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With the use of the Herivel-Lin variational principle to describe incompressible inviscid fluids,
a fluctuation Hamiitonian is derived in terms of a complex field %(F,t) representing the fluid. The
source-free part of the field current describes the velocity field. The field interaction is found to be
of current-current type, i.e., (qi' grad qi —c.c.)' instead of the commonly used ~%~' type. The pressure,
together with a complete energy-momentum tensor of the 4 field, is introduced, depending on the
boundary conditions. The latter imply a long-range interaction near the onset of turbulence. Viscosity is
taken into account by proper extension of the equation of motion of %(r,t), which turns out to be of
the Landau type. This equation is solved exactly for laminar plane shear flow. The eddy interaction in

k space for fully developed turbulence is given together with a model Hamiltonian for the effects of
viscosity. Finally the transient behavior of the 4'-field amplitude of a fixed spatial mode near the onset
of turbulence is compared with experiments.

I. INTRODUCTION e, v+(v grad)v = —grad(P jp)+vs . (2)

There has been considerable progress in the
last few years in our understanding of the singular
behavior of systems near continuous phase transi-
tions. The decisive step was a proper treatment
of the order-parameter fluctuations. '

Another, even older problem is the understand-
ing of the nature of turbulence, its onset in a la-
minar flow as well as its fully developed phase.
In 1944 Landau' postulated a description of the
transition to turbulence in analogy to his theory of
phase transitions. As the turbulent "order para-
meter" he took the velocity field amplitude A of an
instability of the laminar flow. The Reynold's
number Re characterizes the external conditions;
thus Acc (Re —Re, )'~s. With increasing Re a second
instability appears, etc. A whole sequence of
transitions finally leads to fully developed turbu-
lence.

There is another correspondence between tur-
bulence and phase transitions: Kolmogoroff' in
1941, von Weizsacker, ' and Heisenberg' in 1948
developed a scaling theory of the highly turbulent
state. The scaling idea is also essential in order
to understand critical fluctuations near continuous
phase transitions. "'

If the onset of turbulence is indeed similar to
the onset of special ordering at a phase transition
the question arises, what is the order parameter?
Landau suggested an equation for the time average
of the amplitude squared of an instability. The
corresponding equation for the amplitude 4 itself
reads

—A. =y A. ——cyA.
dt

Let us take for granted that all turbulent behavior
is contained in the Navier-Stokes equation'

How can Eq. (1) be derived from Eq. (2)'P The
latter shows a second-order interaction term,
while there is a third-order one in the former
equation.

Equation (1) is a deterministic equation for the
mean amplitude. Since we are aware at present
of the eminent role played by the fluctuations, we
want to take them into account. In this paper I
would like to suggest how this might be achieved.

Fluctuations, at least in equilibrium phase
transitions, are governed by a "Hamiltonian, "
sometimes also called (restricted} "free energy. "
This determines the distribution of fluctuations
as well as the equation of motion. For fluids only
this latter one is given, namely, the Navier-Stokes
equation.

In order to find an appropriate Hamiltonian, I
will look first (Sec. II}for a Lagrangian, which
implies just the fluid equations via Hamilton's
principle of least action. It is known' that there
is no such Lagrangian for the velocity field in the
Eulerian description. In particular the kinetic
term cannot be derived from any kind of Lagrang-
ian. Instead, Herivel and Lin' ' gave a varia-
tional principle with constraints in terms of cer-
tain "potential functions, "describing inviscid
fluids.

The Herivel-Lin principle with constraints is
the starting point of this paper. A complex "order
parameter" field 4'(r, t) is introduced (Sec. Ill)
together with a Lagrangian for this field. The
field equation of motion is derivable from a least-
action principle zvithout any constraints. The cur-
rent of the 4 field determines the physical velo-
city field. The defining relation depends on the
boundary conditions, i.e., on the actual flow pat-
tern. The pressure I' is also defined as a certain
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observable of the 4' field (Sec. IV). For the ob-
servables v and P the Navier-Stokes equation for
inviscid fluids holds.

