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The results of a molecular-dynamics study of a simple model of a molten salt are reported. The
interionic pair potential which is used consists of the Coulombic term and an inverse-power repulsion

which is assumed to be the same for all ions. The structure of the liquid is found to be dominated

by charge-ordering effects and the calculated equilibrium properties are in good agreement with the
predictions of the hypernetted-chain approximation. The relation between the self-diffusioncoefficientand
the electrical conductivity is discussed, and the observed deviations from the Nernst-Einstein relation in

real molten salts are shown to have a natural explanation in terms of short-lived cross correlations,
Data on the spectra of charge and particle density fluctuations are presented. At small wave numbers

there is a propagating optic-type mode which shows a strong negative dispersion, but no Brillouin peak
is seen even at the lowest wave number which is accessible. The data are analyzed in terms of a
single-relaxation-time model incorporating the low-order spectral moments, for which we give explicit
formulas. The fit achieved is fair, but the low-frequency behavior of the charge fluctuations at small

wave numbers is incorrectly reproduced, and there is evidence for the necessity of introducing a second

relaxation time. Comparison is made with results previously obtained for the classical one-component

plasma.

I. INTRODUCTION

One of the most interesting results to emerge
from recent research on simple liquids is the
existence of well-defined collective excitations
in a range of wave numbers k up to 2m times the
inverse of the nearest-neighbor distance r, . This
information has come both from molecular-dy-
namics (MD) calculations and from neutron-scat-
tering experiments. For example, the molecular-
dynamics work of I evesque et al,.' has shown that
in the spectrum of density fluctuations in an argon-
like liquid a three-peak structure characteristic
of the hydrodynamic regime is still observable at
wavelengths as short as Gr, . The position of the
Brillouin peak in these calculations is at a fre-
quency such that &u/k is very nearly equal to the
macroscopic sound velocity. The persistence
of propagating density fluctuations at short wave-
lengths is apparently closely related to the form
of the interparticle potential. Whereas the work
of Levesque et al. ' was based on the familiar
Lennard-Jones potential, a more recent computer
"experiment" made on liquid rubidium by Bahman, '
in which a long-range oscillatory potential due to
Price' was used, has shown that in such a system
density waves continue to propagate at wavelengths
of order 2r, . The results obtained by Bahman'
are in excellent agreement with the neutron-scat-
tering measurements of Copley and Howe. '

In an earlier paper of this series, to be referred

to as I, we have, in collaboration with Pollock, '
used the method of molecular dynamics to study
the collective dynamical properties of the classi-
cal one-component plasma (OCP) in a uniform
neutralizing background. Because of the assumed
rigidity of the background, the dynamical structure
factor S(k, &u) of the OCP describes simultaneously
the spectrum both of density and charge fluctua-
tions. At small wave numbers the dominant fea-
ture in S(k, cu) is a very sharp peak near the plas-
ma frequency. The dispersion is typical of an
optic-type mode, the peak being found at nonzero
frequency even in the limit k -0.

The purpose of the present paper is to report
the results of a molecular-dynamics simulation
of a system of two components, differing only in
the sign of their charges, which may be regarded
as a simple model of a monovalent molten salt.
The feature of molten salts which is of particular
interest in the present context is the fact that the
charge and density fluctuations are independent,
at least in the long-wavelength limit. The possi-
bility therefore exists of observing both the sound-
wave propagation at low k which is characteristic
of simple liquids and the plasma oscillations which
we have previously studied in the case of the OCP.
These two phenomena are the liquid-state analogs
of the acoustic and optic modes of ionic crystals.
In practice, we have been only partly successful,
as we have been unable to detect any Brillouin
peak in S(k, ~), even at the smallest k value which
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is accessible in the size of system we have stud-
ied.

Our interest lies primarily in elucidating the
general character of short-wavelength excitations
in molten salts rather than in making detailed
quantitative calculations for a specific system.
We wish in particular to avoid the complications
which arise when the ions are of unequal size and
mass. The model which we have used is one in
which the masses of the cation and anion are
equal, the ions are singly charged, and the inter-
action potential for two ions of either species is
given by

Q, and Q, are the ionic charges in units of e, the
electronic charge; h. is a characteristic length pa-
rameter which in fact is the separation at which
the cation-anion potential is a minimum; and n is
an exponent which we set equal to 9. Monte Carlo
calculations' have shown that a model similar to
(1) provides a fair description of the thermody-
namic properties of the alkali-metal salts. The
only difference between the potential used in Ref.
6 and that employed here is the fact that in the
Monte Carlo work the short-range repulsive inter-
actions between ions of like sign were ignored.
From a practical point of view the distinction is
unimportant because such interactions make a
negligible contribution to the total potential energy
of a typical configuration of ions. The thermo-
dynamic properties of either model may be scaled
on a corresponding-states basis, but the scaling
of temperature is not independent of that of vol-
ume, as is the case in OCP.

