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Theory of translational diffusion in nematic liquid crystals~
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The theory of translational diffusion in nematic liquid crystals is developed from the standpoint of
hydrodynamics and molecular-hydrodynamic interactions. The anisotropy of the diffusivity is obtained
and related to the orientational order parameter, viscosity coefficients, and the detailed molecular ge-
ometry. Liquid-crystal hydrodynamics, Riemannian geometry, and molecular chain space are utilized
in the theoretical development. The results for the diffusivity parallel and perpendicular to the director
in p-azoxyanisole (PAA) at 125'C are Dll 43 ~ 1Q

—6 and Di 3 1 )& 10 6 cm2/sec, respectively,
giving an anisotropy ratio Dll/D' = 1.4. In addition, the temperature dependence of D' is obtained,
using available viscosity data. D (Dll) shows an increase (decrease) —corresponding to the decrease in
order parameter —as the isotropic transition temperature is approached.

The velocity autocorrelation function has recent-
ly been solved in isotropic liquids through the
utilization of projection-operator techniques de-
veloped by Mori' and Zwanzig. The memory
kernel in this type of formalism was investigated
by Rice' and by Corngold and Duderstadt' using a
perturbation expansion in isotropic liquids. A
theory based on a frequency-dependent friction
constant which utilized fluctuation-dissipation
theorems, dispersion relations, and sum rules
was applied by Martin and Yip' to make a com-
parison of the theory for self-diffusion in argon
with the computer results of Rahman. ' A con-
sideration of liquid-crystal symmetries, poten-
tials, and frequency dispersion relations reveals

that the requisite modifications of the theories
which have been mentioned are not trivial when
applied to anisotropic fluids. This author men-
tioned an attempt to modify the theory of Martin
and Yip for application to self-diffusion in ne-
matic liquid crystals and, in addition, presented
the results of calculations which utilized a modi-
fied Kirkwood theory. ' A proper formulation for
a kinetic-equation approach would involve ob-
taining solutions to a generalized kinetic equa-
tion, including both translation and rotational
motions, for liquid-crystal phase symmetries.
Then the translational self-diffusion coefficients
would be given by the velocity autocorrelation
function:

D„=dt(u;(t).u, (0))=m '
I dt ' ' ' d'0 d'$d'(, P;Q,„(k=o, ), k, )„t)P,&f~" (k„$,),

0 0 0 K0

where $ = (p, &) and t, k, p, and & are time, wave
vector, linear momentum, and angular velocity,
respectively G, Tc, .and f represent the correla-
tion function, Euler-angle representation, and
single-particle distribution function, respectively.
A similar equation can be written to represent
rotational-velocity autocorrelations. If solutions
to the generalized kinetic equation can be obtained
then the diffusivity-tensor components can be
written from a knowledge of the intermolecular
potential. ' However, the complexity is such that
considerable time will be required in order to ob-
tain solutions and evaluate the results.

Another simpler method has been reported by
Chu and Mor01 1Q which the self-dlffuslon

coeffic-

ientss and their anisotropy ratio are calculated
from a parametrized form of the momentum auto-
correlation function utilizing a molecular-cluster-
ing assumption.

An ancillary theoretical approach to the problem

of diffusion in liquid crystals is one which deals
not with the basic calculation of the velocity auto-
correlation functions but with the characteristics
of the diffusion process and its molecular param-
eters. The utility of such a theory derives from
the variety of influences affecting molecular mi-
gration in these systems. These influences and
characteristics include the following: anisotropy,
effects of the detailed molecular geometry, tern-
perature, 2nd orientational and translational order
parameters. The potential applications of a theo-
retical approach which includes these character-
istics are the prediction of the diffusivity com-
ponents and the effects of orientationa. l and/or
translational order parameters in the nematic,
smectic, cholesteric, and lyotropic mesophases.
In addition, potentially useful applications of the
theory are in studies of mass transport 1n living
systems such as biological membranes and other
groupings of axially ordered molecules in bio-
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systems.
The basic reference for the theoretical back-