I then derive the 4'-field Hamiltonian (Sec. V)
together with the whole energy-momentum tensor
(Sec. VI). The Hamlltonlan contains second-
and fourth-order terms in 4. In contrast to the
usual Landau free energy, there is no ~%'~' coup-
ling but instead a (@*grad% —c.c.)' interaction of
the fluctuations.

Viscosity is taken into account (Sec. VII) by ex-
tending the 4-field equation of motion. The form
of the observable v as a functional of 4 is un-
changed. Approximate equations of motion can be
represented by a Hamiltonian, which besides the
kinetic terms already mentioned includes a second-
order term proportional to viscosity v (Sec. VIII).

To illustrate the use of the 0 field (Secs. IX -XI)
(i) an exact solution of its equation of motion is
derived in the example of steady shear flow be-
tween two parallel planes. (ii) The turbulent inter-
action in the fully developed phase is given as the
trgnsverse curren& squared, and (iii) the transient
behavior of the 4 amplitude is compared with Eq.
(I), suggested by Landau, as well as with experi-
ments.

II. HERIVEL-LIN VARIATIONAL PRINCIPLE

Consider an incompressible isentropic fluid
which we assume in the beginning to be inviscid.
We are looking for a variational principle which
describes the velocity field in the Eulerian descrip-
tion.

Such principles have been introduced among
others by Herivel'o (see also Serrin"). His re-
sults can be used only if one improves them using
an idea of Lin, "'"who showed how to take proper
care of the peculiarity of the v field, namely that
it actually arises from the flow of matter. To
complete the historical background, one should
mention earlier work by Clebsch, "who first gave
the potential representation of v, and by Bateman. "
Another branch is connected with the equations of
superfluid flow' '6 and goes back to Eckart. '
Quite recently Seliger and Whitham" gave an ex-
tended discussion of variational principles in con-
tinuum mechanics, which summarizes best the
starting point for the present attempt to find a
Hamiltonian for turbulent fluctuations. The Heri-
vel-Lin variational principle has been applied also
to relat'vistic per feet fluids. ""

A reasonable guess of a Lagrangian density is
kinetic energy —,'pv minus potential energy pu.
Since the density p as well as the temperature T
are constant, the internal energy density u is also
constant, u =u„and may be omitted. Incompres-

sibility, divv =0, is taken into account by intro-
ducing a Lagrange parameter field Q:

2v' — divv dV=O.

Variation with respect to v yields v = —grad/.
This does not allow for vortices, although even in
laminar shear flow rotve 0.

This long-standing difficulty has been overcome
by Lin."'" His argument is as follows: The ve-
locity fields admissible for variation must be
further restricted to take into account the fact
that v(r, t) is generated by the flow of matter. Thus
if a "label" is attached to each part of matter at
some arbitrary but fixed time t„ this label will
be a streaming invariant expressing "conservation
of identity. "

The simplest label, taken by Lin, is the position
vector a. Conservation of identity then means,
there exists a function o.(r, t), which fulfills the
initial condition n(a, i, ) =a, and satisfies B,Z
+(v grad)o. =0. Of course, another labeling at
t, would do the same job, thus introducing a large
amount of arbitrariness. The only essential con-
dition is the existence of a certain field a(r, i)
(besides v, Q) which remains constant under the
operation D, = (8, +v grad).

With reference to the Clebsch representation
of the fluid velocity (v =grad}t+A. grady, ) Lin as
well as others later used a one-component field
o. instead of the vector label field a. A more
formal argument refers to Pfaff's theorem; see
e.g. Ref. 18.

I think that n(r, t) nevertheless can be interpreted
as a label field: As the one-dimensional continuum
has the same power as the three-dimensional
one, "'"one can use a one-dimensional manifold
as the set of labels for the fluid at t,. In using it
one must, on the other hand, be aware of bene-
fits and drawbacks in comparison with the more
natural three-dimensional label set. The obvious
benefit is the reduction of the number of fields
one deals with from three to one, vector to sca-
lar. A drawback is that restrictions in the initial-
ly chosen label function n(r, i,) have to be ob-
served.

If one insists, for example, on a unique labeling,
one inevitably must give up the continuity of n as
a function of r. This is a consequence of the fact
(e.g. , proven by Kamke") that a coniinuous image
function from a three- to a one-dimensional et
cannot be one to one.

