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Spin-1 lattice-gas model. II. Condensation and phase separation in a binary fluid

Jean Sivardiere
Departement de Recherche Fondamentale, Centre d'Etudes Nucleaires de Grenoble, EP. 85-38041 Grenoble Cedex, France

Joseph Lajzerowicz
Laboratoire de Spectrometric Physique, Universite Scientifique et Medicale de Grenoble, EP. 53-38041 Grenoble Cedex, France

(Received 19 February 1974; revised manuscript received 14 October 1974)

A spin-1 lattice-gas model is shown to describe condensation and phase separation in a binary fluid.
The Ising-like Hamiltonian involves quadrupolar, dipolar, and crossed quadrupolar-dipolar interactions and
is treated in the molecular-field approximation. Various experimental phase diagrams are reproduced
qualitatively, exhibiting liquid-gas and liquid-liquid equilibrium lines, critical, azeotropic, and triple lines.

I. INTRODUCTION

In a preceding paper, ' denoted paper I, we have
studied a spin-1 lattice-gas model, similar to
the Blume-Emery-Griffiths model' for 'He- He
mixtures, which describes the thermodynamical
behavior of a simple fluid and other physical sys-
tems characterized by two order parameters. In
this paper, the second of this series, we consider
another spin-1 lattice-gas model in order to de-
scribe some thermodynamical properties of binary
and ternary fluids, condensation and phase separa-
tion, which are ordinarily described by separate
spin-& Ising models. '

In paper I we considered an "active" pure com-
pound A. characterized by some cooperative order-
ing (configurational, orientational, superfluid,
and magnetic), and the effect of pressure or dilu-
tion on this ordering. The states

~
+I) were used

to represent an "active" atom or molecule, and
the state ~0) either a vacancy or a "passive" atom
or molecule. It was then possible to give a unified
description of the cooperative ordering and con-
densation or phase separation.

In this paper the states ~+1) or ~-I) now rep-
resent an A or & atom or molecule (so that the
cooperative ordering of paper I is now phase sepa-
ration in an AB mixture), and the state ~0) either
a vacancy (binary mixtures) or a C atom or mole-
cule of a third type (ternary mixtures kept at a
fixed pressure) It is then .possible to describe the
interaction between A. -& phase separation and con-
densation or A -C and B-C phase separations. Even
if the state ~0) represents a vacancy or a passive
molecule, the interactions ~», ~», and ~» play
a role independently; three interaction parameters
are then needed in this problem, whence the addi-
tion of a crossed quadrupolar-dipolar term to the
model Hamiltonian used in paper I.

In Sec. II the applicability of the spin-1 lattice-
gas model to binary fluids is discussed. The mo-
lecular field treatment is given in Sec. III. Con-

densation of a binary mixture is described in Sec.
IV for the case where the liquid is always homo-
geneous. The interaction between condensation
and phase separation is investigated in Sec. V. In
the following paper (111),' it will be shown that the
model also describes phase separations in a ter-
nary liquid or solid kept at a fixed pressure. The
occurrence of tricritical points in binary and ter-
nary fluids will be discussed too.

II. LATTICE-GAS MODEL FOR BINARY FLUID

We consider a spin-1 lattice-gas model for a
binary fluid, with the following interpretation of
the state variables Q, = (S', )' and 8;. If Q, =0, the
cell i is empty. If Q, =1, the cell i is occupied
by one molecule, whose nature depends on the
value of ~&, if S',- =+1 or —4, the molecule is of
the type A or B. Thus, if N„and N~ are the num-
bers of 2 and B condensed molecules, respective-
ly, we have

(lb)

Let v be the specific volume of homogeneous phase
of the fluid and V the total volume of this phase.
The volume of the unit cell is taken as unity, so
that V =N (total number of cells) and Q = I/n is
the density, whence

N=VQ =V(Q)),

N'=VS=V(s;).

