written for 4(z):

4(z)=-—Q c,„z '"+4„(z)z '".1
N-z

(6b
n=o

Here @(z) stands for 4»(q, z) or 4 ~z(q, z) and
4„(z) is a Cauchy integral of type (2a) with the
spectral function 4)'(', (u) =&d' 4)" (&(&) . Note that the
odd moments c,„„vanish. Since 4" (&u) is non-
negative it is well known' that one can write 4(z)
as a continued fraction,

4'(z) =
-a2

0

z+G„(z) ' (Va)

where G)(((z) is some Cauchy integral of type (2a).
There is an algorithm' expressing the real num-
bers a„.. . , a„,by the first 2N moments, e.g. ,

2=ao =Co~

a', =c,/c„
a', = (c,/c, ) —(c,/c()) .

(Vb)

The representation of correlation functions as
continued fraction (7) has two important advan-
tages. First, while the series (6b) diverges in
the frequency regime of interest the continued
fraction (Va) converges uniformly off the real
axis; provided there are no high-frequency pathol-
ogies for C)(z). Hence reasonable approximations
for G„(z}by smooth functions may bring out a
good approximation for the resonance structure
of 4(z) in the complete frequency range. Second,
whatever approximation is made for G„(z), 4 (z)
will have the correct first 2N moments c„. The
even moments of 4„"„(u)are given" as static
susceptibilities of the pgth time derivatives A
= ( is, }"A, -

For the longitudinal case (9) holds also quantum
mechanically, expressing the well known f -sum
rule.

The second moment can be calculated" directly
for a system of particles interacting by a two-
body potential v(r):

f d(~/&&) &d'4"
&&(q, &u) =Q' &&(q)n/m, (10a

where the frequency squares Q' 8(q) denote

Q' 8(q) = Q'„8(q) [ „. + Q'
&&(q) ( „,,

Q'
&&(q)( „„= qv '[(h3qq&&/q'+(6 8

—q„q&)/q'}],

D' q(i)) „,=(n/m)f dr(( —e ' '')g(r)v„vsu(v).

(10b)

Here v(h = (T/m)' ' is the thermal velocity and
g(r) isthe pair-correlation function giving the
probability of finding two particles in a distance x.

ln analogy with Eq. (1) the matrix Q' 8(q) is given
by two independent functions, QI', (q) and Q2r(q).
Because of Eq. (6b) these Q2~r(q) have the physical
meaning of high-frequency restoring forces of
the fluid. They have been related to generalized
elastic moduli. " " For small wave numbers
Q»(q) are linear functions of q and Q~(q)/Qr(q)

&3. Since the pair-correlation function g(r)
has a peak at the nearest-neighbor distance, Qz(q)
shows a characteristic minimum at the corre-
sponding wave vector. On the other hand, Qr(q)
is rather flat in the mentioned regime of q values
exhibiting only faint oscillations.

Substituting the moments (9) and (10) into Eqs.
(7) one gets for the transverse current relaxation
function the expression

(-n/m )[z +M, (q, z)]
z2 —Q'r(q) + zM r(q, z)

Here we have written G, =Mr(q, z). The mathe-
matical structure of (11) is analogous to the re-
laxation function describing a Brownian particle
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moving in an oscillator potential with character-
istic frequency Qr(q) and in a field of fluctuating
forces whose spectrum is given by M$(q, co).

It would not be very helpful to write down the
analog of Eq. (11) for the longitudinal current
relaxation function since this representation
would not automatically contain the conservation
law (3). Therefore let us perform the continued
fraction (7a) for C z~(q, z). Equations (9) and (10)
then yield the second and fourth moment while the
zeroth moment according to Eqs. (8a) and (Bb)
reads

where s(q) is the structure factor of the classi-
cal liquid,

s(q) =1+n dr e'~ ' '[g(r) —1] .

Hence one gets

C ~ ~ (q, z) = [-nq'/m Q', (q)]

&'(q)
z+MI (q, z)

evaluating the kernels M~ z, (q, z).
Expressing the response functions 4' by some

kernel G„(z) is common to most of the previous
theories. The Vlasov-equation result or mean-
field approximation for 4'pp can be obtained, e.g. ,
by replacing & and Mz in Eq. (3) by the free-gas
values. After this approximation was proved to
be unsatisfactory" Kerr's suggestion" to modify
this approach by a, replacement of the free-gas
autocorrelation function by the correct one of
the liquid was followed by Singwi et al." Pathak
and Singwi replaced the autocorrelation function
by a Gaussian whose width was fized by the fourth
sum rule of ~'pp and determined the polarization
potential via the structure function. The good
results of this work and of Kugler, "who intro-
duces a frequency-dependent Gaussian polariza-
tion potential, served as justification of the ap-
proximations. Similar in spirit is the approxi-
mation of Hubbard and Beeby, "who start from
the phonon picture of crystals.

Obviously, Eqs. (11) and (15) reduce to the
exact hydrodynamic relaxation functions of
Kadanoff and Martin" if q and z approach zero.
Mr(q, z) is the kernel of the generalized transport
coefficient D(q, z),

Here we have introduced the abbreviations
,.D(, )

Q'r(q)/q'
z+ M, (q, z) (16a)

Q', (q) =nq'/mg~ +~(q, z = 0) = q'T/m s(q), (14a)

&'(q) = Qi(q) —Q'.(q), (14b)

and have written in Eq. (7a) G,(z) =-M~(q, z). The
quantity Q', (q) is a restoring force of the fluid for
zero-frequency compressions. For small wave
numbers Q, (q) = qc, where c is the isothermal
sound velocity. Similar to Q~(q), Q,(q) also shows
a pronounced minimum at the reciprocal inter-
particle distance. Note that a (q) is positive be-
cause of the Cauchy-Schwarz inequality relating
the first three moments of C&~(q, e). From Eqs.
(3), (12a), and (14a) one gets

(z/q)'4 ~~(q, z) =4~(q, z) +zn/mQ', (q),

and hence Eq. (13) can be rewritten in a form
which guarantees the correct structure factor,

(-zn/m )[z +M~ (q, z)]
z[z' —Q' (q)] + [z' —Q', (q)]M (q, z)

(15)

This function indicates that the longitudinal motion
is characterized by two oscillator frequencies
Q~(q) and Q,(q) and a fluctuating force which
switches from one resonance to the other. The
spectrum of the fluctuating force is given by

Ml,'(q, u&). The problem of the following theory is

&'(q)/q'iI'(q, z) = ——
( )

(16b)

which, in the hydrodynamic limit, determines the
sound damping constant 1 (0, 0) = (g +4@/3)/nm.
Equation (16b) results from a comparison with
the corresponding hydrodynamic expression' with
an additional neglection of heat diffusion. Several
phenomenological models for D(q, z) and I'(q, z)
have been discussed'"' ' since Chung and Yip"
started generalized hydrodynamics approxima-
tions. They proposed Lorentzians for the gen-
eralized transport coefficients, interpolating the
wave-vector-dependent relaxation rates between
the hydrodynamic and the free-gas limit. In this
way a good fit of the experimental data'4 was ob-
tained. The fit could be improved by Ailawadi
et a/. 4 by assuming Gaussian time behavior of I'
and D. Levesque et al.e also concluded from their
very accurate data that for wave vectors around

0
1 A ' Lorentzians are not an adequate enough
description. For long wavelengths it has been
found' that a long time tail appears in the gen-
eralized viscosity such that D(q, z) is best de-
scribed by the sum of two Lorentzians.