Since we even want to differentiate e, we give
up unique labeling. The question remains, whether
further more severe restrictions for admissible
initial label. functions o.(r, i, ) have to be considered.

If we add the conservation of identity as another
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v-field constraint by means of a further Lagrange-
multiplier field y(r, t), we get the Herivel-Lin
variational principle with constraints for perfect
incompr essible fluids:

r
dt, dV [—,'v' —mdiv v -y(B,a+v gradn)] = 0.

g Jv

Especially by variation with respect to v one gets
as one of the equations of motion

v = gra—dQ +y gradn

III. INTRODUCTION OF A COMPLEX ORDER
PARAMETER FIELD

Varying Eq. (3) with respect to a together with
the constraint of conserved identity leads to

D,y =0, D, a=0.
Looking at these equations of motion, we see that
y and n are indistinguishable. This suggests that
one change the Herivel-Lin principle. First, we
symmetrize it: Integrate the y term by parts and

get an equivalent extremum principle; take —,
' of

the sum of both and redefine the auxiliary fields
—2y~y, Q

——,'ay~ P; integrate the g term by
parts.

Second, let us consider now the resultant varia-
tional principle as a common principle of least
action

dt dV L=O

I = (1/2i)[4'* grad@' —4 grad%'*],

if we define the complex (i.e. , two component)
field

(8)

4 =y+in.

Third, v and Q will now be eliminated in favor
of 4, which is considered to be the basic field.
Varying with respect to Q yields incompressibility,
div v =0. From Eq. (5),

b, P =divj .

By this equation we can solve P in terms of the
4 field. Thus v is the current j of the basic com-
plex field + corrected by a term which removes
the possible sources of j:

v =j —grad&(j) .
The vortices of v are those of j and read

(8)

rotv =2 grady &grade .

The equation of motion for 4' is found by varia-
tion of L with respect to y and n:

p is the constant mass density, uo the constant in-
ternal energy per unit mass. -u, + B,p does not
enter the action, of course, but has been added
for formal reasons.

Varying with respect to v gives

v = -grad/ +y gradn —a grad y .

The y-n part looks like the conventional quantum-
mechanical current

B,C +v grad+ = 0 . (10)

zoithout any constraints but with six independent
fields instead of four, namely v, n, P, y. Sub-
sequently this number will be reduced to only
two independent components.

The Lagrange density L is defined as

(I/p)I. =-,'v' —u, + B,g+ v grad/

+n(B,y+v grady)-y(B, n+v gradn)
(4)

v is to be considered as a functional of 4, 4 *, cf.
Eq. (8) together with Eq. ('7). To solve this latter
equation we explicitly have to introduce the spe-
cial geometry of the flow problem considered,
namely, the boundary values of P. Consider the
Green's function G(r, r') in the given geometry,

Then

P(r) = G(r, r') div'T(r') d V(r')+ dF(r') [P(r') grad'G(r, r') —G(r, r') grad'P(r')] = g&+ g, .
v ~v

The second term, g„ is solely determined by the
boundary; the first one is effected by fluctuations
of C via j. As the boundary values are considered
already to be fixed by the laminar flow, Q, is of
zero order and Q& of second order in the fluctuat-
ing field which is superimposed on the basic la-
minar flow profile. Equation (11) induces a sub-
division of v in a zero- and a second-order contri-
bution,

v =v~+v, , v„= -grad/, , v, = j —grad/& .

The order parameter equation now looks like a
typical Landau equation.

B,C +v~ grad++vz(4'*, 4') grad+=0 .

It will be supplemented later (see Sec. VII) by vi-
scous terms, mainly by vs+. The competition of
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this viscous term with the first-order kinetic term
plays the role of the conventional Landau para-
meter, a~T- T„or y, of Eq. (1). The inter-
action of the fluctuations is not, as usual, (4'*4)4'
but rather of current type (@*grad%' —c.c.)4'.
Note the long-ranging nonlocality introduced by
the "Coulomb" character of Green's function G.
Note furthermore its dependence on the geometri-
cal parameters of the flow.