The quantity

y =M/Q = (N~ —Ns)/(N~+Ns),

(2a)

(2b)

which will be called concentration, describes the
deviation from eguiconcentration [the concentration
x„=N„/(N„+Ns), with y =2&„—1, will not be used
in this paper].
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Three interactions between neighboring mole-
cules must be introduced: J», J», and ~».
and J~~ determine the critical temperatures T„
and T~ of the two pure liquids, respectively, while
J»+ J» —2J» determines the critical unmixing
temperature in a liquid of density Q =1. The Ham-
iltonian of the lattice model must also contain three
independent interactions. In addition to the ordi-
nary dipolar and quadrupolar interactions intro-
duced in the Blume-Emery-Griffiths model, ' the
only possibility, since S =1, is to introduce a
crossed quadrupolar -dipolar interaction. Such an
interaction is not time-reversal invariant, but
this point is irrelevant since we are not considering
a magnetic system.

Let us define operators P", (or P4s.) which equal
one if the cell is occupied by an A (or B) molecule,
and zero otherwise:

(4a)

(4b)

The Hamiltonian of the system is then

~~~&f &g + ~ma J-'f P)
Ssj

(5)

p~ and p~ are the chemical potentials of the mole-
cules of type A and B, respectively, and must be
introduced, since the number of A and B particles
are not determined. Introducing the notations

II„=(Q yM)/2Q = —,'(1+y),

11,=(Q -M)/2Q =-'. (l.-y),
whence the mean interaction I

(10a)

(lob)

I = —,'J„„(1+y)'+-,'J„(1-y)'+2J»(1 +y)(1 —y)

ol

for instance, K(0) = P,.K,, =zK, z being the number
of neighbors of a given site. In order to simplify
the notations, we put z =1 below, which is equiva-
lent to a renormalization of the interaction con-
stants.

The interaction K is the mean interaction between
the molecules in an equimolecular mixture, and
drives condensation of the mixture. The interac-
tion J describes the deviation from ideal behavior.
If positive, it drives phase separation in the liquid
state. The interaction L describes the difference
between the pure A and 8 fluids (one can take L&0
without any loss of generality). If accidentally
L =0, the two fluids have the same liquid-gas equi-
librium curve in the P, T plane since, according
to the I ee-Yang model, this curve depends only or"

the interaction parameter J» = J» and not on the
volume of the elementary cell.

We will use the effective interaction I between
two molecules in homogeneous mixture of density
Q and concentration y =M/Q. The probabilities
II„an.d II~ of finding a molecule A or B in an ele-
mentary cell are

K =4(J~~+ Jaa+2J~s)~

J= 4 (J„„+Jss —2J„s},

L = —4'(J„~ —Jsa),

or, conversely,

(Sa)

(sb)

(Sc)

I =K+2Ly+ Jy'. (12)

For instance, if the molecules A and & are identi-
cal, J=L =0 and I=-K. In an ideal mixture, J=O
and I varies linearly with p. In a very dilute solu-
tion of B in A, y =1 —e (e « I}and according to (12):

J~„=K+J+2L,

J~~ =K+ J —2L,

J~~ -K —J,

(Va)

(fb)

(Vc)

D =~a(p~+ ps) y

&=i(u&- u, },
the Hamiltonian & becomes

(sa)

(sb)

X= K f, — JS;S',

In the following w'e will have to use the Fourier
transforms of the different interactions for 4' =0,

I = (I - &)J~~+&(J~s —J~~)

Indeed, the probability of I3B interactions is negli-
gible and I is independent of J~~.

The quantity I(y) has an extremum equal to
&, =K —L'/J for y, = L/J. Since L is-positive, y,
lies between -1 and 0 if J»«» and between 0
and +1 if J» & J». If these conditions are satis-
fied, the interaction I, is positive since if J 0,

& J» & J„„,I(g) has an extremum outside the in-
terval (-1, +1}and varies monotonically from
J» to J» as p goes from -1 to +1. In the numeri-
cal cal.culations of the following sections, we
choose J» =7 and J» ——5, which determines the
liquid-gas equilibrium curves of the pure-A and
Bfluids (T„=3.5 and Ts =2.-5), and the value of

L, I =0.5. If we define J= 4(J„„+Jss}=6, J =0 if
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Throughout the paper, we take & =1 so
that all interactions are given in deg K.

and P=1/kT. From (14) and (15), we deduce

p =M/Q =tanhp(H+2&M+2LQ).

The equilibrium free energy is

P, = -(1/P) lnZ + &M'+KQ'+2LMQ,

