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Spin-1 lattice-gas model. I. Condensation and solidification of a simple fluid
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A spin-1 lattice-gas model, similar to the Blume-Emery-GriAiths model for 'He-'He mixtures, is shown
to descrioe condensation and solidification of a simple fluid. The Ising-like Hamiltonian of the system
involves quadrupolar and dipolar interactions, which are responsible for condensation and solidification,
respectively. The molecular-field approximation is used, and the ordinary phase diagram of a simple
fluid is reproduced, However, for some range of the parameters, the liquid-gas equilibrium curve
disappears. Also, the melting curve may exhibit a tricritical point: For pressures larger than the
tricritical pressure, critical melting is found. Other physical applications of the model are briefly
discussed.

I. INTRODUCTION

It is well known that the thermodynamjcal behav-
ior of various cooperative physical systems can be
simulated by a spin=,' Ising model. For instance,
a spin=,' lattice-gas model describes the conden-
sation of a fluid, "or the adsorption' or absorp-
tion~ of a gas. Similarly, a spin-& Ising model
simulates the phase separation of a two-component
liquid or solid, ' the order-disorder phase transi-
tion in a binary alloy, ' the freezing of a liquid, '
and other cooperative phenomena such as order-
disorder and magnetic and electric' phase transi-
tions.

The above phase transitions are characterized
by a single order parameter: density, concentra-
tion, crystallographic order parameter, magneti-
zation, or electric polarization. Many physical
systems, however, cannot be completely described
by a single order parameter. For instance, in a
magnetic alloy two types of ordering processes can
take place: a magnetic ordering and a structural
ordering. Such systems must be described by at
least two order parameters, and their interest
lies in the mutual interaction between the two
ordering processes.

To represent some physical systems character-
ized by two order parameters, a spin-1 Ising mod-
el with dipolar and quadrupolar interactions can be
used. The order parameters are represented by
M =(S') and Q =((S')'); they are not independent in
the sense that M o 0 implies Q w0 (kinematical cou-
pling). This model has been considered in order
to describe phase separation and superfluid order-
ing in 'He-'He mixtures, ' or phase separation and
erromagnetjsm jn bjnary alloys io, ii We show jn

this article that the same model can also describe
the condensation and freezing of a simple fluid,

which can otherwise be described only by two sep-
arate spin=, models.

This paper is organized as follows: In Sec. II
we discuss the possibility of dipolar and quadru-
polar ordering in a spin-1 Ising magnetic system
in order to illustrate some properties of the mod-
el Hamiltonian. The molecular-f ield approxima-
tion is used. In Secs. III and IV we describe the
condensation and freezing of a simple fluid, and in
Sec. V we discuss some peculiarities of the phase
diagram. Finally, in Sec. VI other physical appli-
cations of the model are briefly reviewed, some
of which will be presented in the second and third
papers of this series, " referred to as papers II
and III.

II. BIPOLAR AND QUADRUPOLAR ORDERING
IN A MAGNETIC SYSTEM

We consider the following Hamiltonian for S =1
ions on a lattice:

X = —H Q Sf —Q J,~ S;Sq

-D Q Q( —Q KuQ(Qg,

J =J'(0) = Q J;),

K =K(0) =Q K;;. (2b)

[If D = -+K, the quadrupolar pa.rt of (I) is

where Q, = (S,')' is the single-ion quadrupolar oper-
ator, 0 is a magnetic field along z, and D repre-
sents a single-ion anisotropy energy. We shall
later use the quantities
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—Q (Qg -r)(q~ -3),
(a)

QA

(b)

where Q,. ——', is a traceless operator. ]
The quantlt1. es J~ Kq P~ and B will be given vari-

ous physical interpretations in the following sec-
tions. In this section we discuss briefly the prop-
erties of a, magnetic system described by the Ising-
like Hamiltonian (1), and look for possible dipolar
and quadrupolar phase transitions in the param-
eters M and Q. This problem has already been
considered"'4 in the case of isotropic interactions.
The results presented here will be used in paper
II." They could also be used to study a three-well
ferroelectric model" similar to the de Gennes
model for order-disorder ferroelectrics' if single-
ion tunneling energies are added to the Hamil-
tonlan.