In the hydrodynamic limit it is related to the shear
viscosity q by D(0, 0) =q/nm. Similarly, M~(q, z)
is the kernel of the transport coefficient I'(q, z),
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Mori" has developed systematically the formal
technique of expressing correlation functions by
continued fractions like the one in Eq. (7a), Ex-
tending the projector formalism of Zwanzig" he
related the kernels G„(z) to certain reduced ma-
trix elements of the Liouville operator of the
system. Using phenomenological models2' for
these kernels similar to the ones discussed above
it was also possible" to describe the experimen-
tal excitation spectrum. The mentioned theoreti-
cal treatments demonstrated" that the framework
presented by Eqs. (11) and (15) is adequate to de-
scribe the spectrum of liquids. Qn the other hand
it is obvious that in the mentioned papers no com-
plete microscopic theory for the response func-
tions has been given, since the spectra for the
fluctuating forces have been put into the formulas
more or less as fit parameters.

Lebowitz et al. and Forster and Martin" started
systematic attempts" to derive kinetic equations
for denser fluids where the Boltzmann equation
does no longer hoM. At present it cannot be
seen, however, whether this approach can be ap-
plied to the real densities of liquids. One can gen-
eralize in a formally exact way kinetic equations
similarly as on does for the hydrodynamic equa-
tions. The problem then consists of solving the
corresponding integral equations and of finding
approximations for the integral kernels. With the
ansatz that the kernels are Lorentzian and a fit
of the relevant rates to the hydrodynamic limit
Duderstadt and Akcasu and Jhon and Forster'
could achieve good agreement of the calculations
with the data for argon.

In the following a microscopic theory for the
kernels is presented. Starting with Mori's ex-
pression" for M~(q, z) and Mr(q, z) the spectra
of the fluctuating forces are expressed approxi-
mately in terms of two-mode decay integrals
(Sec. II). In this way M~ „are represented in
terms of the correlation functions 4'~ ~. Besides
the structure factor s(q) and the potential v(r)
no new unknowns enter the theory. Then (Sec. III)
the solution of the nonlinear equations is obtained
by iteration and our theoretical curves are com-
pared with experiments. In Sec. IV the results
are discussed and a physical interpretation of the
main features of the excitation spectrum is given.

in the linear spRc e of dynam lc Rl VRr lRble s A
The Liouville operator acting upon dynamical
variables is defined by

ZA(t) =-iB,A(t) =i(H, A(t)] (18a)

where H is the Hamiltonian of the system Rnd the
Poisson bracket reads

fe,AJ= g — ————— -- . (18b)
BH BA BH BA

&e ~P o; ~p n ~&cx

4'„„(z)= —a'/[z —b + m( )z], (21a)

where a'=(AlA), b =(AlZlA)/a', and m(z) is the
reduced resolvent matrix element

m(z) = (gZAl [y„Sg—z] 'lgZA)/a' (21b)

defined in the space orthogonal to lA). In our
examples the numbers & vanish.

Iteration of Eqs. (21) yields Mori's continued
fraction. Applying Eqs. (21) twice with A =jr(q)
one gets Eq. (11)with

M r(q, z) =Nr(q, z)/Q2r(q), (22a)

N (q, z) =(m/n)(2'j (q)i/i"
&([g&» g&»gg&»g&» z]-~

The generalization of (18a) to quantum-mechanical
systems is obviously CA(t) =[B,A(t)]. Since the
formal solution of (18a) is

A(t) =e"'A,
with 4 being Hermitian one can write Kubo's A-B
relaxation function

C..( ) =(«A*;»&.—,-&(A*;»&.)/.
as a resolvent matrix element

c..=(AI[~- ]-'IB) . (20b)
The spectral function 4'„"z(~)=w(Al &(&-Z)lB) in
the classical limit is given by the Fourier integral
(4b).

The functions introduced in Sec. I are special
cases with A =B and A being, respectively, the
transverse current jr(q), the longitudinal current
jz(q), or the density p(q). Introducing the one-
dimensional projector + =lA)(Al/(AlA) and its
complement Q =1 —6', one can write" the resol-
vent in the standard fashion,

x&"'I&'j (q)) (22b)

II. APPROXIMATION FOR THE FLUCTUATION KERNELS

A. General formulas

(A l B)= g „+s(z = 0) = (A. * B& /T (17)

Mori's theory" starts by introducing the scalar
product

Here we have denoted the projector orthogonal
to jr(q) by g~r'l and the projector orthogonal to
~i, (q) by gr". We also used Z,"Zjr(q) =Sjr(q) and

Zr &'jr(q) =8'jr(q); these relations hold since
&'jr(q) and jr(q) have a parity under time inver-
sion opposite to that of Z jr(q). This causes also

to be equal to &2 ~g &2 ~ Similar
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M~(q, a) =N~(q, a)/b, '(q),
~.(q, a) = (m/. )(~'j.(q)l &'"

(23a)

ly, applying Eqs. (21) three times with A = p(q)
one gets Eq. (15}with

sity read

p(q)= g f(p, q),

j.(q)= g (p./m)f(p, q}
(24a}

x[g(»g(')2g. ,"'g',"—z] '

(23b)

(here and in the following Q ~ stands for Jdp/(27()'
with the normalization volume V chosen as unity).
The Hamsltonaan

where 6}„~~'~, g~'~, and g~' successively denote the
projector respectively orthogonal to p(q),
gp(0)pp(q) q j (q) and g(1)g(0)Zg(0)Zp(q) [p2
—0'(q)] p{q). One also has to note I" Z ' ~S& o &("
= I, ' SQ~' and to make use of the orthogonality of
quantities with opposite time-inversion symmetry
as explained above. Equations (11), (15), (22),
and (23) with the underlying definitions are exact.
The problem consists of evaluating the kernels
(22) and (23) approximately

B. Two-mode approximation

It is advantageous to express the quantities
&j„(q), 8'j„(q), etc. , by the phase space density

p'
+

2
g'&(Ir. -r.l)
n, m

(24b)

has the presentation

&„(q)= Q k (q„k)f(kq),/m'

H= g f(k, 0)+ —,
' g p*(k)U(k)p(k),

k k (24c)

where v(k) is the Fourier transform of the pair
potential. Then one finds for r„(q) =Zj„(q) the
formula

f(p, q)= (2v)' g 5(P-P. )s "". + P k„v(k) p*(k) p(k+q)/m. (25a)

For example the particle density and current den- Similarly one gets

8 j„(q)= p k„(kq)'f(k, q}/m + g js(k)p(q —k)(v(k)k„k() +v(q —k)[(q —k)„(q +k)() +&„()q(q —k)]]/m.