ground for this research in Oseen's hydrodynamic
theory' which was developed for isotropic fluids.
In that theory a hydrodynamic interaction tensor
was introduced and the effects of hydrodynamic
interaction with special three-dimensional shapes
was studied. The Oseen tensor stems from sing-
gular solutions to the Navier-Stokes equation.
Subsequently, Kirkwood" modeled a tensor ap-
proach to the diffusion of macromolecules in
aqueous solutions such that effects of the per-
turbation on the velocity of a molecular segment
by the Oseen hydrodynamic interaction tensor
were incorporated within the diffusivity. In addi-
tion, an accounting was made of the many-body
aspects and of the possible generalized coordinates
of large organic molecules. Molecular-chain space
was utilized and the tensor properties of the mo-
lecular solution of the diffusivity were incorpo. —

rated in the metric and Oseen tensors. In the
Kirkwood and the present theory the diffusivity
tensor components are given by

D 8 =IT(g 8/&+T ),
where g ~ and T ~ are the metric and Oseen
tensors, respectively, and g is the scalar friction
constant.

In Kirkwood's theory the viscosity was assumed
to be a scalar; the theory was not derived for ani-
sotropic fluids such as liquid crystals. In addition,
Kirkwood's theory assumed all segments of the
molecule to be identical and did not consider ef-
fects of orientational or translational order-dis-
order. The Kirkwood theory is also ineffectual
in treating rotational diffusion in anisotropic fluids
since the derivation on which it is based is the
Navier -Stoke s equation for linear motion r ather
than the angular -motion analog. The Kirkwood
theory was designed, and was very successful,
for the Brownian motion of macromolecules such
as polymers in an isotropic matrix. The present
theoretical derivation is done for self-diffusion
for liquid-crystal order and makes use of the
recent hydrodynamic theory of Jahnig and Schmidt"
for nematic liquid crystals together with the
Oseen-Kirkwood approach to molecular-hydro-
dynamic interactions.

The initial experimental work on diffusion in
liquid crystals, done by Svedberg" in 1918, showed
that for impurity diffusion in nematic mixtures
D & D & D, where D' and D' represent the dif-
fusivities parallel and perpendicular to an aligning
magnetic field of 3 kG. Subsequently, Blinc et aL."
reported order-of-magnitude measurements of the
self-diffusion in P-azoxyanisole (PAA). Yun and

Frederickson, ' utiliz ing radio -tracer techniques,

found a maximum anisotropy ratio D "/D of ap-
proximately 1.3 and reported the temperature
dependence of D, D', and D', where D' is the dif-
fusivity of a nonaligned, disoriented nematic over
the nematic range of PAA. In addition, phase-
transition effects indicative of a change in the or-
der parameter were found in the temperature de-
pendence of D and D as the clearing temperature
T, was approached. Additional work on the anisot-
ropy and its temperature dependence in PAA has
been reported" utilizing quasielastic neutron scat-
tering. The results of this technique, however,
may include rotational diffusion effects,

In the room-temperature nematic p-methoxy-
benzylidene -P' -n-butylaniltne (MBBA), Murphy
and Doane" have found the anisotropy of impurity
diffusion (tetramethylsilane, TMS) to be very
small. Additional impurity-diffusion results have
been obtained recently by Rondelez" for dye mol-
ecules in MBBA which indicate that D /D~ = 1.6—
1.7. Zupancic et a$. ' have recently found, using
a multiple-pulse NMR spin-echo technique, a ratio
of D "/D =1.4 for self-diffusion in MBBA and pos-
tulated a value of 2.2 for perfectly ordered MBBA.

The need for the inclusion of the effects of Aans-
lational order in a theory for smectic liquid crys-
tals is suggested by the finding" that D'= 10D
for diffusion of TMS in smectic A and B 4-n-
butoxybenzylidene -4' -n-octylaniline. Doane" has
found that D /D for self diffusio-n in this com-
pound is much less, however. In a study of the
homologous nematic series which includes MBBA
Doane also found that D'/D" & 1 in the member of
the series which is closest to the smectic phase
while D "/D'& 1 for other members. The former
finding may indicate an effect of short-range
smectic order in the nematic matrix.