The technical details of the molecular-dynamics
calculations are similar to those in our work on
the GCP, a few obvious changes being required
in order to deal with a two-component system and
short-range interionic repulsions. The algorithm
adopted by Verlet" was used to integrate numeri-
cally the classical equations of motion of a sys-
tem of 216 ions, 108 of each species, enclosed
within a cube which is surrounded on all sides by
periodically repeating images. The Coulombic
force on each ion was computed by the Ewald
method and the short-range interactions were
truncated at a separation of one-half the length
of the cube. As unit of length we choose the char-
acteristic length A., and as the unit of time we
choose' the inverse plasma frequency u~', defined
by

(u', = 4wpe'/m,

The molecular-dynamics "experiment" was
made at a volume V/ÃX' =2.72 and the trajectories
of the ions were followed for 2.5~104 time steps
of length ht = 0.2, extended to 5 x104 steps for the
calculation of electrical conductivity. The mean
temperature of the run was XkT/e' =0.0177. To
give some feeling for the magnitude of the quanti-
ties involved, we shall make a conversion to real
units for the case of liquid NaCl. Taking the Monte
Carlo calculations' as a guide, we choose A. =2.34
A and find V= 41.9 cm mol ', T =1267 K, and ~t
=0.48x10 "sec. For comparison, the triple
point' of NaCl is at V=37.52 cm'mol ', T =1073 K.

In order to simplify comparison with our results
on the OCP, it is convenient to introduce two fur-
ther quantities. These are in the ion-sphere ra-
dius a given by

a =(2/4~p)"',

and the (dimensionless) plasma parameter I' de-
fined as

Under the conditions of our "experiment" we find
that a=0.866K and I =64.6.

The outline of the paper is as follows. Equilib-
rium properties are discussed in Sec. II and com-
parison made with results of the hypernetted-
chain (HNC) theory. Section Ill is concerned with
the phenomena of self-diffusion and electrical
conductivity and the correlation of the two trans-
port coefficients through the Nernst-Einstein re-
lation; a brief account of this part of the work has
previously appeared elsewhere. ' Sections IV and
V are devoted to the analysis, respectively, of
density and charge fluctuations. Expressions for
the low-order moments of the corresponding cur-
rent correlation functions are derived and used
to build a simple phenomenological model which
provides a fair description of the observed spectra.
Finally, in Sec. VI, we make some suggestions
for future work.

II. EQUILIBRIUM PROPERTIES AND STRUCTURE

The equilibrium structure of a molten salt may
be described in terms of the three partial radial dis-
tribution functions: g„(r), g (r), and g, (r).
For our simple model there is some simplifica-
tion because g„(r) and g (r) are identical on
grounds of symmetry. This makes it convenient
to discuss the problem in terms of only two dis-
tr ibution functions:

(5)

where p =Ã/p is the total number density of ions.
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Corresponding to g, (r) and g, (r) we have two total
correlation functions, h, (r) and h, (r), two direct
correlation functions, c,(r) and c,(r), and two
structure factors:

S,(k) =1 + —,
' p*h, (k),

S,(k) =-,' p*h, (k),

(7)

(8)

where p* = pA.
' and the tilde is used to denote a

Fourier transform. Charge neutrality' requires
that

lim S,(k) =lim S,(k),

and the perfect-screening condition' requires that

S,(k) —S,(k) ~ k'/~', (10)

where a is the inverse Debye length

K =(4mpe'/kar)"'.

Fluctuations in density are described in k space
by the structure factor S(k), given by

S (k) =S,(k) +S,(k), (12)

and those in charge by the structure factor S'(k):

(13)S'(k) =S,(k) —S,(k) .

The long-wavelength limits of (12) and (13) are
determined by

)im s(k) =
(
—

) (14)

(15)

If we attempt to use the computed distribution
functions to calculate the various structure fac-
tors, we encounter the usual problem, namely
that the molecular-dynamics "experiment" yields
values for the distribution functions only for inter-
ionic separations less than some cutoff distance

In our case r, is equal to one-half the length
of the cube, i.e., x, =4.185'. We have therefore
extrapolated our results on g, (r} and g, (r} beyond
r =r, by the method devised by Verlet, "except that
we approximate the direct correlation functions at
large r by means of the hypernetted-chain (HNC)
approximation rather than the Per cus- Yevick (PY)
approximation. The justification for this change
is the fact that HNC is known to be superior to the
I'Y approximation in the case of long-range poten-
tials, as evidenced by the work of Springer et al."
on the OCP.