Let us first consider the purely quadrupolar case
(Z=H =0). In order to derive an equation for the
order parameter Q, we use the molecular-field
approximation in the Bragg-Williams formalism.
The Bragg-%illiams free energy of the system is
given per site by

0

Qit
1—

0.5

3 7/ 0

Q!i
1--

l

0.5-

0,5

1

0,5 7/K

y =-Dq -Kq' —(kr/6I) InW,

with

II =~X!/[(Z-Xq)! (I.q)!]

g is the number of sites). Using the Stirling
formula we get

P = -D Q -KQ'+ k T[q lnq + (1 —Q) ln (1 —Q )

—q ln2],
and minimizing P with respect to Q we get

D = —2KQ+kT ln[q/2(1 —Q)] (6)

Qn

y/ 0 0.5

or
2 & 8(D+2rcg)

y +2e8(D+2zg)

Itl = I/kT) The equilibriu. m value Q, of Q is then

y, =Kq'+kr ln(1 —q),

Q being a solution of Eqs. (6) or (7). If this equa-
tion has more than one solution, we consider only
the solution with the lowest free energy.

Equation (7) has been solved numerically. The
thermal variation of Q is represented in Fig. 1 for
various values of D. For D&D, = —1.346 K, ~0) is
always the single-ion ground state and there is no
phase transition. For D, &D & -K, a first-order
phase transition in Q is found. For —~3K&D & -K,
the transition is, in fact, a supertransition as de-
fined by Chestnut. ' Finally for -K&D,

~
+1) is

always the single-ion ground state and there is no
longer a phase transition. In the (D, T) plane, the

0.5— 0.5—

i
I

/
0

FIG. 1. Thermal variation of order parameter Q
according to Eq. (7): (a) D/E =-2.0; (b) D/E=-l. 6;
(c) D= D~; (d) D/E= —1.34; (e) D/K=-y; (f) D/K=-1. 2;
(g) D/& = -0.8; (h) D/& = 0.4. Dashed lines represent
unstable solutions. The horizontal dotted line corre-
sponds to Q =

3 .



SPIN-1 LATTICE-GAS MODEL. I. CONDENSATION AND. . . 2081

equilibrium curve terminates at a liquid-vapor-
like critical point; see Ref. 17 for a very similar
situation.

It is interesting to represent the curves D(Q) for
various values of T E.quation (6) is then solved
by considering the intersection of a curve D(Q)
with the horizontal line D = const. All curves inter-
sect at the point Q =-'„D = -+K. Each curve has an
inflezion point at Q =2, D =-K —kT ln2, which is
a!,so its inversion center. The derivative dD/dQ
can be zero only if kT &kT, = —,'K. If D & —2K or
D & -K, or if T & T... Eq. (6) has only one root. If

2K&D-& -K and T & T„ three roots —Q„Q„and
Q,—are found, and at the first-order transition
temperature To, one must have P, = P, &Q „which
is satisfied for Q, =1 —Q„Q, =0.5. Consequently,
the value of D is that of the inversion center A„
and the line A, A, is similar to the Maxwell plateau
of the isotherm of the van der Waals gas (see Fig.
2).

We consider now the Hamiltonian (1) with Je0
and H =0, and look for the possibility of succes-
sive quadrupolar and dipolar phase transitions.
For K =0 and D & 0, the Hamiltonian is that of the
Blume"-Capel" model; a first- or second-order
magnetic transition is found. In the general case
J~O, the Bragg-Williams free energy per site is

Q =-DQ -KQ —JM' —(kT/'Z) InW,

with

(9)

whence

2es! ""+cosh2P JM
1+2e'! "«o!cosh2p JM' (12)

M = Q tanh2P JM . (13)

The equilibrium value of the free energy P is given
by

P, =KQ'+JM'+kT ln(1 —Q), (14)

M and Q being solutions of Eqs. (11) and (12), or
equivalently (12) and (13).

