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We have calculated the locations of the Regge poles for an actual interatomic potential by following
the semiclassical formulation. For negative energies, this formulation is equivalent to the Bohr-Sommerfeld
quantization condition. For positive energies there are three complex turning points; use of linear and
parabolic connection formulas yields a semiclassical quantization condition for the poles. The poles are
found to lie symmetrically along lines in the first and third quadrants of the angular-momentum plane.
The locations of the poles at a given energy and the motion of these poles as the energy changes are
presented. Remler has shown that Regge poles provide a convenient way of parametrizing experimental
differential cross sections. We discuss the relation between this parametrization and the present results.

1. INTRODUCTION

In this paper we present a calculation of the
locations of the Regge poles of an actual inter-
atomic potential. Regge poles have been applied
widely in high-energy physics, but are not in gen-
eral use in atomic studies. However, in recent
years, the Regge-pole idea has proved to be prac-
tical for describing elastic atom-atom scatter-
ing.’'? The advantage of this description is the
same advantage that led Watson and Sommerfeld?®
to develop the technique for a different problem:
In certain circumstances it provides important
simplifications. The conventional partial-wave
description of scattering is adequate, but tedious
because hundreds (or sometimes thousands) of
partial waves are needed. However, by a suitable
transformation, the sum over partial waves may
be replaced by a shorter sum involving Regge
poles. Among the advantages are that there are
fewer parameters and that the parameters are
closely related to the observed features in the
differential cross section.

The standard partial wave sum may be written
as

£(6)= 2_1?; (2L +1)(e? % —1) P, (cos ),

where 6, is the phase shift, and S-matrix ele-
ments are given by S =¢2*%. Watson and Sommer-
feld noted that if one considers the summand to be
a continuous function of complex L, and multiplies
it by sec(L +3), then the sum is exactly equivalent
to an integral around a contour that encloses the
positive real L axis. Further, if the S-matrix
element is analytic except for isolated poles in the
first quadrant, the contour can be deformed to lie
along the imaginary L axis. Then the scattering
amplitude is obtained from this “background” in-
tegral and the residues of the poles of the S matrix
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in the first quadrant. This transformation is use-
ful if the scattering amplitude is dominated by a
relatively simple sum over a few poles.

Remler has recently shown that this approach
is very useful in analyzing low-energy (few eV)
ion-atom differential scattering experiments. The
approximations he made suggest the hypothesis
that the important poles lie in a cluster in the
complex L plane. The S matrix was written in a
manifestly unitary form, and for reasons that
shall be made clear, was made symmetric in the
variable A=L +3:
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We can understand Remler’s hypothesis by con-
sidering the classical deflection function ©(L)
=2dd/dL. Figure 1 shows a deflection function
for a typical atomic-scattering process, and also
the deflection function calculated from a single
Regge pole. The attractive portion of the deflec-
tion function can be approximated by a deflection
function obtained from a cluster of poles at a point
Ap in the complex A plane. The rainbow angle O,
its location A, and the full width T' of the deflec-
tion function at © =30 are connected to the number
of poles N and pole position A, by

©,>2N/Im\,, X,=Rel,, I'=2ImA,.

Thus, as described by Bobbio, Rich, Champion,
and Doverspike,? the pole parameters can be fairly
well approximated by an inspection of the experi-
mental data. (The repulsive scattering is most
conveniently accounted for by explicitly including
a short-range core.) The differential cross sec-
tion may then be calculated, and with some ad-
justment of the parameters excellent agreement
between experiment and calculation is achieved.
The Regge-Remler parametrization of the dif-
ferential cross section has, in particular, been
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11 SEMICLASSICAL CALCULATION OF REGGE POLES 211

FIG. 1. Deflection function. The solid line is the at-
tractive part of the deflection function, which can be
represented by Regge poles in the first quadrant.

effective as an intermediary in the semiclassical
inverse-scattering problem, which deals with
procedures for obtaining interatomic potentials
from scattering data. The inversion proceeds
straightforwardly once the phase shifts are known
as a function of L. It is hard to solve for the phase
shifts directly from the data. On the other hand,

it is not hard to find the Regge pole parameters,
and from the S matrix thus obtained, to solve for
the phase shifts and then the potential.

In this paper we will calculate in the reverse
direction. We take a realistic interatomic poten-
tial and find the locations and residues of the poles
of the S-matrix that it generates. Specifically,
the potentials we study are analytic approximations
to the potential for H*Ar elastic scattering. We
use a semiclassical treatment, developed in this
context by Connor,* to obtain a relation between
the pole position and relevant integrals involving
the potential. This relation may be thought of as
an extension of the Bohr-Sommerfeld quantization
condition for bound states. Since several poten-
tials (Yukawa, Coulomb, repulsive hard core)
have had their Regge structure delineated® and
show lines of poles rather than clusters, we wished
to see how the actual poles compared to the cluster
hypothesis. Also, we wished to understand why
the cluster hypothesis does give such good fits to
the data.