To implement the method of Verlet, "we require
a good initial guess for c,(r) and c,(r). In practice,
we have found that this requires the solution to the
full coupled HNC equations for our system. To ob-

tain this we have adapted the very efficient method
of Springer et al." to the case of two components,
but even then the calculations have proved very
time consuming. We have been compelled to solve
the HNC equations for a range of temperatures,
starting at very high temperature and reducing in
stages to the temperature of interest. At each
new step in this procedure we used as input the
direct correlation functions obtained at the previ-
ous stage. Approximately 500 iterations were
needed at each step before satisfactory conver-
gence was achieved and the extrapolation itself
finally required 4000 iterations. The calculations,
though lengthy, do have the advantage of yielding
the HNC solution as a by-product. Though the HNC

equation has often been used for electrolytes, "we
are not aware of any previous calculations at
charge densities typical of molten salts apart from
some unpublished work by Larsen" on systems of
hard-sphere ions.

The distribution functions g, (r) and g, (r) are
plotted in Fig. 1, c,(r} and c,(r) in Fig. 2, and the
structure factors S(q} and S'(q), where q =Xk, are
shown in Fig. 3. What is very clear from Figs.
1 and 3 is the extent to which the structure of an
ionic melt is determined by charge-ordering ef-
fects, a feature which has previously been dis-
cussed on the basis of Monte Carlo calculations
by Woodcock and Singer. '~ The function g, (r) has
a very sharp peak near r =A, and the later oscilla-
tions differ in phase from those in g, (r) by almost
exactly half a period. The result is that the over-
all radial distribution function has virtually no

structure beyond its first peak. The function g, (r),
in contrast to g2(r), has a, rather weak and broad
first peak near r =1.75K. However, the tail of g, (r)
at small r extends inwards as far as the peak in

g, (r), indicating that there is some small pene-

0~l I

I

FIG. 1. Radial distribution functions.
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tration of ions of like charge into the first co-
ordination shell around a given ion. In q space
the importance of charge ordering is equally ob-
vious .The charge-charge structure factor S'(q)
has a very pronounced first peak and displays
much more structure than the number-number
structure factor S(q). It should be noted that the
main peak in S'(q) occurs at a significantly smaller
value of k than that in S(q). The difference arises
from the fact that the position of the peak in S'(q)
is determined by the period of oscillation of mean
charge density around a reference ion, whereas
that in S(q) is determined by the value of the near-
est-neighbor distance. As a check on the numeri-
cal accuracy we have confirmed that the conditions
(8) and (9) are both very well obeyed.

The direct correlation function c,(r) is a. mono-
tonic function of x and qualitatively is very similar
to that obtained for the OCP. The function c,(r),
on the other hand, shows a break in slope near
r = ~; this is a remnant of the hard-core type of
discontinuity observed by Larsen. '3 Both c,(r)
and c,(r) tend very rapidly to their Debye-Huckel
limits. At r =1.6A, the discrepancies in either
case are already less than 1/0.

For the sake of easy reference we list the re-
sults on the distribution functions in Table I and
those on the structure factors in Table II. In Ta-
ble I w'e also report the results of the HNC calcu-
lations. We have not plotted the HNC results in

the figures simply because the differences are
generally too small to make fair comparison pos-
sible, particularly in the steeply rising part of
g, (r) .ln this case we find that

PV/NkT =1+11.80-12.48 =0.32 (MD)

=1+12.51-12.53 =0.96 (HNC) .

U @SR UC

Nk~T lAgT N&gT
(16)

Qn dividing the calculated values in the same way,
we find that

Overall the agreement with the molecular-dynam-
ics calculations is surprisingly good, and better
than might be expected on the basis of results ob-
tained for the OCP. " The only major discrepancy
is in the values of S(k) at small k. ln particular,
we find in the long-wavelength limit that

S(0) = 0.16 (MD)

=O. 5O (HNC),

so that the HNC approximation yields a compressi-
bility which is approximately three times too large.

For other thermodynamic properties the HNC
results are much more satisfactory. For the ex-
cess internal energy we may divide the net result
into contributions from short-range (SR) and Cou-
lombic (C) interactions:

)(
-30

U/NksT = 3.93-37.45 = -33.52 (MD)

= 4.17-37.59 = -33.42 (HNC) .

A similar division may be made for the equation
of state

4
I

N
O

I

PV P V PV
Nk'~T i%~T Ãk~T

1 + + (17)
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FIG. 2. Direct correlation functions.
FIG. 3. Structure factors as functions of the dimen-

sionless wave nuxnber q =A.k.



S TAT I ST IC A I ME C HA NI C S 0 8 DENSE IONIZ ED. . . IV. . .