or, according to (12) and (15),

4, = (1/P) ln(1 —Q ) + IQ'.

(17)

(19)

From (15) we also deduce

D =-2KQ -2LM+(I/P) lnQ/2(1 -Q)
—(1/P) ln cosh P(H + 2J'M+ 2LQ ),

hence, using (17)

(2O)

sD 1 1 M sM 2L aMQ

~Q P Q(1-Q) Q BQ Q 8Q

(21)

In a liquid phase of maximum density (Q =1 or
K=+~), Eq. (17) becomes

M = tanhP(H'+ 2~M),

with

2(PA OB) + 2 ( AA 'BB)

(22)

(23)

This is the result found for the spin-& lattice-
gas model describing phase separation in a binary
mixture, which omits pressure-volume effects.
Conversely, if L =~=0, we have a perfect solution
in which the A and B molecules have the same
interaction properties and need not be distin-
guished. From (15) the results of the I.ee-Yang
model for condensation of a simple fluid in a spin-1
formalism (see paper I) are immediately recov
ered.

%'e now want to construct the phase diagram of a

HI. MOLECULAR-FIELD EQUATIONS

The Hamiltonian (9) can be treated in the molec-
ular-field approximation, and the following equa-
tions for M and Q are found:

ZM =2 exp[P(D +2KQ +2LM)] sinhP(H +K'M+2LQ),

(14)

ZQ = 2 exp[P(D+2KQ +2LM)] coshP(H +2JM+2LQ),

(15)

where Z is the grand partition function of the sys-
tem,

Z =1+2 exp[P(D +2KQ +2LM)] coshP(H+ 2&M+ 2LQ),

binary mixture AB.' " As in paper I, we get the
pressure P of a homogeneous phase by noticing
that in a lattice gas P is the opposite of the free
energy,

P = -KQ' —JM' —2LMQ —(1/P) ln(1 —Q), (24)

or, from (3) and (12),

I' = IQ' —-(1/P) ln(1 -Q). (25)
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liquid

S p
R

!

Gas l

I

l

I
l I

I
I

I

I

yi

I

y

(a)

SpI
/

y)

y (b)

-RA

l(y=. l )

R

,RE

X(y=-1)

FIG. 1. (a) Isothermal liquid-gas equilibrium of a bina-

ry mixture (T & T~, Tz). HAS'B is the condensation curve,
AS&'B the ebullition curve. The phases R and S, B' and 8'
are in equilibrium and they have different compositions.
(b) Isotherm of a binary mixture. Except between A and
R', the isotherm is described by the van der Waals equa-
tion (29). Between B and A', the pressure varies and no

phase has the concentration y. The figure also shows
the binodal curves and the critical points of pure A and

B fluids. A~S~ and B&S& are Maxwell plateaux, while

A~BR~ and S~A'S~ are the saturation curves.

Equation (25), where I is a function of y given by

(12), is valid only if the fluid remains homogeneous
along the isotherm, or of course if the molecules
A and B are identical. Phase separation, however,
is possible in the liquid state if J&0. Moreover,
Fig. 1(a) shows that, during the isothermal con-
densation of a mixture, the composition and pres-
sure of the two phases at equilibrium vary; the
concentration is p only in 8 and &'. In other words,
a Maxwell plateau can be constructed on the iso-
therm, but it has a physical meaning only if the
molecules A and B are identical [the cigarlike two-
phase region of Fig. 1(a) is then a horizontal
straight line] or if the mixture is azeotropic. In

general the plateau is replaced by the surface
ASR'S', horizontal sections of which are shown in

Figs. 1(a) and 1(b).
Equation (25) is not easy to handle and does not

contain all the information on the system. It will
be used only to determine the azeotropic mix-
tures. Consequently, we shall use Eqs. (15) and

(17) directly. If only one solution (M, Q) is found

at a given temperature T for given values of K,
L, ~, D, and 8, it represents a homogeneous
fluid. If n solutions (M„Q,), (M„Q,), . . . are
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found with the same free energy, they represent
n homogeneous phases at equilibrium Tj Tp =. . . ,
P, =P, =. . . (since Q, =P, =. . .), ii„'= p,'„=.. . , and

ps = I4 =. . . (because the & solutions correspond to
the same values of D and H).

Consequently, in order to determine the phase
diagram of the mixture, we choose some values
of the interactions K, I, ~ and of the fields D and
H. We look for a first-order transition in M and

Q as temperature is varied. The two solutions at
equilibrium determine either two liquids in equilib-
rium with different compositions, or a liquid and a
gas in equilibrium, represented by two points