A further review of Regge theory is given briefly
in Sec. II. The outline of the derivation of the
semiclassical Regge quantization condition is
given in Sec. III, and the resulting Regge poles are
displayed in Sec. IV. Comments and conclusions
appear in Sec. V.

II. GENERAL THEORY
A. Definitions and notation

Elastic scattering is described by the Schré-
dinger equation

[-(z2/2M)V2 + V(R)]| ¥(R) = E¥(R). (1)

With the usual expansion in partial waves,
¥(R)=) ¢ lu, (R)/R]P,(cos0) @)
L

together with the Langer modification, we obtain
the radial Schrddinger equation

2 daz L+l 2
Cow @ i) 1) = B ).

®3)

The boundary conditions for the regular solutions
are

+V(R) +

u, (R) 2220, (4a)
uL(R) R=>% o-ikR +(—1)L+ISLeikR, (4b)

The S “matrix,” defined by Eq. (4) for positive
integer L and real E, can be analytically continued
into the complex L plane; we shall always consider
E to be real. With suitable restrictions on V(R),
one can prove that S(L) is a meromorphic function
at least in the right half-plane, having only iso-
lated poles. These poles occur at values of L
where u; (R) (by definition bounded at the origin)
has no asymptotic incoming part. It is well known
that these poles may represent bound states or
resonant states; to some extent the same poles
also might describe rainbow scattering.

B. Symmetry

The Schrédinger equation depends only on (L +3)?,
and not on L itself; accordingly, it might be sus-
pected that the positions of the Regge poles would
be symmetric in A=L +3. However, this is not
true in general. If the potential V(R) is less singu-
lar than 1/72 at the origin, then the effective po-
tential near R =0 is dominaced by the centrifugal
term, and the boundary condition (4a) on the regu-
lar solution is

u; (R)-RE,

This is only appropriate if ReA>0, and one can
go from Rer>0 to ReXr <0 only by a careful pro-
cess of analytic continuation; this destroys the
naively expected symmetry.

Clearly, in the limit as R-0, all interatomic
potentials are Coulombic, and in general they can
be written as sums of Coulomb potentials. How-
ever, at moderately small distances (on the order
of 1 a,), interatomic potentials are very steeply
repulsive, and can be approximated by

V(R)=A/R"

with® =~ 6-10. Accordingly, it is reasonable to
expect that the analytic behavior of S (1) should be
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approximately the same as that which would arise
from a highly singular repulsive potential. This
assumes that S() is stable with respect to changes
in the potential in the classically forbidden region
near the origin. The WKB theory presented in
Sec. III suggests the existence of such stability.
The analytic behavior of S(A) for a singular po-
tential is somewhat simpler than that for a Cou-
lombic potential.”*® At the inner turning point,
the effective potential '

V(R)=V(R) + (L +3)?/2MR?

is dominated by the strongly repulsive part of V(R),
which increases much more rapidly than the cen-
trifugal term. Hence there is no asymmetry in L
introduced by the boundary condition at the origin,
and it is not difficult”*® to show that

S(-A)=e"2"AS(A), 5)

It follows, of course, that for every pole or zero
of S at A there is a corresponding pole or zero at
—X. Furthermore, it is known that S can have no
poles in the fourth quadrant and no zeros in the
first quadrant. It follows from (5) that poles of S
will appear only in the first and third quadrants
(symmetrically) and zeros only in the second and
fourth quadrants. Finally, because S*(A*)=S"'(d),
the zeros must be complex conjugates of the poles.
This behavior is illustrated in Fig. 2,

ITII. SEMICLASSICAL THEORY FOR REGGE POLES

The formalism for semiclassical calculation of
Regge poles was presented by Connor,* and in this
section we collect the results we need. Connor
considered the situation in which the potential
contains a barrier, so that for real E and real L

ImL
[o] X
¢ < ©
[o] X
(o] b4
RelL
X o
X (o]
X [e]
X o

FIG. 2. Symmetry of poles (x) and zeros (0) of the
S matrix in the complex A plane. For each pole at 2,
there is a pole at —A, and a zero at +A,*.

there are three real turning points. We supple-
ment his results by considering the case in which
the potential does not contain a barrier [Egs. (12)-
(15)].