TABLE I. Radial distribution functions.

g, (r) g", "c(r) g2(r) g HNC(y) HNC (~) INC,
( )

0.0
0.084
0.167
0.251
0.335
0.419
0.502
0.586
0.670

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
O.o
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-75.76
-75.08
-73.40
—71.34
-69.20
-67.03
-64.84
-62.62
-60.37

-74.42
-73.68
-71.94
-69.91
-67.85
—65.81
-63.75
—el.ee
-59.53

66.38
66.20
65.63
64.66
63.33
61.70
59.86
57.89
55.86

6 5.55
65.37
64.80
63.86
62.59
61.06
59.3 5
57.53
55.66

0.754
0.837
0.921
0.963
1.005
1.047
1.088
1.130
1.172

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.002
0.009

0.0
0.0
0.0
0.0
0.0
0.0
0.001
0.006
0.023

0,0
0.0
0.048
0.516
1,.882
3.489
4.275
4.115
3.453

0.0
0.0
0.042
0.575
2.183
3.900
4.526
4.137
3.345

-58.10
-55.81
-53.52
-52.37
-51.23
-50.09
-48.96
-47.84
-46.73

--57.37
-55.19
-53.00
-51.89
-50.80
-49.70
—48.60
-47.51
-46.42

53.83
51.81
49.86
49.33
49.70
50.31
50.10
48.95
47.29

53.75
51.82
49.93
49.49
50.12
50.86
50.51
49.14
47.37

1.214
1.256
1.298
1.340
1.382
1.423
1.465
1.507
1.549

0.028
0.068
0.140
0.251
0.401
0.586
0.790
1.001
1.198

0.619
0.133
0.244
0.392
0.568
0.758
0.947
1.120
1.267

2.718
2.094
1.612
1.269
1.016
0.844
0.720
0.632
0.572

2.566
1.946
1.495
1.178
0.958
0.805
0.699
0.626
0.576

-45.62
-44.50
-43.36
-42.21
-41.03
-39.84
-38.66
-37.49
-36.35

-45.32
-44.19
-43.04
-41.87
-40.70
-39.52
-38.37
-37.26
-36.20

45.56
43.95
42.49
41.18
39.97
38.85
37.80
36.81
35.86

45.61
44.02
42.60
41.32
40.15
39.06
38.03
37.06
36.12

1.591
1.633
1.674
1.716
1.758
1.800
1.842
1.926

2.010
2.093
2.177
2.261
2.344
2.428
2.512
2.596
2.721

1.368
1.502
1.590
1.642
1.6 58
1.650
1.621
1.526

1.413
1.289
1.145
0.997
0.873
0.783
0.731
0.712
0.735

1.384
1.468
l.523
1.551
1.558
1.550
l.532
1.478

1.414
1.309
1.145
0.976
O.851
0.778
0.746
0.743
0.779

0.530
0.503
0.487
0.481
0.484
0.492
0.508
0.556

0.625
0.712
0.823
0.947
1.078
1.199
1.285
1.321
1.285

0.545
0.526
0.517
0.516
0.522
0.535
0.553
0.603

0.669
O.751
0.847
0.956
1.071
1.179
1.261
1.299
1.266

-35.28
-34.26
-33032
-32.45
-31.64
-30.89
—30.19
—28.92

-27.78
-26.73
-25.73
-24.79
-23.90
-23.08

22 +32
-21.61
-20.64

-35.20
-34.25
-33.36
—32.52
-31.74
-30.99
-30.29
-28.97

-27.78
-26.69
-25.69
-24.75
-23.85
-23.01
-22.23
-21.51
-20.52

34.95
34.08
33.25
32.45
31.68
30.94
30.24
28.92

27.71
26.60
25.60
24.68
23.84
23.06
22.32
21.61
20.60

35.22
34.35
33.52
32.72
31.95
31.20
30.49
29.13

27.90
26.75
25.70
24.74
23.86
23.05
22.30
21.59
20.58

2.847
2.972
3.098
3.224
3.349
3.475
3.600
3.726
3.852

0.809
0.913
1.027
1.118
1.167
1.165
1.124
1.059
1.001

0.848
0.937
1.028
1.102
1.144
1.145
1.108
1.050
0.990

1.182
1.059
0.954
0.880
0.845
0.844
0.875
0.931
0.997

1.165
1.049
0.953
0.888
0.861
0.869
0.902
0.950
1.003

-19.75
-18.92
-18.14
-17.42
-16.75
-16.14
-15.56
-15.03
-14.52

-19.64
-18.82
-18.06
-17.35
-16.69
-16.09
-15.53
-15.01
-14.52

19.69
18.86
18.09
17.40
16.74
16.12
15.55
15.02
14.52

19.66
18.82
18.06
17.36
16.71
16.11
15.54
15.01
14.52
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III. SELF-DIFFUSION AND ELECTRICAL CONDUCTANCE

1
D = — Z(t) dt .

3 p
(19)

From our calculations we find that D =0.0049. For
NaCl, taking the value of A which we have already
used, we find that our result corresponds to D
=9.5 x10 ' cm'sec '. Experimentally, ' for NaCl
at V=38.2 cm'mol ' and T =1121 K we find D+
=9.99x10 ' cm'sec ', D =7.21x10 ' cm'sec '.