Obviously the space of dynamical variables is
spanned by products of K distributions

f(pl, q|)f(p„q.) f (pr, qK) (&=1,2, ).
The variable 2"j(q), for example, consists of a
linear combination of products of k particle dis-
tribution functions with k~ 2n. Choosing a set of
complete functions H„(p), e.g. , the Hermitian
polynomials, one can expand each one-particle
observable as a linear combination of the

l

scribe the motion in a space orthogonal to the
vectors p and j„. Our first approximation con-
sists of writing

Q (1) [g6(2) g(1) gg(1) g(2) a] g(1)

g(1)(P [g, a] -1(P g(1)

where 6', is the projector onto the relevant two-
mode excitations,

A. (q) = P H. (p) f (p, q ) .
p

The set of observablesA„(q, )A„,(q, )' ' 'A„(qr)
is then complete. A„(q) can be called a one-mode
excitation of type n with momentum q, A„(q, )
xA„(q2} is a two-mode excitation of type (n„n, )
with momentum q, +q„etc. The simplest modes
are the density and the current density (24c) and
products of those.

The resolvents entering Eqs. (22) and (23}de-

6'. = g I j.(k)p(q- k) }
n.Sk p

x[(jpl jp)- ]"' (j&(p)p(q —p)l (25b)
kp

The second approximation consists of completely
neglecting the interaction between the two modes;
i.e., we assume that under time evolution the
two-mode excitations do not mix and just evolve
as the products of single modes. To get the rele-
vant matrix
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+"'(a,z)=(i.(k)p(q-k)l[&-z] 'lie(p)p(j-p))
kp

(27)

one then can factorize in time space according to

(A*(t )B*(t)CD) =(A*(t )C) (B*(t)D)

@as. cv(+) = (~/+) de [4„" ( —e)@'s (e)

+ 4'~a(~ —e)@ac (~)~.

+ &A*( t )D& ( B*(t)C & (28a)

and obtain the relaxation function (20c) by Fourier
transforms,

(28b)

Applying this to Eg. (27) and using the continuity
equation to express p by the longitudinal current
one gets

@~a8 ( ~)~/y g «( k)2 Q 8 de l, ( l i ) r ( i )
kp

i ) ("' )
Ci~ (q —k, ~ —e)4I (k, 6)

(~- ~)'

4~ (j—k, &u —e)4~(k, e)
e(& —e) (29)

In this way the frequency-dependent part of the
kernels Mz r(qz) has been expressed in terms of
the current relaxation functions.

The idea of representing the space of dynamical
variables by products of basic modes and approxi-
mating self-energies or memory kernels like
Mz r(q, z) by the lowest nonvanishing terms has
been used before in other theories of many-par-
ticle systems. Kawasaki, Kadanoff and Swift,
and Wegner used this procedure to calculate trans-
port coefficients near critical points. " This ap-
proximation has also been used to determine the
nonregular long-time behavior of correlation func-
tions. " For these problems the two-mode approxi-
mation can be justified since it yields the leading
contribution to the singularities of interest. In all
theories where there is a diagrammatic expansion.
available approximations of type (29) present the
first term to the energy-dependent part of the
polarization operator; this holds in particular for
the theory of anharmonic phonons in crystals. "
Since we do not have a small parameter in classi-
cal liquids for the -q regime of interest, we
cannot give a sophisticated mathematical justifica-
tion of the preceding approximations. We argue
that formula (29) is the simplest contribution to
the fluctuating forces in a multimode expansion.
The Mori formalism combined with multimode ex-
pansions is a possible systematic way of formu-
lating the problem in microscopic terms. In this
paper we want to examine the simplest approxima-
tion which can be set up within this scheme.

Formula (29) is a Golden Rule type of formula
describing the decay of current excitations into
pairs of such excitations as indicated in Fig. 1.
Notice that there are two decay channels for the

longitudinal and transverse modes; they may
decay into a pair of two longitudinal modes pj~
or into a pair p j~ consisting of a longitudinal and
a transverse mode. Pair excitations of the type
pp or j~j~ do not contribute to M because they
have the wrong time-inversion parity; in partic-
ular decays into two transverse modes are not
possible.

C. Three-current vertex

To work out the frequency-independent part of
the kernels M~ r(q, z) we notice first, that in our
factor ization appr oximation,

( j„(k)p(j-k) l)s(p) p(a-p»
=~„,~-„-,ns(q k)n/m. (80)

N~(q, z) = g N„q(j, z)q„qs/q'

Nr(q, z) = g N.s(q, z)(~.8 q.q8/q')/2 . -

{q-k e -e)
L

L, T
( )

(q- k, +-z)

(k, g) (k, p)

FIG. 1. Decay channels for current excitations into
pairs of such modes.

So the projector (26b) has a very simple form. We
prefer to work with the matrix N„B (g, z) instead of
with the independent parts
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Choosing q = (0, 0, il,}we have N~ =N» and Nr
= (N„+N„)/2 =N» =N» S.ubstituting Eqs. (26)
and (27} into (22} and (23) one gets

Q I j.(q) )(j.(q)l .

Nas(q, &) =

n' 8'Tfp

y„".(q, k)

x+" '
(q, s)v8 (q, p),

kp

(31)

The vertex (32a) is the probability amplitude for
the decay of one current excitation into two. Since
in the classical limit the following identity holds:

( j (q)~j8(k) p(q-k)) =&„8s(q -k)n/m, (32b)

one can write

where the vertex y8 (q, k) is defined by

«'~.(q)l Z"'lj8(k) p(q —k))
ns (q —k)/m

(~'~.(q)l j8(k)p( q- k)) g,
ns ( q —k)/m

(32c)

and ' projects orthogonal to the currents:
(32a) The scalar product in (32c) evaluated class&cally

yields

()'~J (q)lrs(k)ss(q —k))= (s/m)s(q —k)rr's(q)l;, s f dri) —s 's'')f (rq —k)q, „qsr(r)/m'

+ p [&~8 q e +2m„q 8]v(z)f,(K;q —k)/m (321)

f, (~; q) =
& p*((i) p(~ —q) p(q) )

contains a three-particle correlation function;
the occurrence of such a function is not surprising
since at the vertex in Fig. 1 three currents interact
with each other. One can write

r

of (331) together with the first term in (32d) yields

(n/m)Q', 8 (q)s (q - k),
which cancels the last term in Eq. (32c). The
second term of (33d), mixing the moments )i and

q, yields after insertion into Eq. (321}the expres-
sion

/, (s; q)= f dr iK r -iq r'ar e (n/m) [0'(k) —0' (q —k)] ~ p.8(

x IF,(r; r')+n[&(r) &(r')+ng(r)6(r')