In cell membranes and liquid bilayers there is
evidence" which indicates that smectic modeling
and liquid-crystal-type diffusion processes are
relevant. Therefore, certain of the experimental
and theoretical results for liquid crystals may be
useful in membrane research.

In the succeeding sections the theoretical de-
velopment will be presented, numerical analysis
and interpretation given, and a comparison will
be made with experimental results for PAA. The
Riemannian geometry which is utilized is nec-
essitated by the use of generalized molecular co-
ordinates in N-dimensional molecular-chain space.

HYDRODYNAMIC THEORY

The relationship between hydrodynamic theory
of fluid motion and molecular diffusion stems
from the theory of Brownian motion by Einstein. "
The incorporation of the theory which has evolved
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for isotropic liquids' ' in the more complex struc-
ture of liquid-crystal theory is facilitated by the
hydrodynamic theory of nematic liquid crystals
given by Jahnig and Schmidt. " We begin, there-
fore, by writing the symmetric stress tensor"
for viscous flow in component form:

~ '=-q",ay'-q' xyy6

mhere

A~' = —'a~ (a, V, v" a'+a" V, v'a, ) a'

Bj6 Bqy Bgy6 .
2 BQ'y Bq6 Bq

N~ =a~ (a„n' ,'a, ~'~" V-„-v, ) .

Bny
N". 8= 8 +( j P, y)Q' - (e~"V„v, ), g, (6)

mill be needed. Following Oseen' we choose to
write a scalar equation, utilizing two different
velocities, v and u, integrated over the system's
volume. We let a bar denote the use of v in A and
N, whereas the unbarred forms involve u, and a
bar over V denotes the stress tensor for velocity
v. The scalar equation is written as

ILv (q"'„A.&', +q, ', X&, , +v ', ,)
V

—u~(q ygA&, g+q N&, 8+m", 8)dgj=0,

In Eq. (4}, a,. is given by a sum
chain space for a molecule with
segments, "

BR'

)=-n

in molecular-
an odd number of

(6)

gaP aP gy6 aQ ~y a/=g
y

4 . 8
=—(v4" ) g,

(10)

~ g ~ ~ e 8where e =q, v=a q, and v =g ~v . We define

and a' =g" a, , where g" is the contravariant
metric tensor. R' is a spatial vector denoting
the position of the 1th segment and q' is the ith
generalized molecular coordinate. In Eq. (3) the
viscosity tensors for translational and rotational
motion are denoted by q&6 and gy, respectively,
and in Eqs. (4) and (5) v and 0 are the linear and
angular velocities, respectively.

In the subsequent development of the theory the
covariant derivatives of Ay' and N", which are
given by

s2q' 62q& sg&' sg
Bq BQ Bq Bq6 Bq Bq

gy
Bqt'Bq

and use these definitions to rewrite Eq. (9) as

(4 s. s -4, 8) d 7
Jy

Va g4 —u 84 dy=0.

(12)

Invoking Green's theorem the first term in Eq.
(12) becomes

(13)

so that Eq. (12) can be written out as

(v (q»A~'+g &N" +v )n~ —u (q &,2&'+g
&

N~+m )ns] dS — (v„84 —u~ 8% }dT=O.
~

~

S (14)

Following the initial development by Oseen' and
subsequent adaptation by Kirkwood' to molecular-
chain space we write the interaction tensor

fp „/ sq' sq"

~2 la
B

o &a

(15)

where the indices l and s refer to molecular seg-
ments and R„ is the vector distance between the
segments l and s. This tensor differs from Kirk-
wood's T by a factor (Svri) ' since the anisotropic
analog of this term will enter the theory naturally

[from the viscosity tensors in Eq. (14)]. The
tensor components summed over molecular seg-
ments are given by f" =Zf~, . In the nematic
case t differs from Kirkwood's t through the
presence of the order parameter 8, which relates
the orientations of the molecules in Eq. (15). The
result of incorporating S in t is shown in Eq. (31).