The electrical conductivity o is related to the
normalized autocorrelation function of the total
current J'(t), defined as

&(t) = (Q v;, (t) -Q v, (&))
j

The self-diffusion of ions of species a (where c(

may be + for cations, or —for anions) is usefully
discussed in terms of the velocity autocorrelation
function Z„(t}, defined as

Z (t)=(v;, (f) v; (0)),

where the angular brackets denote an average
over (a) all ions, labeled i, of species o., and (b)
all choices of the time origin. For our simple
model the autocorrelation functions Z, (f) and Z (t)
are identical and the subscripts may therefore be
dropped. Then the coefficients of self-diffusion,
D, is related to Z(t) through the well-known ex-
pression

duce a deviation parameter 6, we may write this
relation in a generalized form as

o = ,'(Ne—'/VkT)(D, +D )(1-&). (22 }

TABLE lI. Structure factors.

From the data tabulated by Young and O' Connell'
it is possible to compute values of 6 for eight
alkali-metal salts at zero pressure and temper-
atures close to the respective triple points. We
find that 4 is invariably positive, varying from
0.08 in the case of NaI to 0.43 for I iNO3, with a
mean of 0.26. Our own results on D and o lead to
a value of 6 =0.19. This compares particularly
well with the experimental results for the chlo-
rides: 0.15 (HbCI), 0.18 (NaCl), and 0.23 (CsCI).

The validity of the Nernst-Einstein relation,
with 4 = 0, can be deduced from Eqs. (18)-(21) if
it is assumed that cross correlation terms of the
type (v& (t) v, , (0)) make zero contribution to J(t}.
In such circumstances it follows that J(t) =NZ(t)
and the two normalized autocorrelation functions
should be identical. The obvious explanation of
deviations from the Nernst-Einstein relation lies
in the formation of ionic complexes which con-
tribute to the diffusive flux but not to the electrical
current. Our results on Z(t) and J(t}, normalized
to unity at t=0, are shown in Fig. 4. From the
figure we see that there are some significant dif-
ferences between the two functions. In particular,

x vq+ 0 — v~ 0 (20)

The principle of conservation of momentum may
be used to rewrite this expression in several
equivalent forms. The conductivity is given by

0= Jt dt.
0

(21)

The electrical current i.s a collective property
of the system and the averaging process labeled
(a) above, which is used to improve the statistics
on Z(t), cannot be applied to the calculation of J(t).
Thus our estimate for 0 is probably not accurate
to better than 5%%uo. In fact we find a value which
for NaCl corresponds to 3.2 mho cm '. The ex-
perimental result' for NaCl at the state defined
above is 3.7 mho cm . We include this compari-
son with experiment both for D and o primarily
as evidence that our potential model is adequate
to describe the main features of transport in
molten salts.

A useful empirical link between the coefficients
of self-diffusion and electrical conductivity is pro-
vided by the Nernst-Einstein relation. If we intro-

0.0
0.2
0 4
0.6
0 ' 8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

S@)

0.160
0.162
0.166
0.174
0.187
0.206
0.228
0.253
0.277
0.299
0.321
0.344
0.371
0.404
0.444
0.489
0.537
0.585
0.629
0.671
0.710
0.750
0.791
0.834
0.878
0.920

S'(q )

0.0
0.000 15
0.000 63
0.001 48
0.002 76
0.0046
0.0072
0.0108
0.0158
0.0228
0.0326
0 0464
0.0665
0.097
0.146
0.228
0,377
0.672
1.279
2.392
3.355
2.969
2.136
1.550
1.195
0.976

5.4
5.8
6.2
6.6
7.0
7.4
7.8
8.2
8.6
9.0
9 4
9.8

IQ.2
10.6
11,0
11.8
12.6
13.4
14.2
15.0
15.8
16.6
17.4
18.2
19.0
19.8

0.998
1.073
1.145
1.192
1.208
1.205
1.160
1.049
1.938
Q.866
0.837
0.844
0.876
0.925
0.981
1.078
1.097
1.045
0 ~ 979
0.948
0.954
0.986
1.018
1.033
1.024
1.003

S' (q)

0.745
0.651
0.634
0.667
0.737
0.829
0.937
1.045
1.128
1.168
1.165
1.133
1.086
1,035
0.990
0.933
0.921
0.958
1.013
l.049
1.046
1.016
0.982
0.968
0.976
0.996
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(36) and (31)
E(q, t) =E(q, o)+2,

t' &PE(q, t)
C=O

F(k, &u) = e' 'E(k, t)dt,
0

t' d'E(q, t)
4! GL7t

+ ~ ~ ~ (36)