WKB methods have been used in the past®™* to
evaluate the behavior of S in the complex k or A
planes, but these studies have generally limited
themselves to the effects of the repulsive part of
the potential. There have been several studies®™!?
of the high-energy limit of the phase shift for sin-
gular potentials, some making use of the analytic
continuation of the WKB form of the phase shift

Y

n=| [¥ -2MOR)]/24R

Ro
_ J‘ (k% - AZ/RZ)I/Z dR
b

into the complex % or A plane. This formula is
valid only in a limited region'® of the X plane, be-
cause when ImA gets large additional turning points
appear. These additional turning points are very
important, because the above formula for the phase
shift cannot produce Regge poles. The effects of
the additional turning points have been studied by
Tiktopoulos,*® and by Dombey and Jones,'* who
arrived at formulas essentially similar to our Eq.
(15). Again they were mainly concerned only with
the repulsive part of the potential.

A. Bound States

Consider the effective potentials V(R) generated
from the potential function shown in Fig. 3. For
E<0, some of the Regge poles represent bound
vibrational states, and all of the Regge poles can
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FIG. 3. Effective potentials for H*-Ar scattering for

various values of L from 0 to 100.
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be calculated semiclassically from the usual Bohr-
Sommerfeld quantization condition

—a+ (N+3)r=0, (6)

where
c
a- f PdR,
a

P={2M[E - 0(R)|}/?

and a and ¢ are the two turning points. In usual
bound-state calculations, L is fixed as a positive
integer, and one asks at what (discrete) values of
E is there a pole of the S matrix, i.e., a bound
state. In calculations of Regge poles, however,
the question is turned around: First fixing the
value of E, one asks, for what value of L is there
a pole of the S matrix? The positions of this set
of poles {Ln(E)} are continuous functions of the
energy; when one of these poles is equal to a posi-
tive integer, then there is a bound state at that
value of L and E. There are, however, additional
Regge poles that do not represent bound states.
Illustrative calculations will be shown in Sec. IV.

B. Scattering states below the orbiting energy

The effective potential U for a typical situation
is shown in Fig. 4. Points b and d are where V(R)
has its minimum and maximum values, U, and U, .
There are three turning points a, ¢, and e, which
will in general be complex if L is complex. We
order them by Rea<Rec <Ree, and for ImL >0,
Imc <0 but Imae >0 and Ime>0. Regions I, II, III,
and IV are indicated on Fig, 4. Define

J‘ ¢ ®dR E-7,
o= —_— g0
a

n nw, ’
__LJ”EiENE:ji @
B=-7 e B nwy

® = {2M[E - v(R)]}'/2,
® = {2M[v(R) - E]}/2.

Now several cases arise.

1. EK,, a<K0,<K0

For energies far below the bottom of the well,
for L real there is one real turning point e and two
complex conjugate turning points (a, ¢) which are
far from the real axis. Let us follow the semi-
classical wave function out along the real R axis.
First, the wave function increases exponentially
with increasing R; around R =e¢ it connects to
sin[feR(PdR +%7], a superposition of incoming and
outgoing waves. But the Regge condition requires
that the wave function be asymptotically purely
outgoing. Therefore, there can be no Regge poles

FIG. 4. Qualitative sketch of real part of potential for
Regge pole calculation. Two allowed and two forbidden
regions are separated by three turning pointsa, c, e.
Points & and d are the minimum and maximum of the
potential.

in this region of £ and L.

It is at this point that we see that the limiting
behavior of V(R) at the origin does not enter our
considerations. The WKB connection formula as-
sumes only that ‘O(R) is approximately linear within
a few wavelengths of the turning point, and it does
not make special assumptions about other regions.
Within this approximation, a change in V(R) in the
forbidden region far from the turning point has no
effect on the wave function in the allowed region.
As a consequence, the WKB approximation to the
S matrix must have the symmetry property of an
S matrix of a singular potential.

2. E~U,; asmall, 3<<K0

For energies close to U,, again, in region I,
u(R) must increase exponentially as R increases.
We take region II to be those values of R such that
V(R) can be approximated by a quadratic; then
u(R) can be written as a superposition of two para-
bolic cylinder (Weber) functions. The ratio of the
coefficients of the two functions is determined by
the exponentially increasing behavior in region I.
It is then found that u(R) is a superposition of ex-
ponentially increasing and decreasing terms in
region III; by reversing a connection formula, one
can then obtain the wave function in region IV,
R>e. Finally, imposing the outgoing-wave bound-
ary condition, one obtains a second condition on
the ratio of the coefficients. Combining these two
conditions leads to the Regge quantization condi-
tion:

2(2”)1/2

____c\etJ  _;p2mBiax
T'(; - a/7)sina =te s @®)

where

2x = (a/7)In(a/7) - (a/7).