We use t, as defined by Eq. (15), which is the
counterpart to that used by Oseen in an analogous
manner, as a replacement for v, which alters the
fundamental character of Eq. (14). Before making
this transformation, however, we digress briefly
to give a physical picture of the relative velocities
involved in the hydrodynamic interactions between
molecular segments and their surroundings and of
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wr =us —vr (16b)

(16c)

where g is the friction constant and where u, is
the perturbation of the velocity caused by hydro-
dynamic interactions and is given at a general
point P, due to a force acting at q, by

u(r, )=T(r„) F(r, ). (17)

The velocities in molecular -chain space are given

by u=Z u, .
The velocity v in Eq. (14) is now replaced by t

with the resultant transformation from a scalar to

the assumptions made. The role of the molecular-
hydrodynamic interaction tensor T which includes
t in the weaving together of hydrodynamic and
molecular theory will also become manifest in the
following development.

%e consider the velocity of the matrix fluid at
the position of a particular molecular segment l
as u, , and ~', as the unperturbed fluid velocity,
in the absence of segment l. Another velocity, v„
is the velocity of segment l with respect to a lab-
oratory reference frame. Then we let

a vector equation. The surface integral is divided
into inner and outer integrals such that fz f& +fr,
where y is the surface of a small sphere of radius

j." is the surface of the system whose hydro-
dynamic interactions are being considered. Then
the quasistatic assumptions, which are analogous
to those invoked by Oseen, ' are adopted in which

the integrals over u, , u, ~, t,~ ~, and 0, all vanish
or become negligibly small on the outer surface I'
and in the intervening volume V between y and I'.

A basis for these conditions is that the relative
motion between surfaces y and I contributes in a
hydrodynamic fashion with a solidlike rigidity be-
tween. In a single large molecule, hydrodynamic-
like interactions occur on the outer surfaces of
each segment" and m" behaves in a manner anal-
ogous to a surface traction acting on I'. These
conditions make the problem tractable in both the
isotropic and anisotropic cases; the anisotropy
of the medium does not give rise to insoluble
terms. The relationship of these conditions to
localized fluctuations in kinetic variables, which

give rise to Brownian motion of a molecule rela-
tive to its surroundings, is apparent when the
magnitudes of local and nonlocal terms are ex-
amined. Under these assumptions the nonvanish-
ing terms of Eq. (14) give

I ~
m n&dS+ l

t' q &A"'+'g
&

N&+m n8-u q &, A&' +g &N~ +m n6 dS=O,
I'

(18)

where ~a Sa Itj ~ ~

When we let f d S-4wr ' and note that t ~-r ' we

find that the product of t~ with the three terms in
the first parentheses under the integral over y all
vanish when r- 0. In addition, the m

~ and 0& ~

terms in the second parentheses also vanish thus
leaving

I f.'~"'n, dS
~r

(22)

~fxL ~ pea
ls

l &s

et~' eI;&' eg&"
2

The interaction tensor utilizing Eq. (15) can be
written as

j ~

I ]kg (20)

which yields
at" I 8f'~ ~=+ Vt-~ a'= +- t". (21}
Big& 2 BQ

The resulting form of A & ~ is

r (} ~4&r2 (19)

The outer surface integral in Eq. (19) yields t~F"
and it is this term, together with the viscosity
terms, which comprise the right-hand side of Eq.
(17). This is shown clearly in Eqs. (26) and (27).