C, (k, ())) = e' C~(k, t) dt,
0

from which we obtain two simple expressions for
S(k, ~):

S(k, (()) = (1/m) 6tE(k, cv)

The evaluation of the first two coefficients in (36)
is straightforward and yields the same results as
in the case of one-component uncharged fluids,
namely

E(q, o) =(1/&)(p-, p=,) =S(q),

S(k, ur ) = (1/7)'(()') (8C, (k, u) .

d'E(q, t)
I ~=o

2= ——(p-p -) = -q ksT/m = -(u .q -q 0'

(38)

Equation (34) shows that the function &u2S(k, e) is
proportional to the spectrum of fluctuations in the
longitudinal current of particles.

We now introduce the dimensionless wave vector
q =3(k and make a short-time expansion of E(q, t)
in the form

I

The evaluation of the coefficient of the term in t'
is considerably more lengthy. After some tedious
but straightforward algebra, following the classic
method of de Gennes, "we find the following re-
sult, applicable only to the potential (1) with n =9
and with r expressed in units of X:

(p~; )))= &~,'+~', ~I —, ()(r) +g, (r)] ()(qr), )
—(g(v)-g(r)1 )",(qr)),

O

(39)

sinx 3 cosx 3 sinxF x = +1
—

x x2 X3

11 sinx 11cosx 6 sinx

(40)

The properties of the Fourier transform ensure
that the derivatives of E(q, t) at t =0 are related
to the spectral moments of S(q, v). Specifically,

~ Qo

(+2))S) cv S(q, Qp) d(d

„d'"E(q, t)
, ~=O ~

A more general expression for the fourth moment
of S(k, &u) in a, molten salt has been given earlier
by Abramo et al. "but is cast in a form which is
unnecessarily complicated for our purposes.

In Fig. 5 we plot as a function of the dimension-
less wave number q the theoretical values of the
fourth root of the normalized fourth moment

region where the dispersion of longitudinal cur-
rents in argon shows a well-defined double peak.

We have computed the density-density correla-
tion function E(q, t) for seven values of q, namely
0.751, 1.062, 1.678, 2.252, 2.809, 3.753, and
7.506. These wave numbers were chosen to facili-
tate comparison with the dynamical structure fac-
tor of the OCP which we discuss in I. The follow-
ing conclusions emerge. First, E(q, t) is a mono-
tonically decreasing function of t at all values of
q which we have studied. Even at the lowest q,
therefore, there is no evidence of any Brillouin
peak in S(q, u). (Smaller values of q are inacces-

)&

1.2

1.0

CL

0.8

0.6

I ~„,(q)1' = (~'S&/S(q), (43) 0.4

where the subscript I.A, denoting "longitudinal
acoustic, " is introduced by analogy with solid-state
work. Equation (43) provides an approximate dis-
persion relation for longitudinal number density
currents. There is much less structure in &u«(q)
than in the corresponding curve for argonlike liq-
uids. In particular, the curve is very flat in the
neighborhood of the maximum in S(q), which is a.

0.2

I I

8 9
g

FIG. 5. Characteristic frequencies of the spectrum of
density fluctuations. The curve is ~LA(q) from Eq. (43),
the open circles are the peaks in ~2$(q, cv), and the dots
are the inverse relaxation time 1/T(q).
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sible to us because of the periodic nature of our
system. ) Second, the spectrum of the longitudinal
current of particles is very broad and flat at all
except the smallest q values, a behavior which
again is very different to that observed for the
Lennard-Jones fluid. It is therefore impossible
to draw an unambiguous dispersion curve for q
a1.5.

Selected results on S(q, &u) are shown in Fig. 6.
For the two lowest values of q it is possible to
locate the peak in the current spectrum with rea-
sonable precision; the resulting frequencies are
plotted in Fig. 5 and agree quite well with the ap-
proximate dispersion relation, Eq. (43). Our re-
sults enable us to estimate the velocity of sound
as 0.24. For NaCl this corresponds to 2.0x10'
cm sec ', compared with the experimental' value
(1100 K) of 1.7x 10' cm sec '.

We now look for a more detailed phenomeno-
logical description of the density fluctuations,
which we base on the memory function formalism
of Mori. ' We begin by writing a continued frac-
tion expansion of F(q, ~) in the form

(44)

argon because the specific-heat ratio y = C~ /C„ is
closer to 1, and the coupling between heat conduc-
tion and the stress tensor, which is determined
by the quantity (y —1), is presumably smaller.

To evaluate S(q, ~) from EcI. (48) we use as input
the calculated moments and adjust the parameter
~(q) so as to obtain a least-squares fit to the mo-
lecular-dynamics data. The results are shown in
Fig. 6, from which we see that a very good fit is
achieved. The inverse of the relaxation time which
is obtained by this procedure is plotted in Fig. 5;
the variation with q is roughly the same as that of
&~~(q).