Details are given by Connor.
The derivation can only be valid if the well is
essentially parabolic; this normally requires that
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a and ¢ be close together, so @ will be small.
Also the outer turning point must be well away
from the inner ones, so |p| will be large, and
Rep<0. It is disturbing that the derivation cannot
be made without reversing a connection formula.
This is always dangerous, because it is possible
that the error in the large solution could become
larger than the small solution. However, it is
not possible to obtain a purely outgoing wave in
region IV unless both the increasing and the de-
creasing solutions are retained in region III. Per-
haps this means that the derivation is valid only if
the “large” solution is “not too large”; if so, we
would expect to find some deviations from (8) if the
barrier is too high or too thick. In that case,
however, the widths of the resonances would be so
small as to be of little interest in most problems.
Proceeding on the assumption that | g| is large,
it follows that (8) can be satisfied only where
T'(; - @/7) is large; i.e., only near the poles of
the T function, at the negative integers. In first
approximation, then, we are led again to the Bohr-
Sommerfeld condition (6). Expanding the T func-
tion about its pole, we are led to the approximate
condition

@ - (N+3)m=(-in'/%/2V2 N1)e2" P2, ©)

3.V, <E<V ;035> 0, f<K0

If the energy lies between U, and U;, we have
three almost real turning points, separating re-
gions I-IV, and the standard linear connection
formulas are applied at each. The outgoing-wave
boundary condition leads directly to

tan(a +i7m)=-%i 2", (10)

Again in this derivation it is necessary to reverse

a connection formula, and again the procedure can-

not be valid unless |8 is “large but not too large.”
It is easy to show that (9) is equivalent to (10)

in the limit of large . [Equation (10) has addi-

tional solutions for @+37=(a negative integer),

but these are nonphysical because they violate the

hypothésis of the derivation, and because Eq. (8)

has no such solutions. ]

4. E~Vgq,a>>0, 3 small

For energies close to the top of the barrier, let
regions I and II be separated by the inner turning
point, R =qa, and apply the standard WKB connec-
tion formula. Assume that in region III the bar-
rier is approximately quadratic, and connect the
wave functions in region II to those in IV by ex-
amining the asymptotic forms of the Weber (or
parabolic cylinder) functions. The resulting semi-
classical Regge quantization condition is

C. E. CARLSON 11
—a+(N+3)7-5ipr+3[B - Bln(=p)]
—4in[@/7) 2coshag T3 +ip)]=0. (11)

This derivation requires that the inner turning
point a be well separated from the outer ones, ¢
and e, which must be sufficiently close together
that the parabolic connection formulas are valid.
(This derivation does not reverse a connection
formula.) Equation (11) agrees with (10) in the
limit of large negative B, but (11) also holds for
energies above the barrier maximum (8>0). [To
reduce Eq. (11) to Eq. (10), one takes B8 approxi-
mately real, and writes I'(z +i8) in terms of its
magnitude and phase; the former is (n/coshﬁB)l/z,
and the latter is approximated by Stirling’s formu-
la.]

5. Comment on Stokes lines

It is seen that in the above derivation, no use
was made of the concept of Stokes lines, or of
circumventing the classical turning points on a path
in the complex R plane. Nevertheless, it is in-
structive to consider the positions of the Stokes
lines, and their motion as L or E are varied.® In
Fig. 5(a) are shown the Stokes lines in the complex
R plane for L and E real, with E<v,. The for-
bidden regions are to the left of a and between ¢
and e.

If L is given a positive imaginary part [Fig. 5(b)]
then a and e move into the upper half R plane, and
¢ moves into the lower half plane. The Stokes line
that formerly connected ¢ to e here splits into two
lines; three lines emanate from each turning point,
and no pair of turning points is connected by a
Stokes line. The integrals @ and 8 can be evaluated
along any curve connecting the turning points, and
a straight line is most convenient.

When the energy is raised above U, [Fig. 5(c)],
the turning points ¢ and e move toward vertical
alignment. Finally, when L is again made real
[Fig. 5(d)], ¢ and e become complex conjugate
points, and a Stokes line again joins them.

)

C. Scattering states above the orbiting energy

If the energy is above a critical value, orbiting
is no longer possible: There is no L for which
V(R) has three real turning points. Such a situa-
tion holds for £z 1 eV in Fig. 3, and the corre-
sponding Stokes lines are shown in Fig. 6. It is
seen that Rec <Rea, and there is now no Stokes
line between a and e.