These equations have been solved numerically,
and Fig. 3 shows the phase diagram in the

X! (3IQ)!
!5I-XQ)!(5IQ)! [26I(Q+M)]![—,'%(Q -M)]! '

(10)

The fact that linear combinations Q +M are found
in the second factor of the expression of W is a
consequence of the kinematical coupling between
M and Q. From (9) and (10) we deduce the molec-
ular field equations for M and Q:

2es! ""o&sinh2P JMM= 1+2es& +'"o&cosh2pJM'

l(

K

a)
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FIG. 2. Curves D(Q) according to Eq. (6) for various
values of T (K =1). These curves do not enter the
hatched ares. A&A2A3 is a Maxwell plateau. D(Q) is
given in units of K.

FIG. 3. Phase diagram in the (T/K, J/K) plane for
HamiI. tonian (1) with H = 0. (a) D/K = —3, (b) D/K=-1. 34;
(c) D/K = —1.30. Dashed lines are second-order transi-
tion lines. T is a quadruple point, 7'C' is a triple line.
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(J/K, T/K) plane for various values of D. When
D/K= —~3 either a dipolar or a, quadrupolar tran-
sition is found. When D/K is slightly less than
——,, a first-order quadrupolar transition can be
followed by a first-order dipolar transition, which
is similar to the dipolar transition of the Blume-
Capel magnet. When D &D„ the quadrupolar tran-
sition disappears. When D/K is slightly greater
than ——,', a second-order dipolar transition can be
followed by a transition from the dipolar state to
a purely quadrupolar state.

When D/K& -1, this second transition disappears
(the point v goes to the origin). Figures 4(a) and
4(b) show the thermal variation of I and Q in the
cases of two successive transitions. The limiting
situations where a triple point 7 is found are easily
deduced from them when the intermediate phase
disappears. 7 is in fact a quadruple point if the
domains +M and -M are considered as distinct
phases. Similar results have been found" for the
case when the dipolar interaction is replaced by
the nonaxial quadrupolar interaction,

L);P;P, ,

with

p, = (s",)' —(s,".)'.
In fact, the operator P has the same form in the
basis

Il)+I —»

parameters Q, and @ of Fig. 2 are in equilibrium,
so the chemical potential is

Consequently, T, is the critical temperature of the
fluid (for T& T„ the fluid is always homogeneous
at equilibrium) and we know how to determine the
Maxwell plateau.

We now calculate the equation of the isotherms
of the fluid in the (P, v) plane. The free energy P,
per site in the magnetic system is also the gen-
eralized potential 0 per cell of the fluid. It is well
known that in a lattice gas the pressure is the op-
posite of Q, so we immediately get

P =-KQ'-kT ln(1 —Q), (16)

ol

P = -K/v' kT ln(v -—1)/v . (19)

MQ )i

(a)

Equations (8) and (19) are in agreement since P,
is the free energy per site in the magnetic system
and the generalized potential 0 per cell of the
fluid. The results are the same as those of
Temperley'": We obtain the equation of the Boltz-
mann-van der Waals gas. The critical point is
defined by

v, =2, kT, =-, K, P, = —,'K(ln4 —1) .

The chemical potential, however, has different
definitions in the S = —, and S = 1 models. In partic-

as the operator S' in the basis (Il), I

—1), IO)).

III. SPIN-1 LATTICE-GAS MODEL FOR CONDENSATION

We now reconsider the Lee- Yang lattice-gas
model' for the condensation of a fluid using a spin-
1 formalism. We use the variable Q„which is
zero if the cell i is empty and 1 if the cell is oc-
cupied by a molecule (we are not interested here
in the value of P). If D is the chemical potential
of the fluid, the system is described by the Hamil-
tonian (1) with H =g=0. The order parameter
Q =(Q,.) is the density of the fluid:

M,Q

0.25
I

0.5

(b)

Q = 1/v =N/ V, (16)

v being the specific volume, N the number of oc-
cupied cells, and V the volume of the fluid (the
volume of the elementary cell is taken as the unit
volume, whence V=5I, the total number of cells).
For each temperature, we look for the possibility
of having two phases in equilibrium, hence having
the same chemical potential D and the same free
energy P. For kT&kT, =-,'K there is no such pos-
sibility. For 7 &T„ the phases described by the

05-

Q25 Q5

FIG. 4. Thermal. variation of the order parameters
M and Q according to the Hamiltonian (1) with H = 0.
(a) D/K=-1. 34, J/K =0.341; (b) D/K =-1.30, J/K =0.29.
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aT In[@/(I —q)] =rC(2@ —1) .