Before Eq. (19) is developed further the variables
which appear in this equation will be considered.
The divergence of t is given by

in which g'~ = &'~/p, (see Appendix). The partial of
t with respect to a spatial coordinate yields

(24)

for deformable molecules.
Returning to the integration of Eq. (19) the

t sg~ /sq will be omitted since it vanishes.
Also, since the 0& ~ term, which is the analog of
the local rotation velocity when v is replaced by
t, in N~~ vanishes in the limit as &-0 after in-
tegration, it will be omitted. A short derivation,
using Eqs. (20)-(24) in Eq. (19}yields
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t 'F~=- 1' ~ ~~ ~6 gy g«R~ gyL 6 lS lS

~et/ ~y Rp Qvg Rv gp 5 6 ls ls lsR" RvR
+ y PV lS lS 8 ~

ls

Integrating E(I. (25) and taking the sum, we obtain

g„8te~E"=—2nu„(q (;(n&6 ~+n 5 ~i6n~n n~)+q" e&&„(n" O'I+n" 5)~+6n&n"n~)}n8,

(25)

where the n' are unit-vector components which stem from the limit as &-0. Therefore, the perturbed
velocity attributable to the hydrodynamic interactions with molecular segments is given by

u'=-r'E
where

T =t /2m(q"'z n&+q"'~zn +6@" &zn n&n iq"' (e~„~n" +e& t, n'+6e&„,n (n~ n)) n (26)

is the complete molecular-hydrodynamic interac-
tion tensor, including the viscosity tensors, which
is the anisotropic analog of that given by Kirk-
wood. ' Utilizing the symmetry of the viscosity
coefficients" we write the contravariant form of
T as

T"t) =t~~ /4v(q8 ~n&+3@8' (n~n&nt8 y

+&, ,(e~„'n~+ 3e~„„n~n "n~))n. .
(29)

The symmetry of the nematic phase and the in-
compressibility condition lead to the reduction of
the number of nonvanishing independent viscosity
components to five for g„.» and one for g;».

The form of the diffusivity tensor which will be
used is that derived initially by Kirkwood" and is
given by

D"' =kT(g"'/~+ T"') . (30)

The symmetry of transversely isotropic materials
shows that D""=D'" and D'~ =0 for i 4j. An actual
numerical evaluation of our results shows that the
off-diagonal terms in D are negligible and that
the diagonal components display the expected sym-
metry. Consequently, only two nonvanishing in-
dependent components of D require evaluation and
these are D =D" and D =D"'=D'", where II and
& denote components parallel and perpendicular to
the director, respectively. When thermal aver-
aging is considered the orientational order param-
eter enters the second term in E(I. (24) via (sin' 8)
=

& (1 —S), where S is the order parameter. Then

2(2+S) ~ g 5- 2S
( )

3I R„ I

' „3IR.I

1 5-S
12m '(I) (18, +88 +38 +-6 ))

(32b}

D =kT +
6mp'

1 5-SD~ =kT —+
12wp, 'P

(4a, +-', n, +L n, +6n, +10n, )),
(33a)

(, n. ..n, +6n, ;n, )).
(33b)

A third form of the diffusivities can be written
using the coefficients g,', g,', and g3 of
Meisowicz, "the Qrsay Liquid Crystal Group, "
and Papoular28 as given in Table I (b). This form
is useful in the numerical evaluation of the tem-
perature dependence of D for PAA since the tem-
perature-dependent viscosity data which are
available are in this form. From the code of Table
I (b) the parentheses in the denominators of E(ls.
(33}become

4+, +8+, +20',' —8q,' -1l-' y, , (34a)

TABLE I(a). The translation code between the viscosity
coefficients of Jahnig and Schmidt (Ref. 11) and those of
Erickson (Ref. 24) and Leslie (Ref. 25) as communicated
by Jahnig (Ref. 34). We note that y, =n, —n, and that

pg = cR3 —Q2.

where (I)
' =pl/I R„I (see Appendix for evaluation).