The connection formulas for this situation canbe de -
rived by circumventing the turning points on the path
indicated, and making use of the following rule:

When crossing a Slokes line clockwise, the coeffi-
cient of the small solution is changed by (=i) limes
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T (a)

(b)

(d)

FIG. 5. Stokes lines in the complex L plane when the energy is low enough that orbiting can occur. (a) L is real and
E<9;. There are three real turning points, each with three Stokes lines and a cut (dashed line). (b) L is given a posi-
tive imaginary part. Turning pointsa and e move into the upper half-plane, and ¢ moves into the lower half-plane. The
cuts (dashed lines) are now arranged differently, and the Stokes line joining ¢ to e has split into two lines. Turning
points are no longer connected by Stokes or anti-Stokes lines. Stokes lines go to the origin on another sheet of the Rei-
mann surface, below the cuts. (c) ReL is lowered so that E<U;. The lines are qualitatively similar to the case E<V,,
but turning point ¢ is closer to e. (d) L is real, E>V,. Turning points ¢ and e are complex conjugates, and they are

connected by a Stokes line.

the coefficient of the large solution. In Fig. 6, the
wave function is exponentially small in region I,
and the above lemma gives the usual result

R
zp“~<P‘1/zsin<f (PdR+%rr> (12)

in region II. Passing around e into region III, we
cross a Stokes line on which the outgoing
exp(+ifeRP dR) is dominant, and therefore the
coefficient of the incoming wave changes. The re-
sult in region III is

R
Yy ~ —1— et YT exp (z[ (PdR)/Pl/Z
21 .
) R
+§(e“7+”/‘”+e”‘7+"/"’)exp <__1f (PdR)/(?l/z,
e

(13)

It follows immediately that the poles of S (which
occur when the coefficient of the incoming wave
vanishes) occur when

-y +(N+3)m=0. (15)

This formula can also be obtained from (11) by
taking the limit Re>1,Re®>1, and noting that
Yy=0Qa+ i?TB.

D. Three turning points coincide

There is one important case not covered by the
cases above. At the maximum energy for which
orbiting is possible, the three turning points coin-
cide. All of the above derivations assume that no
more than two turning points are close together,
and we do not know of a semiclassical treatment
of this three-turning-point problem. We have found
that (11) gives plausible results for the positions
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FIG. 6. Stokes lines in the complex L plane when the
energy is too high for orbiting to occur. Now c has
moved to the left of a, and it no longer is considered in
the Regge pole calculation. The fine curve circumvent-
ing turning points @ and e is the path along which the
WKB approximation is made.

of the Regge poles in this case, but a further study
of this region, using a direct integration of the
Schrodinger equation instead of the semiclassical
approximation, would be valuable. Such a study
has been carried out by Sukumar and Bardsley,'®
and their results are in complete agreement with
ours.

IV. CALCULATIONS
* A. Method

The above derivations suggest that different
formulas for the locations of the poles of the S
matrix should be used for different regions of L
and E. In fact, however, the situation is not so
complicated. It is not hard to show that Eq. (11)
with N>0 covers every case: i.e., in appropriate
limits, Eq. (11) reduces essentially to Eqgs. (6),

(8), (10), or (15). Therefore, by finding the roots
of Eq. (11) only, we can obtain a good approxima-
tion to the correct positions of the Regge poles.

Details of the method are as follows. Having
chosen an energy, a first guess is made for the
position of the first Regge pole(N =0). The turning
points are obtained by the use of Newton’s iterative
method (in the complex plane) and the integrals
a and B are obtained by numerical integration along
a straight line connecting the turning points. Equa-
tion (11) and its derivative with respect to L are

evaluated (using care to get the correct branch of
all the square roots and the logarithm). Finally,
the initial guess for L is improved by the complex
plane extension of Newton’s method. That is,
abbreviating Eq. (11) as

(L) =0,
then
Q(L(l))
LW =
(@/dL) )

The iteration converges if the first guess is close
enough, and this is usually no problem. Incre-
menting N by one unit, the process is repeated to
find the set of Regge poles at a given energy, and
finally incrementing E, the poles at a higher ener-
gy are found. (The whole process takes about

30 sec per pole on the William and Mary IBM
360-50; this is very much less than the time that
would be required to find the poles by direct inte-
gration of the Schrddinger equation.)

B. Calculated pole positions

Calculations have been performed for the (6,4)
potential,

vV =A/R®+B/R*,

A =2¢Ré, B=-3cR*

€ =0.160 hartree =4.34 eV, R =2.48 bohr
and for the modified Morse potential,

V =€ (26162(1=P) _9p61620-9)

p=R/R, R=2.48 bohr,

€=4.,04 eV =0.1484 hartree,

G,=2.5
G _§1 , Rep<1
2710.86, Rep>1.