Putting Q =-,' + n, o, is solution of the equation

2o = tanho/T .

(21)

(22)

For each T n is calculated, whence the specific
volumes

u, =2/(1 +2o), v, =2/(1 —2n) . (23)

IV. SPIN-1 LATTICE-GAS MODEL FOR
CONDENSATION AND SOLIDIFICATION

We now use the spin-1 lattice-gas model to de-
scribe the condensation and solidification of a
simple fluid. We can use the following picture:
Each cell of the lattice is made of two subcells.
lf S; =Q, =0, the cell is empty. If Q, =1, the cell
is occupied and the two possible values of 3', can
be interpreted in the following way: If P, =+1 (-1)
the molecule occupies the right (left) subcell.

The preferential occupation of the right (left)
sub celis may simulate crystallographic ordering
of the fluid as in the model of Lennard- Jones and
Devonshire. ' On the other hand when (S;.) =0, the
two subcells are occupied indifferently and this
disorder simulates the orientational disorder of
the molecules in a liquid or a gas; vacancies and
parti. al orientational disorder are allowed in the
solid phase.

The Hamiltonian (1) can be used to describe the
above situation. J and K are two isotropic molec-
ular interactions, i.e., independent of the orienta-
tions of the molecules if they are elongated or
platelike. K favors the condensed state irrespec-
tive of the occupied subcell; g, if positive, favors
the preferential occupation of the right (or left)
subcell. If J is negative, antiferromagneticlike
configurational ordering is favored (crystallo-
graphic ordering with "doubling" of the unit cell).
K +J is the interaction of two "right" neighboring
molecules. We put H =0 in (1), since in general

ular, the condition D = -kT ln2 for the Maxwell
plateau corresponds to the condition H = 0 in the
Lee- Yang model. ' We note here two advantages of
the spin-1 model. The chemical potential D varies
from one Maxwell plateau to another as it should,
and no extra symmetry is introduced by the model
(the paramagnetic symmetry breaking of the I.ee-
Yang model has no physical counterpart in the
fluid, since the liquid-gas transition involves no
symmetry change, as a quad rupolar transition in

g in the spin-1 model).
The spinodal line" (8P/8 V=0) can be computed

easily. It is also easy to get the equation of the
binodal line." Along this line, Q is solution of (6)
with D = -k T ln2 -K, whence

P = -KQ —JM' 'Ic,'T ln-(1 —Q), (24)

with Q = 1/v and M given by (13).
To draw the isotherms of the fluid for given val-

ues of J and K for each temperature, we choose a
value v of the specific volume. Then g =1/v and
M is given by (13), whence the value of P from
(24). M =0 is always a solution of (13) but, if
v& vs =2 J/T, (13) also has a nonzero solution in
M and P I'M g0) &P{M=0). There is a, branching
point B on the isotherm and, for v & v~, only the
low-pressure branch may represent stable states
of the fluid.

The derivative in B of the branch llf g 0 of the
isotherm is positive if

T &2Z(v+2)/(3Z+2),

or g&g, (T) with

(25)

Jo(T) =4 [3T —4+ (gT' —BT +16)'i'] . (26)

If (25) is not satisfied (negative derivative in &),
which is the case at high temperatures, one goes
from the isotropic fluid to the solid without any
volume change ~v„ the fluid-solid transition is
second order [(Fig. 5(a)]. At low temperatures
(25) can be satisfied. It is then possible to con-

structt

a Maxwell plateau corresponding to the
isothermal solidification of the fluid [(Fig. 5(b)].
Consequently, we find along the solidification line
in the (P, T) plane a tricritical point C' at which
the liquid-solid transition switches from first to
second order.