such as H and S in Fig. 1(a) [the points A. and H

are determined from the phase diagram in the

(P, T) plane of each pure component of the mix-
ture]. In order to get other tie lines one must
change the value of D and adjust the value of II,
so that a first-order transition in M and Q occurs
at the same temperature T.

Before describing the results of our calcula-
tions, we discuss the possible features of the
phase diagram. According to the Gibbs rule for
noncritical phases, the variance zv of a state with

coexisting AB phases is given by m =4 —n, whence
the following possibilities.

n =I. Homogeneous phase; m = 2 (P, T, and $
can be varied independently).

n =2. Two-phase heterogeneous equilibrium
(liquid-liquid or liquid-gas) represented by a tie
line in a (P, y) or (T, y) plane; w =2 (when P or
'1' is varied, the tie line generates a surface, but
when I' and T are varied, the two extremities of
the tie lines generate a surface; each tie line is
replaced by a single point if p is replaced by the
conjugated field H and this point also generates a
surface in the P, T, H diagram}.

n =3. Three-phase heterogeneous equilibrium
(three liquids or two liquids and a gas); w =1 (when
T or I' is varied, such a triple point 7 generates
a line in the P, T, H diagram}.

+ =4. Quadruple point; w =0 (such a point may
be found only for accidental values of the inter-
actions parameters)

Moreover, according to the Gibbs rule for criti-
cal phases applied to binary mixtures, w, =1, so
that we expect, in the P, T, 8 diagram, a liquid-
gas critical curve and a liquid-liquid (unmixing)
critical curve.

0.6

0.5

CB'

0.4

0.3

B

0.2

0.1

GAS I

I

I

0

possibility of antiferromagneticlike ordering in

the liquid state. The possibility of a phase separa-
tion in the liquid state will be discussed in. Sec. V
(~&0).

~=0. ~» = J =6, hence K=6. Since I.=0.5&0,
the phase diagrams are never symmetrical in y.
Figure 2 shows various isothermal liquid-gas
equilibrium curves in the (P, y) plane. We say
here that the solution is ideal. This definition
does not correspond to the one given by Rowlin-
son, "—from which Baoult's law follows only as an
approximation —but is introduced for the follow'ing

reasons: According to our numerical calculations,
Baoult's law is satisfied to a very good approxi-
mation for ~=0, at least for small values of L

(we have not been able to prove the exact validity
of the law for &=0 and L40). Indeed the ebullition
curve A.& of Fig. 2 shows no appreciable deviation
from a straight line. For»0 or «0 (see below)
large positive or negative deviations from Raoult's

IV. CONDENSATION OF BINARY MIXTURE (J~~O)

We first consider the case ~~0. This condition
implies that the liquid phase is always homo-
geneous (complete miscibility of A and &), and

that there is no triple point: Only liquid-gas equi-
librium is possible. We do not investigate the

FIG. 2. Liquid-gas equilibrium at different tempera-
tures (T =3, 2.5, 2.1, 1.8) for K=6, I =0.5, J =0
(J»=6). C„C()C~ is the critical line, and C~E, C~ the
cricondentherm line (dashed). C() is the critical point
for y =0 and E the cricondentherm for y =0.1. The tie
lines QSi and B2S2 are found for D =-7.5, H= 0 and
D =-7.5, H =-2, respectively.
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law are observed. The points A and B of Fig. 2
represent pure liquid and gaseous phases at equi-
librium and are determined from the theory of
paper I. As long as X&1» T» the points A. and &
exist. If T~ & T & T„, & disappears and retrograde
condensation becomes possible. The point C isp

the critical point for equiconcentration p =0; it
corresponds to a second-order transition in M
and Q as & varies for given values of D and H in

Cp the two phases & and ~ at equilibrium have
become identical. +, is a cricondentherm point.
If the temperature is increased, retrograde con-
densation disappears for a mixture of composition
S.

10

RB
5

RA

SA

l0

F„

I

0 Y

5o

From the numerical results leading to Fig. 2,
one can construct as well the (T;p) phase diagram
for given values of the pressure (Fig. 2). C„ is a