(1/p)P = —,'v'+a, p+v grad& —u, , (14)

where u, is the constant internal energy density.
Then v together with P obeys the Euler equation
as a consequence of the 4-field equation of motion.

If we express I.of Eq. (4) in terms of the phy-
sical fields (satisfying D, n =D,y =0), it is equal
to the pressure P. The Lagrangian thus has a
direct physical meaning. "

V. FLUCTUATION HAMILTONIAN

Now, we can apply the methods of conventional
field theory. The 4-field Lagrangian L can be
rewritten as

(1/p)L=a, g+na, y —ya, n ——,'v~ -u, ,

if Eq. (5) is used for v. Let me remark that the.

action principle with this form of L,

IV. PRESSURE; EULER'S EQUATION

To sum up: The fluid is described by a complex
field 4=y+i n. Its equation of motion in the case
of an incompressible perfect fluid is Eq. (13).
Formally C is a modified "square root" of v;
physically it is connected with the movement of
labels. From 4 one obtains the velocity field v

using Eqs. (12), (11), and (6).
The pressure P will be introduced now as ano-

ther observable derived from the 4 field. Its
proper definition follows from the requirement
that the observable v satisfies the Euler equation.

We calculate (a, +v grad)v. Using Eqs. (8), (6),
and (10) together with the commutation relation
Dtb y —8 yD, = -vp) y p, we find

(a, +v grad)v = -grad(-,'v'+a, p+v gradp) .
This suggests that one define the pressure by

Only the order parameter components have non-
trivial canonically conjugate momenta

BI BI
a(ay/at) ' a(an/at)

T44 is the energy density K The calculation yields
1a = ~pv'+puo . (17)

(18)

The zero-order term

(~pv~'+puo) dV
V

is entirely determined by the boundaries, as only

Q, enters. The term

X~'l =p v, v& d V= —p Pv& dF
V

is formally of second order in 4. It can also be
reduced to boundary values, as divv& =divT —&Q~
= hP, =0. This reduction is not possible if v~ com-
prises the whole laminar profile, which is not of
gradient form in general. The fourth-order term
reads

R~4l= t —,'pv&'dV= —,'p (j —grad/&)'dV
V V

= ap (3 —g»d 4'g)dV p 4'Pg 'dF .
V F

The volume parts of X' and X' depend on fluc-
tuations of 4. All other contributions to the ener-
gy K are fixed by the boundary conditions.

An analog of the Boltzmann principle might also
hold in steady states far from equilibrium, stating
that the probability for the occurrence of a certain
field 4(r) is determined by the exponential of the
total energy necessary to realize it. Although as
expected X is quadratic in v the Boltzma. nn dis-
tribution is not of Gaussian form since not v but
4 determines the volume element in function
space.

The total energy can be remodeled using Eqs.
(12) to separate contributions of different order
in 4:

t t2
6 I dt dV(na, y -ya, n ——,'v~) =0,

ay~ y
(16)

VI. ENERGY-MOMENTUM TENSOR OF A FLUID

is most convenient in deriving immediately the
equation of motion (10), if avis expressed by an
or ay via Eq. (5).

As usual, we construct an energy-momentum
tensor:

BI
&pv =

X., ( p
—&pv 1. .

a ~a)v

One may ask also for the other components of
the energy-momentum tensor T». It is con-
venient to calculate them if one goes at first a
step backwards and uses v, P, n, y as independent
fields. Taking into account that I =P for the phy-
sical solutions 4, one finds the following expres-
sions:
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Tu = —(p v; vg + 5) g
P}, z,J = 1, 2, 3, (19a) &xDgy -yzDg & = v(yuuo') —ouuyz

the well. -known stress tensor for a. perfect fluid; +yuoxu —o'uyzu) . (23)

)4 = -pV) i=12 3,
the mass current density; and

T4) = v)(P +puo+ apv ), L=- 1', 2, 3, (19c}

the enthalpy current density. T44 is the energy
density as already discussed.

These formulas coincide with the nonrelativistic
limit of the relativistic energy-momentum tensor
(cf. Ref. 24). Here we have found them within the
framework of a nonrelativistic field theory.