The above considerations are entirely valid as
long as T & 7, since no complication arises from
the existence of a condensation plateau. Let us
suppose now that T & T„and discuss the possibili-
ty of constructing a condensation plateau and a
solidification plateau as in Fig. 5(b). In addition
to the conditions T& T, and (25), we must have

vs & v, = I/Q„which is equivalent to J'&g, (T) with

Z, (T) =T/[I +2m(T)], (27)

where o. (T) is given by Eq. (22). Moreover, the
pressure P ~~ of the solidification plateau must be
higher than that (Pcond) of the condensation plateau.

there is no physical field conjugated to the crystal-
lographic order parameter M/Q. The two possible
opposite values of M describe different twins or
grains. M and Q are solutions of Eqs. (12) and
(13). M =0 is always a solution (liquid or gas)
and the pressure P of the fluid is given by (16).
We now need to calculate the pressure P for any
value of M .

Using again the fact that in a lattice gas the pres-
sure is the opposite of the free energy, we imme-
diately get
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If T&T, , J&J,(T) but J'&Jo(T), condensation is
followed by a second-order solidification [Fig.
5(a)]. If T&T„J&J',(T), and J&J,(T) but P &

&P,»d [Fig. 5(c)] or T&T but J&J, (T), then a
single plateau must be constructed. It corresponds
to the gas-solid transition (sublimation). If T & T„
J&J,(T), and J&J, (T) coupled with P„, =P„,a, we
have a triple point at which three phases coexist
[Fig. 5(d)] (four phases in fact, if we consider the
twins +M as distinct phases).

Equations (12) and (13) then have three solutions
Q, : M, =0, Q, :M, =0, and Q: MW 0 which have the
same free energy. Another type of "triple point"
r' is found for J=J,(T) and J&JO(T). In &', the
pressure at the branching point is equal to that
of the condensation plateau, and the liquid and
solid phases are identical. The curves Jo(T) and

J,(T) are represented in Fig. 6. JD(T) determines
the tricritical temperature as a function of J;
J,(T) is defined only for T& T, = —,'K. Triple points
~ are found only if Jo(T)&J&J, (T) (hatched region
of Fig. 6) and their locus AD has been computed
numerically (dotted line}. The locus of the "triple
points" 7' is the curve J,(T) between 0 and A.

Finally, we discuss the various aspects of the
phase diagram for different values of the param-
eter J (Fig. 7). We take K = I to simplify (T,
=0.5). When J&J~-0.365, there is no triple point,

or critical point, and the solid-fluid equilibrium
curve in the (P, T) plane is never determined by
the isotherms with I=0 alone. There is only a
tricritical point C' [ Fig. 7(a)]. The temperature
1'=0.5 has no special meaning since if J&0.5,
then v~&2 and the slope in B is positive, but if
4&0.5, v~&2 and the slope in B is still positive.
For J=0.5, His in C, and for J=0.365, the triple
point v. and the critical point C coincide. In the
case where J~&J&J„-0.26 there is a triple point
&, a critical point C, and a tricritical point C'
[see Figs. 7(b} and 7(c) and also Fig. 6(c) of Ref.
(9)]. The sublimation curve and the melting curve
TC' are triple lines. If »Js then Tc' Tc and
if J„««~, we find T, &Tc. If J=J„, T and C'
coincide when «J„. Solidification is always a
second-order transition (as long as J&JD, sub-
limation is always a first-order transition). At
the triple point T', the liquid and solid phases are
identical, and r' is a critical end point.

Finally, we see that the locus of T in the (P, T)
plane, when J varies from 0 to JD, is nothing else
than the Lee-Yang liquid-vapor equilibrium curve.
We note also that, whatever the value of J, the
solidification curve has a positive derivative which
tends to infinity at very high pressures as the
curve goes closer to the asymptote 7 =2J.

V. DISCUSSION OF PHASE DIAGRAM OF FLUID

(a) (b) Figure 7(b) corresponds to a common experi-
mental situation. Two successive transitions,
condensation and solidification, can be found along

0.5-

V3 V
I

V3 V
I 0.4-

p ji l

1

1

'i

(g

(c)

I

I

I

~B
Ii

/
/j

0.3

0.2

0.1

I e

I

1

I

l

I
I

0 0.1 0,3 0.4
I

0.5

FIG. 5. Schematical aspect of the isotherm of a fluid
for various values of T and J. (a) T Tc~ v~&vi~ dvs=0;
(b~ T& Tc v~& v1 Avs + Oi {c) T& Tc v~& vi +vs + 0
+so[ & Pcond i (@ T Tc~ Vg& V~, AVs +

~ P30~ = P cond ~

Dashed lines represent unstable or metastable states.