critical point and t"p is a cricondenbar point. If
the pressure is increased, retrograde condensation
disappears for a mixture of concentration y =0.
It is also possible to construct the phase diagram
in the (v, y) plane considered by Prigogine and
Defay' (Fig. 4). Fo'r each couple of solutions
(M, Q) of Eqs. (15) and (17) at equilibrium, we
know v =1/Q and y =iIf/Q. We can also place the
points R and R' on the isotherms of Fig. 1(b) since
the mean interaction f(y) and the pressure are
known for each of these points. Figure 5 rep-
resents schematically the locus ~p of these points
when T varies for y =0 (the critical point of the

LIQUID

0

FIG. 4. Isothermal saturation curves in the (v, y) plane:
(a) T=2.1; (b) & =2.5= 1'z, (c) T =3 (the dashed line is
the critical line). P varies from one tie line to the other.
For y =+1, the vertical tie line is a Maxwell plateau.

isotherms is situated on the curve ~ only for
p =0). The curve ~o plays the same role as the
binodal curve for a simple fluid: It encloses un-
stable homogeneous states. If T & T~, the mixture
is always homogeneous. The cricondentherm line
C„E,C iBs represented in Fig. 2 (P, p diagram).
Figure 6 represents the liquid-gas equilibrium
curves of the pure A. and & fluids, and the liquid-
gas equilibrium region of the mixture p =0. R
represents a, gaseous phase (J =0) in equilibrium
with a liquid phase & (y &0), and R' a liquid phase
(y =0) in equilibrium with a gaseous phase &'(y &0).
The phases & and R' become identical at the criti-
cal point Cp so that two phases having the same
composition are in equilibrium only if they are

P II
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L I QUID
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I

I

I

0 y

FIG. 3. Liquid-gas equilibrium at different pressures
(I' =0.55, 0.3, 0.1) for J=O Gp is the cricondenbar for
y =0, C~ the critical point for y =0.08, C~C~C~ the
critical line, and C&GO Cz the cricondenbar line.

V

FIG. 5. Locus Zo of R and R' for a given value of y
(y =0, for instance). The van der Waals isotherm is
given by (25) with I(0) =E. R, R', C0, and R& are shown
also in Fig. 3. +& is the cricondentherm (figure not to
scale). Dashed lines represent unstable states.
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identical. The loop ORCOME' is tangent to the criti-
cal line C„C~ at the critical point Cp OACO is the
condensation curve and OR'C, the ebullition curve.
No phase of composition g =0 is found in the
hatched region.

It should be noted that C, , the critical point for
the composition p, is not in general the critical
point of the isotherm corresponding to I' =21(y),
since, as long as ~ and ~ are different from zero,
Q is not equal to 2 at the critical point C„, except
if C„ is a critical azeotrope (see below) or if
y =0. Indeed if y =0, from (1V) we deduce H+2LQ
=0, and from (15)

2 exp[P(D + 2K@)J
1+2 exp[P(D + 2K@)J

(26)

According to the result of paper I, Q, is then equal
to 2. One gets Q, =& for all values of p only if
J=L =0. However, for small values of

~ J~, Q =2
at C~.
«0. Figure 7 shows several phase diagrams

at T =2.5 for various values of J. If ~= -0.25
(J& J„'a =6.5& J„„,K =6.25), the phase diagram
exhibits negative deviation from the ideal behavior.
The ebullition curve is no longer a straight line,
so Raoult's law is not satisfied. But no azeotrope
is found, and the critical temperature varies
monotonically from 1'3 to T& as y varies from -1
to +l. If y =+1, the ~» interactions play no role,
and the slope of the liquefaction and ebullition
curves near A. change sign for ~».=~» or ~= -0.5
and & =6,5.

Figure 8 shows the phase diagram for J = —1
(J» ——8 & J», K = 7). Since J& -0.5, the slopes
of the liquefaction and ebullition curves near A
are negative, so that azeotropy is observed. The
composition of the azeotrope is given by Sl(P)/BP
=0, or y„, = I/J=-0. 5 (independent of temperature).
Indeed, the larger the mean interaction I(y), the
lower the liquefaction pressure at any temperature.
Also, a maximum critical 'emperature is found
and at the critical point C»... the mean interaction
I (y) is maximum, g, =y„= L/J—, so that C„., is