VII. O'-FIELD EQUATION FOR VISCOUS FLUIDS

Now the viscous term in the Navier-Stokes equa-
tion (2) will be taken into account. This will be
achieved by proper extension of the equation of
motion (10) for O'. In contrast, the representation
(5) [as well as (8) together with (6) and (11)jof
the velocity field v through the current of the
basic complex field 4' shall be retained.

In order to find proper equations of motion for
4 including viscosity effects, I first express the
corresponding term v&v in Eq. (2) in terms of 4.
It is

Applying (8, +v 'grad) to vq given by Eq. (5),
can use again the abave-mentioned commutation
relation [D„B~]= -vu~qBu, but we have to give up
Eq. (10), which holds for inviscid fluids only.
Formally we find

B,vq+v grad vq ———Bz(—,'v2+8, Q+v 'grad/)

(21)

-y&,D, n+yB&D, n) .

In view of Eq. (20) it is suggestive to add the con-
tributions ~n and ~y to the pressure part & qand to
redefine the observable "pressure":

(I /p )P = uv'+ D, P + nD, y yD, o. —uo . -(22)
This is not only compatible with the previous de-
finition (14) (since D,y =D, n =0 for inviscid fluids),
but the interpretation of L as the pressure of the
perfect fluid still holds: P =I,.

Comparison of Eq. (20) with the nonpressure
part of Eq. (21) shows that v satisfies the Navier-
Stokes equation, if for each A. =1, 2, 3,

« = &( j —g»dQ ) = & j —grad div j = -rot(rot j ).

The dissipation is determined by the vorticity of
For the components we have (with yu =-Buy, etc. )

»v~ = »8 u(y u~ ~ -y~n u)

=2v(yuu+x o'uuya+yu&xu —&uy&, u) .

There is some freedom to choose D, y and D, n.
If only Eqs. (23) are satisfied, the order para-
meter field 4 represents a velocity field, which
solves the equations of an incompressible but
viscous fluid.

If one sticks to the interpretation of n as a label
field that is conserved under D, also in a viscous
fluid, one has D,n =0; Eqs. (23) then determine
D,y. However, it seems rea, sonable to treat n and y
in a more symmetrical manner. Twopossibilities are
then suggestive: The first and third terms on the
right-hand side determine D, y or alternatively
the first and fourth ones. D, n is fixed by the cor-
responding other terms.

(i) The following six equations have to be solved
simultaneously.

~xD» =v(n»uu + &ouyu) ~

A. =1, 2, 3 .
yxD)& =v(y~ouu+»u~u) ~

(24)

If n or y do not depend on certain s~, the equa-
tions for those A, are satisfied automatically.
Generally, from Eqs. (24) the following equa-
tions can be deduced:

Dqy =v&y+v grady grad In~gradn~,

Dq o' =v&o'+v gradn 'grad in~grady
~
.

(25)

Among the solutions of Eqs. (25) are, in parttcu
lar, those that satisfy Eqs. (24),

(ii) The other symmetric choice is

o'~Dry =v(&»uu —&uy~u),
A. =1, 2) 3.

y k t = v(yy&uu —yu& gu ),
(28)

As before, one can deduce as a consequence of
these six equa, tions that

n)„n pD~r=& yap — yg~ =-t y,
np np (2|)

Q„and Qr are orthogonal Laplace operators with
respect to the n and y surfaces:

nynp
Q =(&i~- ~x~p

np nlj

In both choices the linear term is vs+. The
mode coupling via nonlinear viscous terms is ex-
pected to be of minor importance as compared
with the kinetic coupling v&(4, 0) grad 4, which
is known to be strong. Thus the following equation
might be sufficient to describe a turbulent fluid:

8, 4+ (v, grad —vE)4'+v, (4*,4) grad4' =0 . (28)



S. 0 ROS SM ANN

On the other hand, if Eq. (28) is used, there will
be additional terms in the Navier-Stokes equation,
which cannot be expressed by v. These are the
last two terms of Eq. (20) with opposite sign.

Remark: If one uses the nonsymmetric-Lag-
range density following from Eq. (3), one again
comes up with the fundamental equations (23).