The transformation between the Jahnig-Schmidt"
and Erickson'4-Leslie" viscosity coefficients is
given in Table I (a). Utilizing this code we obtain
the diffusivity components in Leslie-Erickson
notation:

D =kT —+
1 2+S

6vg2 (68, +3-6, +46,)),
(32a)

In the Jahnig-Schmidt notation" the diffusivity
components are given by

q =-2(G.&+n5)
1

'g2 = 2&4

q3--2(n& ++4++5)

g4
-—2(+4+ e~) +y2

5
——2(20-'g +0'2+2&3+&4+30'5)

V = —
pg
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'-,'y, - -,' ~, —3n,'+15',', (34b)

NUMERICAL EVALUATION FOR PAA

There are five independent viscosity coefficients
in Eqs. (32), (33), or (34) which are required,
together with their temperature dependence across
the nematic range, for numerical evaluation of D.
Unfortunately, reliable temperature-dependent
data are not available for all five coefficients for
any nematic. However, the Orsay Group" has ob-
tained the Leslie-Erickson coefficients at 125'C
for PAA. We use these coefficients, together
with the values of p and Q from the Appendix.
The value of f is obtained from the data of Yun
and Fredrickson'4 utilizing the same procedure
used before. ' The order parameter of Glarum
and Marshall" is used. Then D" (125'C) =4.3

where primes are used to distinguish these co-
efficients from those of Jahnig and Schmidt.

In the isotropic case the translational viscosity
'g(~ ls given by

(35)

where p is the shear viscosity of isotropic liquids.
In this case, it can be shown, by referring to the
theory presented above, that all but the first vis-
cosity term in the denominator of Eq. (29) vanish.
This term, given by Eq. (35), reduces, for P= $

and o, z summed in Eq. (29), to 3-', q and gives a
value of 13-', mq for the denominator of Eq. (29). In
the isotropic case S =0 and a factor of $ stems
from t which appears in the numerator of Eq.
(29) and which gives rise to the (8m@)

' dependence
of T given by Kirkwood. '0 The details of the exact
reduction of the theory to that for isotropic sym-
metry are a bit more complex but the argument
presented here is sufficient to indicate the com-
parison. However, it is known that all &, in Eqs.
(33) vanish in the isotropic case except &,. Then
the viscosity terms in D' and D are identical, as
one would expect. It is not known, however, why
D and D are not equal when S =0 in Eqs. (33),
since this is expected in these equations without
reverting back to the original derivation of D and

making everything isotropic to begin with.

n2 rl3

116
120
125
130
135

0.64
0.62
0.58
0.54
0.40

0.073
0.067
0.061
0.053
0.040

0.034
0.032
0.030
0.028
0 ~ 020

0.082
0.072
0.059
0.049
0.030

&10 ' cm'/sec and D (125'C) =3.1&&10 ~ cm2/
sec, giving an anisotropy ratio D /D =1.4. This
compares to the experimental values of Yun and
Fredrickson" at the same temperature, which are
D =4.1&&10 ' cm'/sec, D =3.2&&10 ' cm'/sec,
and D /D =1.3. The temperature dependence of

can be evaluated, since the —2&, term in Eq.
(34b) is negligibly small, through the utilization
of the activation energies of q,

' and q3 from
Porter and Johnson" and of y, from Meiboom and
Hewitt. " This method utilizes a consistent set
of viscosity data —that of the Orsay Group —and
incorporates activation energies from other data.
The latter is predicated on the principle that
reliable activation energies are more easily ob-
tained experimentally than are absolute values in
rate-constant measurements. Table II lists the
values of y„q,', and q,

' obtained in this manner
together with S from Glarum and Marshall' at
various temperatures. Figure 1 shows a compari-
son of the theoretical results with the experimen-
tal data of Yun and Fredrickson" for PAA. The
degree of agreement between theory and experi-
ment for D over the nematic range and for the
anisotropy ratio at 125'C is pleasing. It is not

4.O-0

Oi

g
3.5-

0
4

3.0-

TABLE II. Values of the order parameter S from Hef.
(30) and of the viscosity coefficients g2, q3, and y~ from
Ref. 27 utilizing activation energies from Refs. 31 and 32.