also the critical azeotrope. The azeotropic line
is then a vertical line in the (P, t) plane, with an
end point at C „. Since the azeotrope behaves
as a simple fluid, the density at Cmay, is given by
Q =0.5; I',.= ,'I(y, ) =--,'(K —L /J) =3.625 and, ac-
cording to (25), P,„=O.VO. At each temperature,
the pressure of the azeotrope can be calculated
from the position of the Maxwell plateau on the
van der Waais isotherm (25) (see paper I). Finally
when T„&T & T . , two critical points C, and C,
are found at each temperature.

Figure 9 shows (&, S) diagrams at various tem-
peratures. The azeotrope is represented by a tie
line ZZ' parallel to the & axis, which is a true
Maxwell plateau. Since I(y, ) & J„„,Js~, this tie

0.6

CA

0.4

B „

Q,2

I'IG. 6. Liquid-gas equilibrium curves in the (P, T)
plane for pure-A. and -B fluids, and for a mixture with

y =0. The locus of R (gas) and R' (liquid) encloses a
hatched region where two phases with y & 0 coexist. R
and R' are not in equilibrium. In Co, the phases R and
R' are identical. The critical line C~Cz is the envelope
of the curves ORC~ R' when y varies. The dashed line
C~+pC~ is the cricondentherm line. GD is the cricon-
denbar.

A

FIG. 7. Liquid-gas equilibrium at T =2.5 for different
values of J' (J=-0.50, -0.25, +0.50). Deviation from
ideal behavior is found but there is no azeotropy.
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line is longer than the Maxwell plateau of pure
A. and & at the same temperature. For T„&T& T.,„„,
a closed loop with two critical points is found.
Figure 10 shows the phase diagram in the (I', T)
plane. The cricondentherm line is made of two
branches: C~Cinax(p &p, ) and Cm..C„(y &X,). The
azeotropic line is nothing else than the Lee-Yang
liquid-gas equilibrium curve for an intermolecular
interaction equal to K —L'/J. The critical point
for y =0 is at the same pressure as C„, since I(0)
=Z+2L+ J-=J„„.

When i&i is very large, J»» ~„„,&» and there-
fore Tm.„„»T„,Ta, &e 0 and the phase diagrams
are almost symmetrical in p. 10

T= 3.55

T= 3.2

C1 z'
cmax

Z

V. CONDENSATION AND PHASE SEPARATION

OF BINARY FLUID (J&0)

We consider the situation J&0. The same method
as in Sec. IV is used to construct the phase dia-
gram. Unmixing in the liquid phase is now possible
at low enough temperature, and triple points may
be found (coexistence of two liquid phases L, and

0, 7

0.6

Cmax FIG. 9. Isothermal saturation curves at T =3.55, 3.2,
and 2.6 for J=-1. For T~ & T & T, a closed loop with
two critical points C& and C& is found. The dashed line is
the critical curve. ZZ' is the Maxwell plateau of the
azeotrope.

0.5

0.4

L, and a gaseous phase G) corresponding to the
existence of three solutions of (15) and (17) at
equilibrium.

Figure 7 shows the phase diagram at T =2.5 for
J==+0.5. The slope of the liquefaction and ebulli-

Cmax

0.3
0.6

0.2 0.4

ic tine

0.1 0.2

e
I

3 TA

T
I
I

4

FIG. 8. Liquid-gas equilibrium at different tempera-
tures (T =3.55, 3.2, 2.6, 1.8) for E =7, L =0.5, and
J=-1 (J~~=8). The dashed line is the cricondentherm
line. Z is an azeotrope and Cm» is the maximum criti-
cal point and also the critical azeotrope.

FIG. 10. Liquid-gas equilibrium in the (P, T) plane for
J=-1 and y =-0.55, y=0, and y=y„=-L/J. The
condentherm line (dashed) is composed of two branches:
The low-pressure branch corresponds to y & y„ the high-
pressure one to y &y, .
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tion
in e

on curves near B is zero. Ind d,n ee, if g=-1, the

slope chan es si
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point. At a temperature T = 0 89 th e liquid-
iquid binodal curve and th b ll'ti u' e e u i ion curve meet,

an a triple point 7, is found. Figures 11'a'
peritecticlike phase diagrams. The

(P, 7') phase diagram is shown in Fig. 11'': Or

ine, 7', the liquid-liquid critical line,
and C„C~ the liquid-gas critical line.
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&„). Figure 13 shows the
three possible types of phase diagrams. At T =1.

q i critical point C» is found, and the
binodal curve is noti not symmetrical in p since I &0.
However this sS Ssymmetry is recovered a I'-~.