The modified Morse potential is chosen to repro-
duce the experimental low-energy scattering data
on the H*-Ar system. The (6-4) potential has ap-
proximately the same well depth € and position of
the minimum R, but its well is significantly nar-
rower than that of the Morse potential.

(The modified Morse potential has a discontin-
uous second derivative at R =R, and so it is not
analytic when continued into the complex plane;
it develops a discontinuity at real R =R. However,
this discontinuity is quite small if ImR is small,
and it leads to no significant effects. On the other
hand, if ImR becomes large, the discontinuity be-
comes significant and it produces unreliable or
meaningless results. ImR will be small on the
lines connecting the turning points if ImL is small,
i.e., for bound states or narrow resonances.)

For negative energies, many of the poles corre-



11 SEMICLASSICAL CALCULATION OF REGGE POLES 2117

spond to bound states; their positions are intui-
tively obvious, and are shown in Fig. 7. For L =0,
for the Morse potential, there is a sequence of 25
bound vibrational states, roughly equally spaced in
energy, except close to the dissociation limit. As
L is increased, each vibrational state moves to a
higher energy, and the number of bound states de-
creases. Since the centrifugal potential is propor-
tional to (L +3)?, the total energy of each bound
state rises from its original value in proportion

to (L +3)?, and the path of each pole in the (E, L)
plane is approximately a parabola.

As L continues to increase, the centrifugal bar-
rier becomes high enough to hold quasibound reso-
nance states at positive energies. The most im-
portant point to be recognized is that each reso-
nance state is directly correlated with a bound
state at a lower value of L; for example, the lowest
bound state at L =0 remains the lowest bound state
for all L <68; it becomes the lowest resonance at
L =170, and it is the last resonance to “disappear”
when L is increased further. Thus we see that the
same poles of the S matrix correspond to both
bound states and resonance states.

The above results are obvious because we are
accustomed to fixing L and finding the energies of
the bound states and resonances. In the Regge
picture, the very same results are described from
the opposite point of view: Given E, at what value
of L is there a pole of the S matrix? For the bound
states and resonances this can also be answered
by Fig. 7. At E~-3.9 eV, there is a pole at L =0,
and as the energy is increased, L increases. Be-
cause of the approximately parabolic shape of the
curve, near the bottom, where dE/dL =0 or dL/dE
- a small change in energy implies a large
change in the L eigenvalue. As the energy contin-

olo Jo 20 30 .40350360.70
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FIG. 7. Energies of bound states and real part of en-
ergies of resonances for various values of L for the
(modified Morse) potentials of Fig. 3.

ues to increase, the corresponding L eigenvalue
increases less rapidly. At an energy of -3.6 eV,
a second pole appears at L =0 and also moves out
the real L axis with increasing E. At E just less
than zero, the 25 bound states are now spread out
along the real L axis between L =10 and L =65;
their spacing is smallest at large L (~1 unit apart)
and largest at small L (perhaps ~5 units apart).

As the energy increases past £ =0, the poles
move into the upper-half L plane. At E=0.1 eV,
there are seen to be perhaps ten narrow reso-
nances for angular momenta between 40 and 70.
As the energy continues to increase these reso-
nances ‘“disappear” one by one. Above the orbiting
energy there are no more resonances, and the
corresponding poles move away from the physical
axis.

The pole trajectories in the complex L plane are
shown in Fig. 8 for the Lennard-Jones (6,4) poten-
tial. (This potential well has a slightly greater
depth and a smaller width than the modified Morse
potential.) We have shown only the poles in the
first quadrant. Since the S matrix is symmetric
in A, there is a corresponding set of poles in the
third quadrant. At negative energies, we have
shown only the trajectory of the first pole. At an
energy of -2 eV, the lowest bound state appears
at L =42 (i.e., at L =42, the lowest bound state
has an energy of -2 eV) and as the energy is de-
creased, the corresponding value of L decreases
(compare Fig. 7).

At an energy of about —4.2 eV, the lowest state

100
-15
-10
50,
£l g Em200 i} 5 15,
,x"lxx \‘20
: B X
o
4w 9gn 30
0 50 100

Re L

FIG. 8. Regge poles in the complex L plane for various
energies. Leading pole (x) is shown for integral values
of energy from —18 to +23 eV. For E<-4.3 eV, this
pole lies on the ImA axis (ReL =—3). For —4.3<E<0 eV
it lies on the real L axis, and for 0<E<1.5 eV it lies
barely above the real axis, representing a narrow res-
onance. At higher energies it moves off into the com-
plex plane. For E =0.20, 1, 5, and 15 eV the trailing
poles are shown; each dot represents a Regge pole. At
E =0.20 eV there are ten narrow resonances just above
the real axis.
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is at L =0. If the energy is decreased further, the
effective potential cannot support bound states
unless the centrifugal term A%2/2MR? becomes at-
tractive; this can happen for A purely imaginary,
so that the pole moves out the imaginary A axis
(ReL =-3). Again because of the dependence on
A2, the “velocity” of the pole, dL/dE, is large
near |A|=0 and small for large |A|. For example,
ImL goes from zero to 30 when the energy de-
creases by about 1 eV, but it goes from 70 to 100
only when the energy decreases by about 9 eV.