FlG. 6. Discussion of the aspect of the phase diagram
of the fluid. Jo(T) defines the tricritical temperature
and J&{T)corresponds to the condition v~ —-v &. The
dotted line AD is the locus of the triple points & and the
part OA of J&(T) is the locus of the triple points &'. T
is measured in units of K. The dashed line corresponds
to T=0.5.
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an isoba, r line if P& Pc (this situation cannot be
exactly compared to successive quadrupolar and
dipolar ordering in a magnetic system —see Fig.
4—since here P, and not D, is kept constant).
The slope of the solidification curve in the (P, T)
plane is always positive in our model, which is
not always the case for some fluids such as H,O.
The reason is the following: Because of the kine-
matical coupling between M and Q, ordering in M
increases the saturation of Q, so that the specific
volume of the solid is smaller than that of the
liquid. A striking property of our model is the
occurrence of critical melting and, at least for
some range of the ratio J/K, the existence of a
tricritical point C along the liquid-solid equilib-
rium curve. When the density is high (Q-l), the
fluid is in a liquidlike phase and solidification is
second order, as in the ordinary magnetic transi-
tion in S' of the spin- —, Ising model. Solidification,
however, may become first order at lower pres-
sures. Sublimation, on the other hand, always
occurs at low pressures and is always first order.

In their description of the liquid-solid phase
transition, Lennard-Zones and Devonshire (see
Ref. 7}used a spin- —,

' compressible Ising model
in which the two values of the state variable cor-
respond to two possible positions of a molecule
in a unit cell (they did not allow for vacancies}.
In order to make the transition first order, they
introduced ad A'.Oc volume-dependent interactions
in the form of a direct coupling between the order
parameter M and the volume V of the fluid. In
their model, solidification involves a sudden
change of the elementary volume occupied by a
molecule of th fluid as long as the pressure is
lower than some critical value.

The above coupling between M and V does not
need to be considered in our model to provide the
possibility of a first-order solidification, since
our model allows for the existence of vacancies
and then for density variations of the fluid. If
first order, solidification involves no sudden
change of the volume of the unit cell, which is
kept constant by construction, but a sudden change
of the density of vacancies. This result is not un-
realistic since the typical 10 15/0 expans-ion of a
substance on melting is accompanied by a decrease
in the coordination number and virtually no change
in intermolecular distances. If introduced with the
correct sign, the M-V coupling could also change
the sign of the slope of the liquid-solid equilibrium
curve and possibly lead to a critical curve maxi-
mum.

Our model displays the possibility of critical
melting, and this result contradicts a general
statement by Landau. " This apparent contradiction
is investigated in the Appendix. Critical melting,

Pli Pi(

(b)
C

I
I
I
I
I
I

I
C'

T/K 0

P ji

(c)

C
I
I
I
I

Pj(
C

I

I

I

I
I

I
I

I
I
I
I
I
I

0

FIG. 7, Different aspects of the phase diagram of the
fluid when J varies, (a) J& Jp, The dotted line 7'c is
the liquid-gas equilibrium curve as given by the Lee-
Yang theory; {b) Jz& J & JD, (c) J~& J& J@, (d) J& J&.
C'C is the second-order liquid-solid transition line.
OC is the locus of the triple point & or 7' when J
varies.

and in particular a tricritical point C', have never
been observed experimentally, although the point
C' might be masked by the occurrence of solid-
solid transitions along the liquid-solid equilibrium
curve. Ubbelhode'4 has considered the physical
origins of the entropy and volume changes at the
liquid-solid transition and has discussed the possi-
bility of critical melting.

We have also found a range of values of J/K for
which there is no critical point. Although no ex-
perimental example of this behavior has yet been
found, to our knowledge, this result is not sur-
prising since some fluids are known'4 for which
the ratio T, /T, is very close to 1 (for most fluids,
this ratio lies between 1 and 4).