+ng(r' )6(r) +ng(r)5(r —r' )]),

—i (n/m) d r ei ( )(-(() ~

kg(~)

x [ 5 8 q V +2 q V8]v(r) . (33e)

where

(33a) This contribution will be neglected; it shows
oscillatory behavior vanishing approximately after
integrating over k. As a result we are left with

F,(r; r') = g' (&(r —r„+r )&(r' —r, +r ))

(33b)

V8 (q, k)= d r F (r;q —k)[(1 —e '~' ') V„V8v(t')

—i(5„8 q 7+2q8 V„)v(r)]
is the probability to find from a given particle two
other particles in distances r and r' (the prime at
the sum indicates that the particles +, m, ~ are
all different). Let us write this function as the
uncorrelated probability plus the genuine irre-
ducible three-particle correlation F(r; r'),

F,(r; r') =n'g(&)g(~')+F( r, r'),
so that

f, (&, q) =n[I +ng(~)] [ I +ng(q)]

+n'g(Z —q) ~F(Tc; q).

(33c)

(331)

After substituting this into Eq. (321) the first term

x[nms(q-k)] ' . (34)

Thus the two-mode approximation (26} of Sec. IIB
implies that for the fluctuating forces the existence
of nontrivial three-particle correlations play an
important role: For dilute gases our approxima-
tion (34) would imply M~ +=0; this is reasonable
since in gases the contributions to the damping
mechanism are due to two-particle collisions,
i.e., due to four current correlations. For sys-
tems like solid or liquid argon, on the other hand,
which are essentially close-packed hard-core
arrangements, the three-particle correlations
are crucial and have to play an essential role in
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any first-principle theory. Neglecting I" in Eq.
(33c) one would allow particles n and I in defini-
tion (33b) to overlap with their hard core. Since
the hard-core volume is a considerable fraction
of the total volume available, the approximation
I" -0 would imply considerable errors.

The third and &st aPProximation of the present
paper consists of taking the hard-core correla-
tions into account approximately by writing

F,(r; r' ) =n'g(r)g(r' )e(l r - r'I r, )—,
1.e.,

&(r; r' ) = —n'g(r) g(r')e(r, —
I
r —r'I ) . (35b)

Here 8 is the usual step function and &, is an ap-
propriate hard-core diameter. In this way the
three-current vertex reads

q F(q, k) = - G.s(q, r, ) . (37a)

Notice that the dependence on k has dropped out.
G„8(q, r, ) is given as usual by two independent
functions:

G~ r(q, r.)=Qzl[fi r(& ro,'1)-f. .(q, r., r)]/4

, 2ef, ,(q, r, )(1-~ V~ ), (37b)

(n/m)g(r) V„')78v(r) = (3Q'/4vr') 5(r r )r„rs/r'.
(36c)

The "Einstein" frequency Qz defined by Q2z -(n/
3m)J d rg(r)Av(r) is known" to be particularly
sensitive to the hard-core behavior of v(r). The
weighted G„p(q, r, ) is taken approximately in front
of the integral (36a) thus yielding

y[] (q, k) =— —«(()-](). r '
ng(rs ) f (q r t) = dt't"(1 —e ""()")

-t
(37c)

["-.8(q, r') =—

&& G„8(q, r')/s (q —k),

&-i ([~ r
)

(36a) and 7' =cose =1 —,'(r, /r, )—' For th. e transverse
function fr(q, r„t ) one has to repl.",;-e t" in (37c)
by (1 —t" )/2. As a result we obtained in Eq. (37a)
closed expressions for the three current vertices
entering Eq. (31) for the kernels Ml, , r(q, z).

xe(r, Ir r'I )g-(r) v v, g(r). III. CURRENT EXCITATION SPECTRUM

(36b)
Note that ng(r') in (36a) can be replaced by the
Fourier transform of s(q) from Eq. (12b) without
changing the result. The second term in (34) is
negligible. It involves the product of the pair-
correlation function times first derivatives of the
potential, but the latter quantities vanish where
g(r) is big. The integral (36b) is similar to the
one entering Q'„8 (q) in Eq. (10b), but here the in-
tegration volume is only a sphere of radius &,
around r'. We calculated it for r' parallel to q
and for r' perpendicular to q, and added the re-
sults with the weighting I to 2. The product of
g(r) times the second potential derivatives is
strongly peaked near the interparticle distance.
So it is a reasonable approximation" to write

A. Self-consistency equations

Equations (29), (31), and (37) represent the ap-
proximations analyzed in this paper. Let us
examine now the structure of this approximation
scheme more closely. Substitution of Eq. (37)
ill'to Eq. (31) yleMS wl'tll q = (0, 0, q3)

kp
k, p

(38a)

m
lVr(q, z) =—," g [+-" (V, z)+4" (q, z)]/2.

kp kp
k, p

(36b)
Introducing»=I q —kI as an integration variable
one gets from Eq. (29)

„( Tmy~jq)
n log q

dk dw
lq-0 I

dc 4~ (», c)C $ (k, (d —c), [ 4k'q' —(k' —»' ~q')']

„( ) „(~ ), («(k' —«'+«') k[(h' —«')' —«'])]
kc Kc(~ —c)

N" ( (d) =—™T(~~— dk
n316m 'q3

0

OO 3d«dc 4f («, c)Cr" (k, v —c), [4k'q'- (k' —»' ~q')']2e'0

+ 4~(' («, c) 4 g (k, (d —c )(»'/2)

«[4k*«' —(),' —«'+q')'](+, --
(

—
) )

(39)

(40)
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The spectrum of the fluctuating forces Mz', r(q, (())

determines the real part of the relaxation kernels
Mz r(q, (d) by a Kramers-Kronig relation ac-
cording the Eq. (2),

I;,,(«, ~) =~ f&(«l«)M", .(«, «)I(« —~) (4()

Equation (11) yields the spectrum for the trans-

verse modes,

(n jm)M$ (q, ~)
[ro' —Q2r(q) +~Mr(q, (d)]'+[ ~Mr' (q, &)]' '

(42)
and from Eq. (15) the spectrum of the longitudinal
excitations is found to be

4" ( ««)=(««/ )I"( ««) ««' ««'( ) — '~ ' ' " ' '
)GO CO

(43)

If one considers besides the trivial parameters
temperature T, particle density n, and particle
mass m the frequency-independent functions
Q~ r(q), Q, (q), and q)~ r(q) as given —they are
all given by the known two-particle interaction
and by the known pair-correlation function g(&)—
Eqs. (39)-(43) present a closed nonlinear system
to determine the excitation spectrum. Notice that
via Eqs. (39) and (40) the longitudinal excitations
are coupled with the transverse ones. The pre-
ceding equations can be solved by iteration. The
nth approximation Mli" i'r' (q, &) determines the nth

approximation 4'~" r'(q, ~) with the aid of Eqs. (41)-
(43). Then Eqs. (39) and (40) yield the (~+1)st
approximation for the relaxation kernels.