TABLE I(b). The viscosity coefficients of Meisowicz
(Ref. 26) and others (Hefs. 27, 28), where g&, g2, and

g3 refer to molecules being parallel to the flow, parallel
to the velocity gradient, and perpendicular to both flow
and velocity gradient, respectively.

r]q ———,'(n, +e4+ n, )

g2 —2(+4+ F5 —e2)
1'03 = 20'4

l~
v~6

'
tk 0 ok~ qadi Ju r+

&

TEMPER4TCIRN ( C)

FIG. 1. Diffusivities parallel and perpendicular to the
director, D" and &, respectively, versus temperature
in nematic P -azoxyanisole (PAA). The experimental
data of Yun and Fredrickson (Hef. 14)„which was ob-
tained using the radio-isotope technique, is shown for
comparison. The theoretical curves stem from Eqs.
(33) and (34) using material constants (temperature de-
pendent) given in Table II.
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possible to evaluate the temperature dependence
of D very accurately since &, and &, are not
known except at 125'C. Nevertheless, the gen-
eral features of the experimental curve are ob-
tained from the theory and the curves for D" in

Fig. 1 are in reasonable agreement.

DISCUSSION

The relationship between the diffusivity and the
molecular friction constant or viscosity coefficient,
which has been theoretically and experimentally
verified in isotropic liquids, has never been shown
for anisotropic liquids. Risemanand Kirkwood in
Ref. 10did, however, consider anisotropy in a limited
sense; they considered anisotropy in B which
was attributed to the anisotropy of the metric
and hydrodynamic interaction tensors assuming
perfectly aligned macromolecules in an isotropic
matrix. In that theory no effect of the orientational
order parameter or of an anisotropic matrix was
considered. However, theoretical evaluation of
both rotational and translational diffusivities was
accomplished and found to correlate well with ex-
perimental observations. The present calculation
has been done for anisotropic nematic-liquid-
crystal order for translational diffusion. The
rotational analog of this theory might best begin
with the rotational counterpart to Eq. (3), which
has been given by Jahnig and Schmidt" for nematic
symmetry as

ijk ~jk ~ijk +jk ~fj j (36)

where nj'k is the antisymmetric stress tensor and

&, jk and &„. are viscosity coefficients. An attempt
was made in previous work' to relate rotational
diffusion to the type of theory which is presented
here but numerical evaluation gave results which
did not correlate well with experimental observa-
tions in PAA. Therefore, a better approach is to
begin with Eq. (36) and derive D,„, in a manner
analogous to that done here for D„,„, . We note
the presence of the cross-term tensors g,» and

P;,~, in Eqs. (3) and (36), respectively, and that
these are equivalent when the Onsager relations
are utilized —when axial vectors are replaced by
antisymmetric tensors. (See Appendix B of Ref.
11.}

The sensitivity of Eqs. (32)-(34) for D and D
to the numerical values of the viscosity coefficients
is dependent upon the signs, magnitudes, and
numerical coefficients of the constituent coeffi-
cients. The sensitivity is quite significant; a 10%
increase in y„ for example, results in a 20 and a
5% decrease in the hydrodynamic interaction por-
tion of D and D, respectively. Consequently,
since the experimental accuracy of z„which is

the coefficient which is most easily measured ex-
perimentally, is of the order of 5-7/o, "'" the
over-all uncertainty in the hydrodynamic interac-
tion portion of D and D using the available vis-
cosity data is probably not much better than 50~/o

for PAA. The relative magnitude of the g"/r and
~' j terms in D ranges from 3:1 at 116'C to 1.5:1
at 135'C. Consequently, uncertainties in D
caused by uncertainties in T" increase as T-T, .

The effect of the temperature dependence of S
on D as T'-1', is to decrease D and increase D,
as can be seen in Eqs. (32) and (33). Effects
which can be attributed to S have been observed
experimentally in PAA as shown in Fig. 1 near

In addition to the explicit dependence of T"
on S the viscosities also display a dependence on
S and deviate from logarithmic behavior as T -T, .
This feature is taken into account in the calculated
values of D.

In a first-order phase transition S does not go
to 0 continuously and D and D display discon-
tinuities at T, in the transition from the nematic
to the isotrooic phase. Since D' &D the following
condition obtains for the nematic phase even as
T-T

2+8
4o.', +3&,/2+13o.', /2+6o. ', +10o.',

5-$
—11n, /4+9n, /4+6n, —3n, /2

'

(37)

The tendency which is observed in certain homo-
logous series and nematic mixtures toward second-
order phase-transition behavior will tend to bring
Eq. (37) close to an equality as T-T, .