Perhaps the main weakness of the spin-one lat-
tice-gas model is the low value —of the order of
0 ln2 per particle —of the entropy change at the
liquid-solid transition, as compared to experi-
mental values. ' This discrepancy is due to the
fact that the local parameter S'; can take only two
values +1 once the cell is occupied by a molecule.
It could be of course removed by dividing the
elementary cell of the lattice model by a number
of subcells larger than two: This would allow for
a higher disorder of the molecules in the liquid
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phase. Suppose finally that a physical field H has
some influence on the crystallographic ordering
process. The molecular-field equations for M
and Q are similar to (12) and (13), except that
2PJM must be replaced by H+2PJM. The pressure
is still given by Eg. (24), with

~/q =tanhP(H+2PZW). (28)

M =0 is no longer a solution because the fluid is
always partly solidified. Figure 8 shows that the
position and even the existence of the solidification
and condensation plateaus can be strongly affected
by the applied field.

VI. OTHER POSSIBLE APPLICATIONS OF MODEL

Let us consider a spin- —,
' Ising model describing

some cooperative phenomenon in a fluid, such as
solidification, nematic ordering, superfluid order-
ing, magnetic ordering, etc. (In these simplified
models of course, the order parameter M has
only two possible phases, positive and negative,
whereas the position or orientation of molecules,
the phase of the superfluid order parameter, in
addition to the direction of magnetic moments, can
be varied continuously. ) Suppose now that we

want to describe the influence of the pressure of
the fluid on these different cooperative phenom-
ena. We have to switch from a spin- —,

' to a spin-1
model. The new available state

~
0) represents

a vacancy, and this procedure introduces the new
order parameter Q, which is the density. If we
now forget about the internal degree of freedom
inside the doublet ~+I), we return to the Lee-Yang
lattice-gas model in a spin-1 formalism (Sec. III);
only condensation is described. Conversely, we

may start with a spin-1 lattice-gas model for
condensation and ask which property of the mole-
cules the internal degree of freedom of the doublet
may represent. Condensation and a second co-
operative transition will then be described by our
model.

The internal degree of freedom of the doublet
can represent the orientational freedom of the
molecules. If the molecules are elongated, they
may have 3 random orientation in the liquid phase.
At low temperatures, an isotropic-nematic phase
transition becomes possible. Our model may then
describe the condensation and nematic transition
of an anisotropic fluid. Only two possible orienta-
tions (S' =+1) of each molecule are retained and
E and J describe the isotropic and anisotropic
parts of the interaction between two neighboring
molecules, respectively: K+J is the interaction
between two parallel molecules and K —J between
two perpendicular ones. A second-order nematic
transition can be found at large pressures, and

the result, although in agreement with the sym-
metry change from isotropie to axial, contradicts
the Landau theory. "'" However, the contradiction
could be removed by considering more than two
orientations of the molecules. The Zeeman part
of the Hamiltonian represents the influence of an
external electric or magnetic field on the nematie
transition. Such a field induces an axial sym-
metry of the fluid at any temperature, so that in
large fields the first-order nematic transition
disappears. Incidentally, the smectic A. —choles-
teric or nernatie transition may be compared to
the solid-liquid transition (crystallographic dis-
ordering along one direction without any orienta-
tional disordering). It has been shown recently"
that this transition can change from first to second
order under increasing pressure. However, this
one-dimensional density-wave transition is per-
mitted to be second order by symmetry.

Our model also describes the influence of pres-
sure on the superfluid transition in 'He. S' =0
describes a vacancy in the lattice. S' = +1 de-
scribes a cell occupied by a 'He atom, and this
internal degreee of freedom allows for the de-
scription of the superfluid transition as in the
Blume-Emery-Griffiths model. 9 Superfluid order-
ing, which is simulated by dipolar ordering, is a
second-order phase transition (it involves no vol-
ume change). The situation is then illustrated
qualitatively by Fig. 7(d), although the slope of
normal liquid- superfluid liquid-equilibrium curve
(the so-called A. line) does not have the correct
sign (see Ref. 6, p. 375) and the solid phase is not
described.