We want to demonstrate the preceding approxi-
mation scheme for argon since the best experi-
mental information about monatomic classical
liquids is available for this fluid. We choose T

n = 2]4x gp cm, yg6628x] p g and
take the characteristic frequencies according to
Eqs. (10b) and (14a) from the preceding litera-
ture. '' '4 Together with the quantity b.'(q) from
Eq. (14b) these frequencies are represented in

Fig. 2 for the sake of completeness. Choosing in

Eq. (36c) r, =3.4 A and the Einstein frequency"
Qs =0.74X10" sec ' the frequencies Q~ r(q) are
reproduced within 5%. Thus we used these param-
eters to work out the three-current vertex (37).
The hard-core parameter has been chosen as &,
=3.3 A according to the experimental g(r). '4 The
result is plotted in Fig. 2. Hence all input quan-
tities for the self-consistency equations are fixed.

If one assumes our system to have relatively
well-defined excitation modes with dispersion
curves similar to the ones shown in Fig. 2, the
density of states for the current excitations will
be divergent for momenta of the longitudinal modes

O 0

close to 1 A or 2 A ' and for the transverse modes
0

around 2 A '. Owing to this one expects then van
Hove singularities in the spectra of the fluctuating
forces Mz, r (q, &), which in turn yield a character-
istic structure in the response function (f)z" z, (q, ~).
This clearly comes out if one starts iterating the
self-consistency equations by neglecting all damp-

ing effects in zeroth order: MJIoir (q, s) =0. Actual-

ly, one can approximate then the integrals (39) and

(40) for M~~'~r' (q, &) in terms of elementary func-
tions and some of those results are given in the
Appendix. Originally we expected the final solu-
tions of Eqs. (39)-(43) to show some structure
similar to that of MII"r" (q, ~). For this reason we
have started the iteration with MIIO)r (q, z) =0, Five
iterations have been necessary to get the solutions
stable within 10% and to learn that the excitation
modes are too broad to yield much structure in

M~ r(q, &). So the most convenient starting point
for the iteration would have been the ansatz
M~~~i) (q, (d) = —a/((d'+D'), where D is of the order
of the characteristic frequency QJ. r(q) and a is

)
O
4)
Ih

&.0—

I ~

3 qinA

I'IG. 2. Characteristic frequencies Ql z (q), Qo(q), the
quantity 6 (q) = Qz(q)- Qo(q), and the vertex functions
-yz z(q) as a function of wave number for liquid argon.
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chosen to get M ' -M~' as small as possible.
But using such an ansatz one would have lost some
of the physical insight into the damping mechanism
(cf. Appendix).

q-056 k '

8. Correlation functions for liquid argon

In Figs. 3 and 4 the relaxation kernels M~(q, &)
and Mg (q, &) are shown in comparison with the
memory kernels obtained by computer simulations.
To get the latter curves we have taken Rahman's''
curves for 4"(q, &), calculated by Kramers-
Kronig analysis [see Eq. (2a)] 4"(q, &), and then
inverted Egs. (11) and (15), respectively, to find

M(q, z). In principle the full curves of Figs. 3
and 4 are the known experimental kernels. It
should be realized, however, that small errors
in reading off 4"(q, ~) introduce big errors in
M" (q, ~); the expression for M contains 4" and 4"
in differences of big numbers in the denominator
for example. Also the Kramers-Kronig analysis
transfers errors of 4" in one frequency range
into errors of M" in different frequency intervals.
We can say that the kernels given as full curves
in Figs. 3 and 4 reproduce Rahman's graphs'4 of
4" within pencil width, but we also found that
curves with artificial spikes did the same. The
decrease of M'~(q, &) for small ~ in the full curves
of Fig. 3 is due to the wrong low-frequency be-
havior of Rahman's 4I', (q, ~); it has no real physi-
cal meaning therefore. There is no pronounced
difference between the longitudinal and transverse
relaxation spectrum, but the latter function is
somewhat smaller than the first one. Both kernels
are rather smooth. They show a broad maximum
at about 0.5 ~10~ sec ' and they drop off quickly
for frequencies larger than 2&10" sec '. Con-
cerning these features there is qualitative agree-
ment between our calculations and the experiment.

In Fig. 5 the longitudinal excitation spectra are
shown in comparison with the neutron scattering
data of Skold et al.' and with the computer data
of Rahman' and I.evesque et al.' For the sake of
comparison we interpolated some of the experimen-
tal data between different wave-number values.
The excitation spectra show non-I. orentzian reso-
nances whose peaks and widths are plotted as func-
tions of the wave number in Fig. 6. The resonance
width increases upon increasing the wave number

0
from 0.5 towards 1 A '. Then the resonance be-
comes sharper and a characteristic high-frequency
shoulder appears for larger q values. For q0
beyond 2.5 A ' the peaks become broader again and
there is no shoulder. All these facts are given by
the present theory in good qualitative agreement
with the experimental data. ' ' ' The peak height
drops quickly if q increases from 0.5 towards

0-—
I

3.
I

p»

I I I
1.0 15 20 2S

8~ in 10 sec

FIG. 3. Longitudinal relaxation kernels M I'(q, ~). The
full curves are extracted from Hahman's computer ex-
periments (Hef. 3); the dashed curves are the results of
the present theory.
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FIG. 4. Transverse relaxation kernels M zl(q, ~). 'Zhe

full curves are extracted from Rahman's computer ex-
periments (Befs. 3 and 4); the dashed curves are the
results of the present theory.

FIG. 5. Longitudinal excitation spectra @I'(q, ~)ua/n
as a function of frequency for various wave embers.
The full curves are the result of Rahman's computer
experiments (Ref. 3), crosses denote computer data of
Levesque et al. (Ref. 6), and the circles are neutron
scattering data of Skold et aI, . (Ref. 2). The dashed
curves are the results of the present theory.
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20-

Q5—

I ~ „1
3 qinA 4

FIG. 6. Peak positions of the longitudinal current ex-
citations (dashed curve) and half-width (thick curves) as
a function of wave number. The crosses are Bahman's
data (Ref. 3) for the peak positions. Included are the
frequencies Ql(q) and 00(q) (thin curves).