At a fixed energy (say -2 eV) there is an infinite
number of Regge poles. The first eight or so lie
on the real L axis, and correspond to the bound
vibrational states whose energies lie at 2 eV for
various L’s (cf. Fig. 7). As before, they are some-
what closer together at large L than at small L.

In addition, there is an infinite number of poles
extending beside the imaginary axis, at ReL = -3.
These poles also lie closer together at large |L|
than at small |L|, but they have no point of accumu-
lation.

When the energy is increased above £ =0, the
poles on the imaginary axis all move away from it
very quickly. The poles on the real axis, on the
other hand, stay very close to it, since the reso-
nance states have very narrow widths. At E
=0.20 eV, there are ten narrow resonances, and
the rest of the poles lie along a sweeping arc ex-
tending essentially vertically in the complex plane.
As the energy is raised, the poles peel off the
real axis one by one, until at E=1 eV for the Len-
nard-Jones potential there is only one narrow
resonance left. As the energy rises further, this
pole also moves away from the real axis, and
moves along an essentially straight line in the
complex plane. Again, as |A| increases, the ve-
locity of the pole decreases. The rest of the poles
lie on a smooth curve above the first pole, and
they are almost equally spaced on this curve, but
slightly closer together as |A| increases. The
spacing between adjacent poles can be estimated
to within about a factor of 2 by the formula

AX~MRMw, /i),

where R is the equilibrium separation, and nw,
is the vibrational energy spacing.

Previous studies”*®'*''!* have shown that there is
an infinite number of poles, that the angle between
the Nth pole and the imaginary A axis goes to zero
as N—~, but that the real part of A, increases
without bound as N—«, The present calculations
are consistent with those results.

C. Calculated residues

In region IV, the wave function may be written
as

—ikr+i(l+1/2)T=i 8"
b

: - ?
d)wzce'kr i(1+1/2)T/2+1 8 +de

so that the S matrix may be defined as
S =(c/d)e?t?®’,

The parameters ¢ and d are determined by the
connection formulas at the turning point » =e, and
the additional phase 0’ is given semiclassically by

R
8’=1im | ®(R')dR' =®(©)R +5(l+%)m.
R—w» Je
The formula for d may be expanded in a Taylor
series about the zero for d to give the residue
_ 1 2mB-2iat2i 8’

R=graajaL © :
Note that when Eq. (15) is valid for determining
the pole position, the residue formula simplifies

to
1

R= 2rd2/dL

The residues for the first 20 poles of the Len-
nard-Jones potential at 5 eV are given in Table I.
In calculating 8’, we extend R to 40 units to assure
convergence. It will be noted that the magnitude
of the residues peaks in the region of N=9 to 13
and drops steadily thereafter. For N>90, the
magnitude of the residue is less than 1.

The magnitudes of our tabulated poles are ap-
proximately the same as the “exact” residues of

: 87
6215

TABLE I. Residues for (6,4) potential at E =5 eV.