.8, a triple point (liquids I, and L and a
G) is observed together with an azeotrope Z. At
T = 1.685 onl thy e triple point is observed. At T
=1 85 C lie s on the ebullition curve (t

' l
point 7, at which the liqu d L d 4, ' nti-i s, an, are identi-
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FIG. 11. Liquid-liquid and li uid-F ' '
aqui -gas equilibrium

curves or K=5.55, L =0.5, and J=0.45 (J =5.1 .

i' phases and G is a gaseous phase. For T ~ 0.9
ars an zz is a liquid-li uid

T &2J=0.9. The e uilib '
aequi immiscibility disappears f

qui i rium curves are then similar t

no to scale). (d) (P, T) phase diagram: ~~C is the
unmixing critical line, 7~ is a critical end point

0.)

' -g qm. ibrzum at various temper—FIG. 12. Liquid- as e uil
tures (T =3 2.49 =, = . , an =1 (Jt =, . 5, 2.1) for K=5, I =0.5, and J=1 (J
=4). The dashed line is the cr' d te cricon entherm line. Cmln

tro
zs t e minimum critical point d lin an a so the critical azeo-
rope. The azeotropic line h twas o end points C;„and

72 '
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and three distinct phases are in equilibrium (triple
point &,), so that the azeotropic line has two end
points C»in and ~,. The saturation curves are
given in Fig. 14 for various temperatures, and the
phase diagrams in the (P, y) and (P, T) planes in
Fig. 15. The (P, T) diagram exhibits two critical

FIG. 13. Liquid-liquid and liquid-gas equilibrium in
the (P, y) plane for J=1 at various temperatures (T =1,9,
1.8, 1.685). C„~ is an unmixing critical point and Z is an
azeotropic point.

lines C~C»in C~ and v', C„, an azeotropic line
C»i)) &2& and a triple line 0

(P, y) phase diagrams
at various temperatures are given in Fig. 16. We
have here &~ & &» ——3 & T» so that at T = 2.85
liquid-liquid C» and liquid-gas C critical poin s
are found. The two loops meet in C„at a tem-
perature T higher than 1'~. At T =2.4, two loops
are observed again. They meet in Cs at a tem-
perature Ts higher than T,„;„=&(K —L'/J), so 'that

the minimum critical point and the azeotropic
behavior are never observed, and the liquid-gas
critical line is made of two branches C&C and
C~C8. Below &8, a triple point is found. The
phase diagrams in the (P, y) and (P, T) planes are
given in Fig. 17.

Figure 18 shows the phase diagram at T =2.35
for ~=1.25 (~„s=3.5, I~ =4.75). Since Tgs =Ts
and 2~~ &(If —L j&)=T;„, liquid immiscibility
occurs in a temperature region in which two liq-
uid-gas loops are observed, so that three loops
are found in the (P, y) plane. At lower tempera-
tures, two loops meet in C~ and then the two re-
maining loops meet at C8. As for ~=1.5, the
minimum critical point and the azeotropic be-
havior are never observed and the liquid-gas criti-
cal curve is broken in two branches. T»i& =&»
for ~=1.555; for ~& ~0=1.20 C»in is not observed.
For large values of ~, &„~& Tg, &~ but the phase
diagram remains similar to that of Fig. 16 for

15
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T= 2A9
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0 7iI

Ca

0.6

(b)
Ca
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'~i:min~
0.4 I
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0 y ~1 -1 0 ~1
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L21 T1

~T2
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20
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2

-1
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&az y ~ 1

FIG. 14. Isothermal saturation curves for J=1 at T
=1.685, 1.9, 2.1, a,nd 2.49. For T;„&T & Tz, the sur-
face generated by the tie lines separates in two sheets,
and two critical points are found.

FIG. 15. Phase diagram for J=1 in the (P, y) and (P, T)
planes. (a) 7'~ is the triple point found when C~~ lies on
the ebullition curve (T =1.85). The liquids L& and L2 at
equilibrium are then identical phases. ~2 is the triple
point found at T =1.75: The azeotrope just disappears
at this temperature while the gas G and the liquid L&
at equilibrium are identical phases. The lines L«, L2,
end G are the loci of the three phases at equilibrium at
a triple point ~. (b) C„ is the unmixing critical point for