With regard to the complexities of this theory,
which utilizes molecular-chain space and Beiman-
nian geometry to describe rigid-molecule behavior,
the effects of segment size on gl/~R„~ and g„e
are very significant. This can be seen in the
Appendix. The significance of segment size on
hydrodynamic interactions was not considered by
Kirkwood" since he assumed identical segments.
Segment sizes determine the lengths between which
hydrodynamic interactions take place and these
produce significant differences in the theory for
different molecules. In addition, the utilization
of generalized coordinates in molecular-chain
space allows one to consider internal degrees of
freedom.

The requisite modifications of the theory for ap-
plication to smectic and lyotropic liquid crystals
include the addition of the translational order pa-
rameter. The question of whether the anisotropy
ratio can be greater or less than 1 in different
smectics is an interesting question for considera-



THEORY OF TBANSI ATIONAI DIFFUSION IN NEMATIC. . .

5.57

I

I
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TABLE III. Segment lengths for the PAA molecule
taken from bond lengths projected onto the molecular
axis. See Fig. 2 and Bef. 35. The quantity b =5.15 A is
an average of the molecular cross-section diameters,
whereas b& is the length of segment l.

FIG. 2. Choice of segment lengths in PAA which are
used in numerical evaluation of the molecular-hydro-
dynamic interaction tensors. The x-ray data of Bef. 35
were utilized to obtain the projected lengths on the mo-
lecular axis which are shown.

tion in this theory. Results so far have indicated
that D &D for both self2 and impurity" diffusion.
If this result also obtains in smectic-type lipid
bilayers and membranes it could have some signif-
icance in membrane transport considerations.

The molecular geometries of PAA and MBBA
were very simply analyzed as shown in the Ap-
pendix. More complicated geometries, such as
double-tailed molecules, can also be treated. With
regard to membrane modeling, the type of ap-
proach developed here should be useful in the con-
sideration of transport of specific molecules. For
example, in the carrier mechanism the addition
of certain ions to the carrier will affect the param-
eters it and Q, which should be easily calculable.
In addition, dipole effects which are needed for
membrane calculations can be added to this theory
following the initial concepts of Kirkwood" for
treating molecular systems with permanent dipole
moments. The analysis of the two factors which
include effects of molecular geometries, given
in the Appendix, assumes rigid linear molecules
with the molecular-hydrodynamic interactions
depending on segment size and spacing between
segments. These assumptions are valid in first
approximation for short molecules such as PAA
and MBBA. However, for long flexible molecules
the effects of both conformational changes and
tail rotations on the diffusivity would be significant
factors to consider.

APPENDIX: MOLECULAR SUMS FOR PAA

The evaluation of the molecular-segment sum
given by

Segment
Projected segment length
b) (A) br//b

2.69
5.57
0.63
5,60
2.87

0.522
1.08
0.122
1.09
0.557

where e, ' is the ith component of a unit vector
for segment I (for 2n+1 segments). The length
of the lth segment is &, and the average of the
molecule's cross-section diameters is given by
b. The quantity 5, /& is given in the third column
of Table III. For PAA the value of the coefficient
p. is 2.954. The contravariant metric tensor is
given by g s = &" /p, =0.339&"s.

In MBBA a similar calculation yields / =1.41
X10 ' cm and p. =3.14.

follows the general method introduced by Kirk-
wood'o but involves an assignment of segment size,
which is shown in Fig. 2. The bond lengths and
angles are taken from Krigbaum et al."for solid
PAA; no significant differences are expected from
these values for molecules in the nematic state.
The segment lengths were calculated from the
projected bond lengths on the molecular axis,
which are given in Table III. The value of the
sum obtained using the segment sizes given in
Table III is 6.80&&10'/cm, which gives a value

Q =1.4'7x10
The evaluation of the covariant metric tensor

in molecular-chain space is based on the following
form of the tensor:
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