0 0
1 A '; then it increases for q towards 2 A ' and
it drops slowly if q increases beyond 2.5 A '.
These facts are given by the present theory in

qualitative agreement with the experimental data;
o

but for q smaller than 1.2 A ' excitation states
are missing in our 41' (q, &). Owing to this defect

0

we erroneously even get for p -1 A ' a double-
peak structure. The peak positio]a is close to
Q, (q) for q -2 A ' and it moves towards Qz (q) for
other wave numbers. This feature is reflected by
the present theory but for a p Larger than 3 A ' our
peak positions are too high. Since 4" (q, (u) dj
rectly gives the coherent-inelastic-neutron-scat-
tering cross section, S(q, &) is plotted in Fig. I

together with various experimental data. The neu-
tron cross section is a non-Lorentzian peak cen-
tered at + =0 showing a characteri. "tic variation
of its width as a function of wave nUmber. Most
of the detailed structure of 4~ (q, &) is washed out
in the S(q, &) curves and this explains the quan-
titative agreement of our theoretical. results with
the experimental ones.

In Fig. 8 the transverse excitation spectra are
plotted. One obtains resonances close to the char-
acteristic frequency Qr(q) which are still present

0
for q as small as 0.5 A '. Their width increases
with increasing wave number; this behavior is
also represented in Fig. 9. For q va.tues exceeding

0
1.5 A ' the resonance curves are rather non-
Lorentzian. Particularly interesting is the sharp
drop of 4 r' (q, ~) for frequencies approaching 1.4
&&10" sec '. There is satisfactory agreement

CV
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I
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FIG. 7. Coherent-scattering function S(q, ~)/n (dashed
curves) as a function of frequency for various wave num-
bers. The circles are the neutron scattering data by
Skold et cl. (Ref. 2). The full curves are the results of
the computer experiment by Bahman (Ref. 3), the dashed
dotted the ones by Kurkijarvi (Bef. 5), and the crosses
the ones by Levesque et al. (Ref. 6). Notice the different
ordinate scale for the two lowest wave vectors. In par-
ticular for q=2.24 the present results cannot be distin-
guished from Bahman's.

between our theoretical curves and the computer
experiments. '

IV. DISCUSSION

The preceding theory for the excitation spectrum
of liquids is based on the exact representations
[Eqs. (11) and (15)] of the current-current relaxa-
tion functions in terms of the well-known charac-
teristic frequencies Qr(q), Ql, (q), and Q, (q) and
of relaxation kernels Mz, (q, z) and M~(q, z). The
latter quantities contain all the nontrivial dynamics
of the many-particle system. Their absorptive
parts Mr' ~(q, ~) can be interpreted as spectra of
the fluctuating forces disturbing the secular motion
characterized by the frequencies QJ. (q), Qr(q),
and Q, (q). These spectra have been approximated
by a Golden Hule type of formula [Eqs. (29) and
(31)] expressing the decay of a coherent current
excitation into pairs of such modes. The three-
current decay vertex (see Fig. 1) entering the ex-
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FIG. 9. Transverse resonance position (dashed curve)
and width (full curve) as a function of wave number. The
crosses are Rahman's data (Ref. 3) for the peak positions.
The thin curve represents Qz(q).
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FIG. 8. Transverse excitation spectra 4 z'(q, ~)~/n as
a function of frequency for various wave numbers. The
full curves and the dashed dotted ones are the results of
the computer experiments by Bahman (Befs. 3 and 4)
and Levesque et al. (Bef. 6), respectively.

pressions for MI" r(ql ~) was given by the irre-
ducible part of a three-particle correlation func-
tion. The latter was evaluated approximately by
taking into account three-particle hard-core cor-
relations; see Eqs. (34) and (35). Then a closed
set of coupled self-consistency equations, Eqs.
(39)-(43), appeared expressing the relaxation
kernels in terms of the current excitation spectra.
The solution of these equations are obtained by
iteration, but the main features of the excitation
spectra obtained can be understood without going
into numerical details.

The characteristic frequencies fI~ r(q) and

Q, (q) for wave numbers corresponding to the main
particle distance are of the same order, 0.7
&10" sec ', as the typical Einstein frequency Q~,
where Qs2.=(n/Sm) Jdr g(r)b, v(&). It has been shown
that the characteristic energy

~ y»(q)r "~' (see
Fig. 2) describing the three-current decay is also
of this order of magnitude. At the temperature of
liquid argon there is essentially only one energy
scale in the system as far as the regime of inter-
mediate values of frequencies & and wave numbers
q is concerned. This first crucial point came out

by carefully examining the three-particle correla-
tions. Erroneously misestimating y by a factor
of 4, say, in either direction would change com-
pletely the following discussion and bring out quite
a wrong picture for the excitation spectra. From
this estimation one gets the second conclusion:
The relevant absorption parts M~ (q, ~) and M'r'(q, ~)
are also of the order of magnitude of Q~ and hence
the widths of the typical excitations are of the
same order as their energies; consequently there
is no fine structure in the fluctuation spectra
M~ r(q, ~).
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In zeroth approximation the current excitations
are modes with dispersion Q~ r(q). Thus for a
decay process with a transverse mode in the final
state one expects a huge phase space for the en-
ergy of this mode being around the plateau value
0.7X10" sec ' (see Fig. 2). The phase space is
also large if the final longitudinal mode corre-

0

sponds to the maximum near q-1 A ' or to the
minimum near q-2 A ' of the Q~(q) dispersion
curve; but these enhancements correspond to a
small domain in q space only and are by far not
so important as the corresponding enhancements
of the transverse modes. Furthermore there are
twice as many transverse modes than longitudinal
ones. Thus we arrive at the third important fact:
Decay processes with a transverse excitation in-
volved are more important than decay processes
where only longitudinal modes interact; i.e.,
coupling to the transverse modes is crucial for
analyzing the longitudinal excitation spectrum
4 z(q, &). Quantitatively it turned out that decay
processes involving a transverse mode contribute,
e.g., to Mg (q, &) roughly twice as much as those
processes involving longitudinal modes only. For
kinematical reasons those processes involving a
transverse mode contribute most effectively for

So one concludes fourthly that the relaxa-
tion spectra M~ r(q, e) as a function of frequency
show some bump for intermediate &. Fifth, for
frequencies of order 20~ the fluctuation spectra
drop quickly since higher states cannot be reached
by two mode processes. Sixth, for frequencies
below Qs the spectra M~" r(q, &) are rather flat
since many processes contribute: In classical
systems the difference process, where e.g. , a
longitudinal mode absorbing a longitudinal excita-
tion combines to a transverse one, is as impor-
tant as the sum process, where the longitudinal
mode decays into a transverse plus a longitudinal
excitation.