Residue
Pole Real part Imaginary part
1 —0.1344x 10° —0.1194x 108
2 0.1848x 10'? 0.2258x 1010
3 0.6429x 10° —0.2721x 10!
4 —0.1103% 10'2 0.1119x10'2
5 0.6229% 102 —~0.3031x 10!
6 —0.1301x 10%3 —0.1311x 103
7 —0.2939x 1012 0.4200% 103
8 0.6589% 103 —0.4058% 1013
9 ~0.1050x 104 —0.4943x 1013
10 0.8433x 10!2 0.1462x 10
11 0.1401x 104 —-0.7224x 101
12 —0.1038x 104 —0.1045x 10
13 —0.6111x 10" 0.1042x 10!
14 0.8266x 1013 0.3264x 101
15 0.1799x 1013 —0.5653% 10'3
16 —0.3383% 1013 —0.1253x 10"
17 —0.9617x 10!2 0.1810x 10!
18 0.8282x 10! 0.7261x 10'2
19 0.4779% 1012 ~0.2812x 1012
20 —0.3142x 10! —0.2707x 102
25 0.5281x 1010 0.6664%10°
30 -0.8151x 10° —0.5275% 108
40 ~0.1760% 10° 0.1172x 108
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Bardsley and Sukumar, ours generally being 5%
larger. The phases also differ. In the peak re-
gion, the phases of the Sukumar-Bardsley'® resi-
dues are about 90° larger than ours, but this num-
ber is not constant. The reason for the discrepan-
cy is not known; the problem could lie in the nu-
merical methodology, or it could be in an intrinsic
limitation on the accuracy of the semiclassical
approximations. It should be recognized that the
discrepancy is not great in view of the magnitudes
of the residues: Logarithmically speaking, the
discrepancy is about 10%.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have calculated the positions
of the poles of the S matrix—Regge poles—and
their residues for a realistic interatomic poten-
tial. The semiclassical (JWKB) approximation
was used to derive an analog of the Bohr-Sommer-
feld quantization condition and this gives us an
implicit expression for the pole position. We wish
to emphasize the simplicity of this approach: Al-
though the complete theory of Sec. III seems com-
plicated, with different formulas obtained under
different assumptions, it is in fact very easy to
apply, because one formula, Eq. (11), reduces to
all the others in appropriate limits. The poles ob-
tained from this semiclassical formula agree well
with the poles obtained by direct integration of
the Schrédinger equation.'®

We now consider the calculation of the scattering
amplitude. Noting that the cluster hypothesis
reproduces the measured scattering amplitude
quite well, we ask if it is possible to obtain an
even better result from the actual poles and resi-
dues. However, it turns out that a calculational
problem involving close cancellations of terms
makes a direct calculation unfeasible. We may
see this by writing the S matrix as

R
S =1+ 9, —E—
P A'_7\13

and approximating the sum by including only, say,
the first 20 poles. The S matrix, which is not
guaranteed to be unitary in this representation
unless all the poles are included, then has a mag-
nitude of ~10°. More poles can, of course, be
included but the cancellations which must occur to
make |S|=1 require an intrinsic accuracy of more
than nine figures; this is not possible in a semi-
classical calculation.

Essentially the same conclusion is obtained if
one tries to calculate the classical deflection func-
tion ©® =(2/S) (dS/dL) from the semiclassical poles
and residues. We estimate that some 70-90 terms
would be required, and that each residue must be
accurate to +10. Since the largest residues are of

order 10", this would require some 13-figure
accuracy, and that is not possible.

In applying the Regge-pole cluster hypothesis to
low-energy collision processes, Remler used a
product representation to obtain the residues. That
representation could be acceptable if the S matrix
had a finite number of poles, and no other analytic
structure. However, this representation apparently
does not apply here, perhaps because there is an
infinite number of poles. The residues obtained
from the product representation bear no resem-
blance to the semiclassical residues. The deflec-
tion function so obtained is very sensitive to the
number of poles considered. If the poles are equal-
ly spaced, the series for the deflection function
will converge if about a thousand poles are includ-
ed, but then it will converge to the wrong result.

A different approach to the calculation of the
cross section from the Regge poles has been taken
by Sukumar and Bardsley. While their approach
is effective, it seems to be no less work than
direct summation of the partial wave series.

From the above discussion it must not be con-
cluded that the cluster hypothesis is inappropriate.
On the contrary, it has been proved to be an ac-
curate and useful tool in the analysis of low-energy
scattering data. But it is not clear from the above
discussion why the method works so well. The
data are well fit with a cluster of poles in the first
quadrant (with their symmetric partners in the
third quadrant), together with some terms rep-
resenting the hard core. For H'Ar scattering at
5 eV, the phenomenological fits? require 13 poles
clustered at A=100.2 +25.8Z. Our line of poles
for the situation begins at about the same value
of ReX, but with ImA =12.4, and the poles move
more or less directly away from the real axis,
with spacing of about 1.7 units. Eight poles are
closer to the real axis than the phenomenological
cluster; the rest are farther away. The actual
residues are largest for poles 9-13, and decrease
quickly thereafter. Thus one might say that the
cluster is about where it should be to give a good
average to the actual poles. The residues how-
ever, are calculated using the product representa-
tion, and are not at all close to the actual residues.

The essential reason that the cluster hypothesis
works is that it gives a good approximation to the
attractive part of the deflection function. The
latter has a certain maximum depth (rainbow
angle), a certain width, and a general shape that
can be precisely reproduced by a pole cluster,
which requires only three parameters (N, ReA, Im))
to be described. In other words, the cluster hy-
pothesis provides an effective way of fitting the
sorts of deflection functions that one expects in
these scattering processes, and therefore it gives
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a good approximation to the resulting scattering
amplitude.
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