V. CHARGE FLUCTUATIONS

The formalism for the description of longitudinal
charge currents may be developed by adapting that
already laid down in Sec. IV for the case of num-
ber density fluctuations. We introduce a charge
density operator p-'„(t), defined as

p-„'(t) =eQ 9;e'" ' ""'
(49)

where

(48)

24

20

16

12

(PzP ~) (4p q& (46) 12

and n(q, t) is an unknown memory function. We
now choose a simple exponential form for n(q, t),
thereby introducing a single unknown relaxation
time T(q):

0.1 0.2
0 I

0,1
I

0.2

n(q t) te/T(Q) (47)

The assumption of an exponential form for n(q, t)
has the advantage of leading to a closed form for
S(q, &u) in terms of the moments of order 0, 2,
and 4 and the unknown T(q):

10'

S(q, (u) 1 r(q)[((u'S)/S(q) —[(u',/S(q)]')
S(q) w [co~(q)(((u'S)/(oo —e')']'+ ((oo —uP)' '

(48)

This single- relaxation-time appr oximation is
known to work well for argonlike liquids, at least
at large k, and a number of specific prescriptions
for T(k) have been proposed. "" Equation (48)
implies the assumption of a Maxwellian-type re-
laxation of the viscosity and the neglect of tem-
perature fluctuations. The latter approximation
is rather better justified for molten salts than for

I I 0
OPIMP

0.1 0.2 0.5
CO/M

10
P

I'IG. 6. S(q, ~) for (reading from left to right and top
to bottom) q=0.751, 2.252, 2.809, and 7.506. The cir-
cles are the molecular-dynamics results and the curves
show the single-relaxation-time approximation.
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The charge-charge correlation function E'(k, t) is
defined as

coefficients are again easy to evaluate

E'(k, f) =(1/«')& p-„'(t)p -,'(o))

with a. Fourier tra.nsform, given by

(50)
E'(q, 0) = (1/«')( p-,

' p'-, ) = S'(q),

d'E'(q, f) ,. & '-'„p'-, &

(52)

S'(k, (4)) =— e' 'F'(k, t)dt, (51)

which describes the spectrum of charge density
fluctuations.

We now make a short-time expansion of E'(q, t)
in a form entirely analogous to (36). The first two

(53)
q'k~T

m

Note that the coefficient of P is the same for both
F(k, t) and E'(k, f). For the coefficient of t4 we
find, by essentially the same methods used to ob-
tain (39), that

d'E'(q, t)
dt'

1
=A) 2 (P~qP q)-

t=p

=3~.'+~o~p —+ -, fg—,(r)+g2(~)]+ —,[g,(r) g, ( ))] F-, (qr)
2 4 "dr "dr

p p

" dr—(4,(~)+4.(~) —41 4', (4~) ),
p

(54)

where F, and F, are the functions already defined
in (40) a.nd (41).

The moments of S'(q, (d) are given by a relation
analogous to (42):

(d S (q, (4)) d(4)

(,). d'"E'(q, f)
dP fl (55)

However, the normalized moments, unlike those
of S(q, v), all tend to finite values in the limit q
—0, a, behavior which is characteristic of optic-
type modes. In particular we find that

((u'S'&/S'(q) ~ (v~2,
q ~p

(~,.(4))'=, , ——.~; 4+4 —.4.(~)),
((O'S'& "dr
s' q p r

(57)

where (57) also serves to define the "longitudinal
optic" frequency, (d„o(q). The latter is plotted as
a function of q in Fig. 7. At small q it varies in
a manner reminiscent of the longitudinal optic
branches in an ionic crystal, but later passes
through a minimum at a point almost coincident
with the main peak in the static charge-charge
structure factor.

In marked contrast to the featureless curves ob-
tained for F (q, t), those for E'(q, f) display pro-
nounced oscillations at small values of q. This
behavior is illustrated in Fig. 8. An important
point to note is the fact that the oscillations do not
take place about the axis E'(q, f) =0, but about a
small positive level which tends to zero only as
the oscillations themselves disappear. This im-

plies that at least two relaxation times are re-
quired to describe the underlying physical pro-
cesses. The correlation function retains its oscil-
latory character to up to a critical wave number

qp which we cannot locate precisely but is close
to the first peak in S'(q), hence also close to the
minimum in +to(q). At q=q„ the form of F'(q, t)
changes dramatically; the oscillations disappear
and the function decays very slowly with time. At
still higher values of q the monotonic character
is retained but the rate of decay increases with
increa, sing q.