The relaxation spectra directly determine now the
current-current relaxation functions. Since [pr(q)/
Qr(q)]' vanishes for vanishing q and since for
small q the conservation laws drastically restrict
the phase space for two mode processes one con-
cludes seventh that for wave numbers smaller than

0
0.5 A ' there is still a well-defined transverse
current excitation resonance. ' These excitations
could be called transverse zeroth sound. Eighth,

0
for q's exceeding 1.5 A ' the transverse reso-
nances have an almost q-independent position;
the resonance curve 4'$ (q, &) is rather flat on the
Low-frequency side and drops steeply for frequen-
cies approaching 2QE

The structure of (15) and (43) for the longitudinal
excitation is more interesting than the one of the
transverse response function. To understand the

interplay of the two frequencies Q~(q) and Q, (q)
let us consider two limiting cases. If M~(q, z) is
small there is a longitudinal resonance with fre-
quency Q~(q) and width Mg (q, Q~(q)). If M~(q, z)
is large there is a resonance at Q, (q) having the
width -&'(q)/ML, (q, Qo(q)). In the first case one
has the situation of slow relaxation while in the
second case the fast relaxation yields the effect
of motional narrowing: The random forces fluc-
tuate so fast that essentially only the average is
seen in the response. According to our first point
in the preceding discussion the magnitude of
Mz, (q, &) for intermediate q is such that neither
limiting case occurs. One concludes that the
vanishing of the long-wavelength vertex, ninth,
brings the system towards the slow relaxation

0

limit for q smaller than 0.5 A '. Similar to the
situation in the transverse case the longitudinal
response function exhibits a rather narrow zero-
sound resonance.

With increasing momentum the resonance be-
0

comes broader. Tenth, for a q around 1.7 A ',
&'(q) gets small enough and the decay channels
are open most efficiently to drive the system
closer to the fast-relaxation limit. The reso-
nance position moves away from Q~(q) towards
Qo(q), the peaks becoming sharper. Of course,
M" is not really very large and, therefore,
eleventh, the resonance Qr, (q) shows up in the
spectrum as a high-frequency shoulder. It is
situated considerably above Q~(q) because the
real part M~(q, ~) of the relaxation kernel re-
normalizes this second resonance. For wave
numbers larger than 2 A ', twelfth, b, '(q) in-
creases Bnd so the system gradually draws back
to the regime of slower relaxation. Hence for
larger q's the resonance becomes broader and
the position moves towards Q~(q). The character-
istic oscillation of the resonance width as a func-
tion of wave number —see Fig. 6—thus are a di-
rect consequence of the two-mode decay kinemat-
ics and the behavior of &'(q).

Figures 4-9 demonstrate satisfactory quantita-
tive agreement of the present theory with the ex-
perimental data as far as the neutron cross sec-
tion and the transverse excitation spectrum is
concerned. For the more detailed information
expressed by the longitudinal current excitation
spectrum good agreement with experiments has
been achieved for wave numbers around the roton
minimum. For larger q's and for small q's the
agreement with the experiment is not so good;
for q-1 A-', i.e., near the boundary of the Bril-
louin zone of the solid argon system, excitation
states are missing in Q~ (q, ~). Systematic errors
become obvious for q tending towards 0.5 A ' and

q exceeding 3.3 A '.



l3YNAMICAL C URRENT CORRE LATION FUNC TIONS OF. . . 2187

The most annoying errors of the present theory
are the discrepancies between the theoretical and
experimental Qf (q, &) for wave numbers around

O

and below 1 A '. One realizes from Fig. 3 that
this error is due to our M~ being too large com-
pared with the Bahman data. Possibly this error
is due to our neglect of the energy-density mode
which couples to 4'~ but not to @'~. Another source
of error is our rough handling of the vertex
y(q, k) by dropping its k dependence. For q-0
it is also not allowed to neglect the contribution
(33e). This term actually yields the hydrodynami-
cal D(0, 0) and 1'(0, 0) in Eqs. (16). For anharmon-
ic lattices the hydrodynamical limit has been ana-
lyzed within the Mori formalism"; there it has
been found that three excitation decay processes
determine the transport coefficients. So it seems
likely that these processes are important in the
hydrodynamical limit of liquids also. It is feasible
to take care of the points mentioned, but because
of the work required we have not yet analyzed the
q -0 lim it quantitatively.

It is understandable that our memory kernels
M" (q, ~) in general are smaller than the experi-
mental ones, since the two-mode approximation
neglects excitations of a different type. Since our
approximation excludes the free-gas limit, this
error becomes more important with larger q.
One can incorporate the free-gas limit by adding
in lowest order the free-gas memory kernel to
the one calculated above. This improves the
theory for large q, but there are still systematic
deviations from experiment, indicating that the
large-q discrepancies have a less trivial reason.

In this paper we wanted to show that a first-
principles theory for classical liquids can be tried
and that a lowest-order approximation can be
carried out to an end. We consider it encouraging
that the results in some aspects come close to
experiment. Therefore it might be worthwhile to
work out quantitative improvements of the ap-
proach presented above.
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M""' (q, ~) = dK5((u +Q~ r(K) +Q~(k))
q-A; l

x f(q, k; K), (Al)

where f (q, k; K) abbreviates geometry factors ac-
cording to Eqs. (39) and (40). A summation over
all possible sign combinations in the & function
corresponding to 'different decay processes has
to be included. The K integration in (Al) yields

anM""~ (q, ~) = dk
+tl BK K= K tl

q (2 —q) for q» 75

' —'+(q —2)'/3 for q~-',

Q, (q) = ~,~,(q)

q(4-q)/5 for q»2
0

4
5 for q~2,

(A3b)

with q =q/Q, Q =1.12 A ', and &, =Qz, (Qo) =10"
sec '.

x f(q, k'K„), (A2)

where n counts the energy conserving solutions
K„=K„((u, k) of M +Q~ r(K) +Q~(k) =0. The k inte-
gration is extended over that fraction D„(q, ~;k)
of k space ~q —k(» K„(&,k)»q+k which guarantees
momentum conservation. From Eq. (A2) one im-
mediately concludes that M"('~ (q, ~) will have van
Hove singularities due to the possible zeros of
BQ~ r(K)/BK; see Fig. 2. Furthermore it is clear
that decays involving a transverse mode contribute
most. So we restricted ourselves in the first it-
eration step to the LT-type decay processes, as
shown in Fig. 10, involving a transverse mode.
For all further iteration steps the corresponding
LL processes are taken into account.

In order to find closed expressions for the hyper-
plane S„(q, &; k) upon which energy and momentum
conservation allow decays we approximated Q~ r(q)
for this first iteration step by

Q. (q) =~.~.(q)

APPENDIX: DECAY KINEMATICS AND THE RELAXATION
KERNELS ML, ~(q, z) FOR DIFFERENT

ITERATION STEPS

LT D1 (- —) LT D2(+-) LT P3 (-+)

Q). (x)

We started our iterative procedure for solving
Eqs. (39)—(43) by the ansatz M~ r(q, z) =0, i.e. ,
by assuming undamped modes. Then M" '

(q, &)
has the structure of the density of states for non-
interacting, undamped two-mode excitations,

Al(x) , (x)

FIG. 10. LT-type decay processes contributing to Eq.
(A1). The process corresponding to the sign combination
(++) contributes only for negative frequencies.
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In the following we will omit the carets char-
acterizing reduced units. Using Eq. (A3) the two-
mode singularities of M"i'1(q, ~) can be localized
without going too much into numerical details.