VIII. A TURBULENCE-MODEL HAMILTONIAN

It is tempting to propose an additional term of
second order in 4" and ~v in the action principle
(16) in order to derive the approximate field equa-
tion (28). The easiest guess would be -v~grad@~'.
But this leads to

D 4'= ivan%

D,% =vs%* . (29)

These equations of motion are represented by the
Lagrange density

(I/p)l-=n&, y -y&, n ——,'v'+»grady gradn

together with the Hamiltonian density"

H = —,'pv' —2pv grady grade

= tv'+ apvi[(g»d~)' —(g»d+*)'] . (31)

The model Hamiltonian (31) is expected to de-
scribe a fluid which does not really dissipate en-
ergy. The dissipation of one field component ~v
is fed back in the other one ~(—v). This might be
of minor importance in the universal part of the
spectral function in fully developed turbulence.

IX. EXACT 4-FIELD SOLUTION FOR LAMINAR

SHEAR FLOW

Several questions have still to be answered.
What are convenient initial conditions for the la-
bel distribution n? What are the proper boundary
conditions for 4' and P'? What is the steady-state
distribution of 4 according to the full or approxi-
mate equations of motion including viscosity?
Does such a steady state exist at allY

Especially the last question deserves attention.
Namely, if e is something like a label field, it
will show permanent motion, even if the velocity
field is stationary. To study this I solve the equa-

instead of vs+. Another guess starts from the
idea that the differences between n and y are re-
sponsible for the vorticity [cf. Eq. (9)]. One adds
—v[grad(y —n)]' in Eq. (16) and finds

D,n=D, y=vh(y —n) .
Finally one might subtract the first from the
second ansatz:

tions of motion (23) for y and n in the simple case
of steady laminar shear flow between infinite par-
allel plates.

The velocity field has the following special form:
v =(u(y), 0, 0), with u( —b) =0, u(+t) =u„and 25 the
distance between the plates. Neglecting viscosity
for a. moment, Eqs. (10) for 4=y+in are

B,n+u{y)s„n =0, s, y+u(y)s„y =0.

Both are solved by a,rbitrary functions of x-u(y)t.
Imagining n as a label distribution, a linear func-
tion seems to be a good choice. Therefore I use
the ansatz

n(x, y, t) = x- u(y)t.

At t=0 the labeling is n =x; i.e., along each flow
filament the fluid elements are uniquely charac-
terized by their position. Different filaments are
labeled in the smne manner, independent of y, z.
The labels move according to the filament's posi-
tion with u(y).

We cannot take y also as linear in the argument
x —ut, as only different n, y can describe vortices.
Therefore we try the simple ansatz y(y), i.e., a
constant with respect to x —ut.

We use now Eq. (5). Its x component is u(y)
=-&„P+y(y), thus

0 =x[y(y) -u(y)]+a(y, i).

Insert this in the y component equation. It is this
equation that actually rules out choices other than
y =y(y); i.e., y follows necessarily once n(x, y, t)
has been chosen.

0 = —x(y' —u') —&~g+y(-tu') —(x —uf)y'.

The coefficient of x has to vanish; therefore
2y' —u'=0, which yields y =~u(y)+c. The rest of
the y equation gives g(y, f) = ctu+f(t). -

Finally, from the pressure equation we have

(I/p)P=2v'+S, y+v grady-u, =df(i)-u, .
This can be satisfied only if P does not depend on
space. Because of stationarity P does not depend
on f either, sof=[(I/p)P+u, ]t.

To sum up: the relevant fields for steady lami-
nar shear flow are

n =x —u(y)t, y =-,'u(y)+c,

P =-—,'xu(y)+[(I/p)P+u, ]t+c[x-u(y)t], a=P, .

(32)

Only u(y) still remains undetermined. To deter-
mine it, we have to take care of viscosity, i.e., of
the full Eqs. (23). If we use the solution (32), we
find: If X =z, Eq. (23) is satisfied identically; if
A. =y, the right-hand side adds up to 0, as does
the left; only if A. =x, is there a nontrivial condi-
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tion, 0=vy"(y). Because of viscosity it is y"o:u"
=0; i.e., v determines the linearity of the velocity
profile,

u(y) = ~u, (y /b+1) . (33)

This completes an exact solution. As expected, it
explicitly depends on time t." The solution's vor-
ticity is

rot v = 2 grad y x grado.