The variation in the form of E'(q, t) is reflected
in the q dependence of S'(q, v), which we show in
Figs. 9—11. For p&pp there is a well-defined
optic-type peak at finite frequency, and another
peak at (d = 0, so that S'(q, (d) appears as the super-
position of two almost symmetrical bell-shaped

1.0

0.8

0
046

044

0
1

FIG. 7. Characteristic frequencies of the spectrum of
charge fluctuations. The curve is ~LO{q) from Eq. {57)
and the circles are the peaks in S'{q,).
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curves. The two peaks correspond to the two dif-
ferent relaxation processes which we discussed
above. As q increases the "optic" peak moves
to lower frequency. This negative dispersion cor-
responds to what we have already observed' in the
OCP at high charge densities, but there the rate
of dispersion is significantly slower. For ex~
ample, at both F =110 and I"=152 the frequency
of the plasmon mode of the OCP at a wave number
ak =2.3 is approximately 20% lower than its value
at k = 0; in the present work the corresponding
figure is 50%. The dispersion of the "optic" peak
in S (q, &u) is plotted in Fig. 7; it follows quite
closely the curve of e«(q).

We can adapt the phenomenological model used
to describe the number density fluctuations by
making a continued-fraction expansion of E'(q, ar),
the Fourier-Laplace transform of E'(q, t) The.
details are the same as before and need not be
repeated here. The result is an expression for
S'(q, ~) which is identical to (48) except that S'(q)
replaces S(q), (~'S') replaces (&u'S), and a new
relaxation time v'(q) replaces 7(q). The results
obtained for S'(q, ~) from a least-squares adjust-
ment of T'(q) are shown in Figs. 9-11. At high q
the fit to the molecular-dynamics data is again
very good. For q& q, the position of the "optic"

peak is satisfactorily reproduced, particularly at
the smallest values of q, but the use of a single-
relaxation-time approximation necessarily means
that the low-frequency behavior is incorrect. The
situation that one encounters here is rather differ-
ent than that which arises in the OCP.

In the latter case the spectrum of charge fluctu-
ations at small q consists of a sharp peak at finite
frequency and a low-frequency tail. The shape of
the spectrum is therefore adequately described
by a memory function with a single adjustable pa-
rameter. '

The values of 7'(q) which result from the fit to
S'(q, co) are listed in Table IH, together with those
of r(q)

VI. CONCLUSIONS

We have carried out a molecular-dynamics cal-
culation of the transport properties of an idealized
molten salt, and have obtained in addition some
rather precise information on the equilibrium
properties of the system, particularly on the

12"
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FIG. 8. 9'(q, t) at four values of q. Upper graph: full
line, q =0.751; dotted line, q =2.809. Lower graph; full
line, q =3.753; dotted line, q =7.506.

FIG. 9. S'(q, ~) for q = 0.751 (upper graph) and q =1.678
(lower graph). The circles are molecular-dynamics re-
sults and the curves show the single-relaxation-time
approximation.
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static structure factors. By utilizing some of
the equilibrium results, we have been able to
build a simple phenomenological model to de-
scribe the spectra of fluctuations in number den-
sity and in charge, each mode being character-
ized by a single A-dependent relaxation time. The
model works well at large values of k, but cannot
reproduce satisfactorily the low-frequency part
of the spectrum of charge fluctuations at small k.
Its defects help to emphasize the features which a
satisfactory theory must possess. To obtain a
better description of the spectrum it is necessary,
at least, to introduce a second relaxation time.
We have not attempted a more elaborate paramet-
rization because we believe that such a program
must be carried through in parallel with a calcu-
lation of the transverse currents, which for prac-
tical reasons we have not attempted to compute.
A meaningful discussion of the collective modes
requires, in addition, that proper account be
taken of the limiting hydrodynamic form of the
correlation functions and of the coupling between
the modes of optic and acoustic character. These
are all obvious topics for future investigation. It
would also be of great interest to extend the cal-
culations to smaller values of k, where it should
be possible to observe a propagating mode in the

10'

U'

rn 0

3
C'

cv 3—

25 0,5 0.75
I

1.0

I

0,25
I

05
I I

0.75 i 1D
P

FIG. 11. Same as Fig. 9 but for q =3.753 (upper graph)
and q =7.506 (lower graph).

12

10'| ~

number density fluctuations. This requires a sig-
nificant increase in the numbers of ions in the
molecular-dynamics cube and is necessarily an
expensive undertaking.
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TABLE GI. Values of the parameters 7 (q) and 8 (q).

v'' (q)

'l,0
I I

1.5 2.0
QP/COp

FIG. 10. Same as Fig. 9 but for q=2.252 (upper graph)
and q =2.809 (lower graph).

0 ~ 751
1.062
1.678
2.252
2.809
3.753
7.506

1.089
1.081
0.939
0.785
0.690
0.498
0.525

3.386
2.639
1.641
1.526
1 ~ 308
1.078
0.942
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