The dominant contribution to the integral (A2)
comes from &~2, i.e., from the flat part of
&r(«'). Let us discuss these contributions to
M"t'1(q, ~}first:

00 q+k 8& (k)M""'(q ~)l, = dk6(co ~-, ~~~(k)) d« f(q, k; «) = g, d~ f(qk„; ~).
0 max(2, Iq-k I ) max(2, lq-k I)

(A4)

8&vi (k)
Bk k=k

n

2(-', —&)' ' A, B solution k ~ -',

'V3 (&-,'-o')' ', C,D solution k~ —'.
(A5b)

LTO 1:
U)T (x}

(1)„(k)

31
20

This yields singularities in the (&, q) plane for
those (&, q) values which allow both decay partners
to reach divergent final-state densities as shown
in Fig. 11. In other words: To produce two-mode
singularities both single modes must come from
regions with vanishing derivatives of the disper-
sion curve. Let us demonstrate this for the decay
LTD1 defined by the solutions of energy conserva-
tion ~- -', —~~(k) = 0:

(A5a)

The index A, B, . . . refers to different regions of
the longitudinal dispersion as marked in Fig. 11.
Then

Thus the decay LTDi will lead to a square-root
singularity in M"~'1(q, ~) at ~ =,'—0 for all q which
fulfill momentum conservation together with k =2.
A second singularity at & =-', involves the longitu-
dinal excitation with wave number 4 =1. Both
resonance positions in the (&, q) plane being deter-
mined by Eq. (A5) and momentum conservation
are shown in Fig. 11. Similarly one finds the
decay processes LTD2, 3 to cause singularities
in Eq. (A4) for frequencies ~ =-', and & = 0, re-
spectively as shown in Fig. 11. Qualitatively the
four singularities caused by LT-type decay pro-
cesses are equally strong. But if one takes into
account the function f (q, k„; z) in (A4) one finds
that the singularities formed with the longitudinal
mode from the dip of the dispersion at k = 2 are
stronger than those formed with ~z(k) originating
from the maximum at k =1. This causes the sin-
gularities at frequencies =-', and + =-,' to be
much less pronounced than those at =,'-,' and
= 2'0, respectively.

After having located the positions of two-mode
singularities in the +-g plane let us investigate
the hyperplanes $„(q,~; k) upon which LT decays
are allowed. For the special case involving trans-
verse excitations with wave numbers z~ 2 one
merely has to look for those (&, q) values which
fulfill

m~(2, lk. (&)-ql)-k. (&)+q, (A6)

LTD2: ~---~u)q(k); LT03: g = alT(x)

A ,'B,' C 0

+, (k)

1
5

20
Resonance positions

I

4 q, k &

FIG. 11. Positions of two-mode resonance in the (~,q)
plane caused by different LT-type decay processes.

«, (cu, k) = 2 —f 4 —5I ~ —~~(k)]}'~' .
Then the inequalities

(A7)

where k„(~) are the solutions of energy conserva-
tion ~ +-, +~z(k) =0. Thus one has to make for
each of the three different decay processes LTD1,
2, 3 four separate investigations to determine for
which (&, q) values the four solutions of energy
conservation obey Eq. (A6).

To evaluate the hyperplanes for LT decays in-
volving transverse excitations with e'ave numbers
x~2 is a bit more tedious. We will indicate the
procedure for the LTD1 process: ~ —&r(K) —~~(k)
=0. With the constraint I(', ~2 there is only one
solution of energy conservation,
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ik-q[&;(cu, k) &k+q

or e decaydefine the hyperplane X) (q " k) f r th
Since ~r(q) is a monotonic function, (A8a)

reads also

(ASa)

~r(lk qi)—- & —&,(k)- ~,(k+q) . (ASb)

The latter form of the inequality can better be
represented graphically and it contains naturally

as energy conserva-the constraint «2 as well as
tion. With the
of E
t' . ' e aid of a graphical representat'e ion

of k
q. ASb) we analytically determ' d thine e range

o values fulfilling Eq. (ASb) as a function of
frequency for fixed wave numbers q.

Figure 12 shows the contributions of all LT

nel N""'
decay processes to the longitudinal relax t' kre axa ion ker-

Ther
ne z, q= ~, as a representative exampl e.

ere Rre sharp two-mode sing 1 't'Rl 1 les Rs dis-
cussed before at frequencies = —' d=;, an ~ =;, above
a flat continuum. The intens't f th
at fre u

i y o e singularities
equencies = —, and =-', is so small that one

cannot recognize them on the scale of Fig. 12. T e

nances of the current relaxations C, " ' 'n.s qq, j, which
in urn ead via the convolution integrals (39) d

bro
o a bigger continuum in M""(q ~) 'th, +g Wl

roader two-mode resonances th
' M" 'an in (q, &).

I» (2)
The contribution to the relaxat'RXR ion spectrum

process-'', of the second iteration from LL
es is roughly half as big as that one from LT de-

)~a requenciescays. The double peak in M" '
(q ~) at f

=0.8+0.06 and + =0.8 —0.06 is caused by LTD1
and LTD 3 processes respect '

1lve y, lnvolvlQg R

transverse mode from the flat part of the dis er-
sion of 4'""' at =0

r o e isper-
= 0.8 and a longitudinal excita-

tion from th e dip at k =2 with frequency =0.06.
[Note that C'"' ( &)/~'~q, ~~ enters the convolution in-
tegra, l (39) for M" i2 and C"" (,an ~ ~q, jy'+' exhibits
for q =2 a strong hybridization peak at =0.06
causedbythe singularity of M"'(q &) at &=, .]
Similarly the other peaks of M" '

~ jq, +~ can. be
identified by specific decays.

3 rd iter.

4 th iter,

CP

IA

C)

3
o~

CX)
CD

I

0.5—i
I

0.5 1.5 2.0
zin10sec

FIG. 12. LLongitudinal relaxation kernels ¹z'(q,) of
five iteration ste s asp a function of frequency a for the
representative wave number q =1.68 A ~

it
For the second

i eration the contributions from LT-t e r
isp aye separately.

—ype processes are

a ion spectraThe main structure of the relax t'

b LT cont

M" q, for further iteration steps is cR d18 cRuse RgRln

ions from the flat part of the dispersion, i.e. ,
with frequency & =0.8 Rnd long't d 1ongi u lna, l excitations
from the dip with wave number q = 2 S'
e'I

1 = . 1Qce

ste s
~ q, ~ ~' has its main peak for higher 't t'er 1 era. ion

s eps at zero frequency this explains the sur-
viving of the broad maximum at = 0 8 in the0

kernel M" (q, &) as a result of LT-type processes.
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