=(0, 0, -u')

= (0, 0, -u, /2b).

teraction of kinetic type is 3d4l of Eq. (18). Its
k-space density distribution

II~4i = —,'p Vv, (k) .v, *(k)

is a transverse-current-transverse-current in-teractionn.

The interaction matrix element reads

U, (k,P, ~) =P;&~~(&')e, =p q -(p k')(P q),

(34)

X,"=-,'p VQ [p 'q-(p k')(k' q)] ay ~a,*~~a~+~a, ~ .

The 4-field current reads I',
&

=I'&, = 6,&
—0', k~, transverse projector.

(35)

j = (-,u+ c, -~xu' —ciu', 0).

grad/ = (-2u+c, ——,'xu' —ciu', 0).

As divj =0 we conclude that /~=0 and g =Q, .
Once n(x, y, f) had been chosen everything else

could be deduced. Another "gauge" of the label
field n at t =0 leads to physically equivalent solu-
tions.

Finally the viscous part of the Hamiltonia. n (31)
is written

3I„~"& =-,'p Vg vk'i(a„a, —a~+a+, ) .

XI. APPROXIMATE 4 BEHAVIOR AT THE ONSET

OF TURBULENCE

X. INTERACTION IN FULLY DEVELOPED TURBULENCE

While at the onset of turbulence the boundaries
are decisive —for the form of the instable mode as
well as for the laminar background profile —in
fully developed turbulence there is a universal
region on the length scale in which neither bound-
aries nor the form of the energy providing lami-
nar background is important. In this universal
region turbulence is considered to be homogeneous
and isotropic.

To treat this regime we may use exp(i% r} a,s
eigenfunctions of the Laplace equation (7). Define

4'(r, f) = g e' ""a, (t),

and find as Fourier representation of the other
fields

jI = ~q+q-I]2~~+&(2 ~

-O'P, = i P (k q)a,* „&,a„,&, .

The velocity v~(4*, 4) of Eq. (12), which is of
second order in the field, is just the transverse
part of the current:

v, (k }= Q [q - k'(k' q)]a,* „(,a,„(,.

Homogeneity and isotropy of the turbulence fur-
thermore means that 4' represents the eddies with-
out any laminar additions. Therefore the eddy in-

Clearly an exact treatment of the 4 equations
(23) gives the same physical results as exact so-
lutions of the Navier-Stokes equation (2). But if
an approximate equation for a turbulence order
parameter is needed, in view of the presented
results it seems more natural to write down a
Landau equation for the amplitude g(i) of a spa-
tially fixed 4 mode, rather than for the velocity
amplitude &(f) [cf. Eq. (1)]:

—= ag —bg
d(
dt (37)

q'/y2O = e "/(I + e") . (38)

Using the Landau equation (1) one derives g'/(2O
= e'/(3+ e")' ' instead of Eq. (38) (see, for ex-
ample, Ref. 27). Figure 1 shows a comparison
of both theoretical functions as well as experi-
mental points, gained by Donnelly and Schwarz"
from ion current measurements at the Taylor in-

In the linear regime Eqs. (37) and (1) are equiva-
lent, a=y, /2C:Re —Re, . They differ in the non-
linear parts. bg' wouM correspond to a term ~A.'
in Eq. (1).

Consequences of Eq. (37) are: (i) The steady
velocity amplitude A, of the new mode which ap-
pears at Re, increases ~g', = a/b ~ Re —Re„rather
than ~(Re —Re, )'~' according to Landau's sugges-
tion (1).

(ii) The transient behavior of the normalized
velocity amplitude g'/tg=&/&0 as a function of nor-
malized time 7= y, t is
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FIG. 1. Normalized ion
current ~ velocity ampli-
tude vs normalized time.
The Taylor number of the
shear flow between con-
centric cylinders is sud-
denly raised above the
critical one. Experimental
data from Ref. 2 7.

0

d t=Z
I

stability. 0 is chosen to be 1.75 instead of 1 in
order to have good agreement between both theo-
retical curves and experiments if v) 0. y, has
a1so been fitted (by Donnelly and Schwarz) to have
agreement in this regime.
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