Q =1. Ov27& is the triple line, 7~C„ the unmixing critical
line, 7'2C»~ the azeotropic line, and C~C»;„C~ the liquid-
gas critical line.
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VI. CONCLUSION

We have shown that a spin-1 lattice-gas model
with three interaction parameters (dipolar, quad-
rupolar, and crossed dipolar-quadrupolar inter-
actions) describes many thermodynamic properties
of a binary fluid, mainly condensation and phase
separation. Many experimental phase diagrams
have been reproduced theoretically. If J =0
(&» = &), the solution is "ideal" and there is only
one critical line. If -0.5«&0 (J& J„'~& 4»),
negative deviation from ideal behavior is found.
If « —1 (&» «»), negative azeotropy and a maxi-
mum critical temperature are found. If 0& «0.5

(~»«~s«), then positive deviation from ideal
behavior, phase separation in the liquid state, and
a triple line are found. If &&0.5 (&» «»), two
critical lines, an azeotropic line, and a triple
line are found, together with a minimum critical
temperature Fo.r larger values of & (&„s«&»),
the liquid-gas critical line is broken in two branch-
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critical linc I

I
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FIG. 17. Phase diagram for J=1.5 in the (P, y) and
(I', T) planes. The liquid-gas critical line is made up of
two branches,

es. All types of phase diagrams given in the liter-
ature' "cannot be reproduced, however. For
instance, the critical line C&C~ in the I', & plane
is generally not a straight line. Along a loop of
constant composition in the P, T plane, the cri-
condentherm and cricondenbar points and the
critical point may be found according to three dif-
ferent sequences (Figs. 6 and 9 of Ref. 12); also
a critical azeotropic point is not always a minimum
critical point (isotherms of Figs. 6 and 12 of Ref.
12 cannot be reproduced by our model). Similar
limitations are found in the description of binary-
liquid mixtures using the spin- —,

' Ising model:
The binodal curve in the temperature-concentra-
tion plane is found to be symmetrical with respect
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FIG. 16. Liquid-liquid and liquid-gas equilibrium for
E =4.5, I =0.5, J=1.5 (J~&=3) at different temperatures:
T =2, 2.4, 2.575, and 2.85. C„ is the meeting point of
the unmixing critical line and the liquid-gas critical line
and Cs is the meeting point between the liquid-gas criti-
cal line and the triple line. The minimum critical point
CIT1IQ is not observed since a triple point is found at T 8
& T;„. The critical line is made up of two branches
C~C and C~CB. The dashed line C~C ewould be a part
of the critical line if there were no unmixing in the liquid
phase and no triple point &.

I

0 2,5 3.5 T

FIG. 18. (a) Liquid-liquid and liquid-gas equilibrium
for J=1.25 at T =2.35. Two liquid-gas and one liquid-
liquid critical points are found. As for J=1, the critical
line is made up of two branches C&C„and C~CB, but here
T~& Ta. The dashed line C„C& does not belong to the
critical line because of unmixing in the liquid phase. (b)
Phase diagram in the (P, T) plane. Each point of the line
C~CB describes two critical points.
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to equiconcentration, which is not always the ex-
perimental situation.

In conclusion, our model describes correctly
regular solutions of spherical molecules, since
only isotropic intermolecular interactions have
been introduced. It does not take into account
anisotropic- or position-dependent interactions
or the possibility that the elementary volumes of
the molecules A and B may be different, Let us

consider finally the absorption of a binary gas.
Our model with 4 &0 represent not only the in-
fluence of pressure on the absorption, but also
the possibility of a phase separation in the ab-
sorbed phase. '4 As stated in the Introduction, our
model also describes ternary fluids kept at a con-
stant pressure, and this point will be discussed in
paper III,4 together with the occurrence of tri-
critical points in binary and ternary mixtures.
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