A third possibility of our model, already noticed
by Bernasconi and Rys, " is the description of a
paramagnetic gas which exhibits a coupling be-
tween the density and the magnetization. Iso-
thermal compression may induce a first- or sec-

FIG. 8. Schematical influence of a field on the phase
diagram. In the field H, two plateaus are found. In the
field H' a single "condensation" plateau is found and in
the field H", a single "sublimation" plateau is found.
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ond-order magnetic transition: The fluid is ferro-
magnetic when the density is large enough, what-
ever the values of T & 2t, where J is the exchange
integral. The situation is similar to that of a
compressible magnetic system. At high pres-
sures, a second-order ferromagnetic transition
is found, involving a symmetry change of the
system. When the pressure is lowered, the ferro-
magnetic transition switches from second to first
order. The application of an external field H sup-
presses the second-order-line C'C„shifts and
shortens the lines rC and rC' (Fig. 9), which gen-
erate symmetrical "wings" limited by critical
lines, and reduces the jump of M at the ferro-
magnetic transition until a critical point is reached.
As in the Griffiths picture of a tricritical point, "
three critical lines (H =0, H &0, andH &0) meet
at C'. C'7. is in fact a triple line along which a
paramagnetic phase coexists with two magnetic
phases of opposite magnetizations, and w is a
quadruple point.

Another situation described by the spin-1 model
is that of the absorption or adsorption of a gas at
the sites of a two- or three-dimensional lattice.
A first-order adsorption or absorption can be
followed by an order-disorder (configurational,
orientational, superfluid, magnetic) transition.
For instance, our model might describe absorp-
tion of hydrogen in palladium and superconductivity
in the Pd-H system. 8'

In the preceding examples, the state ~0) was
used to represent a vacancy on a given site of
the lattice, and the model described the effect
of pressure on some cooperative phenomenon.
A second possibility is to consider a mixture AB.
The pure-A (active) compound is characterized
by some cooperative ordering described ordin-
arily by a spin- —,

' Ising model, whereas the pure
B (passive) compound is insensitive to it. In

order to describe the influence of dilution of A.

by B on the cooperative transition of A, the state
[0) is now used to represent a B atom, and the
states [+1) represent anA atom. Phase separa-
tion is then the analog of condensation and con-
centration in A the analog of density. The pro-
cedure has been used to describe 'He-'He mix-
tures' and magnetic alloys. " It could be used
similarly to describe phase separation and ne-
matic ordering in nematic mixtures": The A.

molecules are elongated with only two possible
orientations; the B molecules are spherical and
hinder the nematic phase transition. The spin-1
model describes the dilution effect on nematic
ordering and phase separation, either induced
by intermolecular forces in the isotropic liquid
or driven by nematic ordering (see the various
possibilities of Fig. 5 of Ref. 9).

Similarly, let us consider a binary liquid AB.
The singlet state ~0) may represent a "big" B
molecule, the doublet state ~+1) a "small".4 mole-
cule. A "big" molecule occupies the two subcells
of a given cell, a "small" molecule occupies
either the left or right subcell. Suppose the inter-
action between two neighboring A and B molecules
does not depend on the subcell occupied by A,
neglecting the possibility that J"x J x -J' (the
Hamiltonian of paper II" should then be used).
We may use the Hamiltonian (1) to describe the
influence of dilution on the solidifica, tion of A (in
this model, solidification of A. is second order at
kT„=2J and B does not solidify) and phase sepa-
ration (either induced by intermolecular forces
or triggered by solidification).

VII. CONCLUSION

We have shown in this paper that the thermo-
dynamical behavior of a simple fluid can be simu-
lated by use of a spin-1 Ising model with Hamil-
tonian (1), similar to the Blume-Emery-Griffiths
model. ' Although the model has some unusual
features discussed in Sec. V, the qualitative as-
pect of the phase diagram is reproduced correct-
ly for some range of the parameters J and K.
We have predicted the existence of compounds
without any liquid-gas equilibrium and the exist-
ence of compounds exhibiting the transition from
first-order melting to critical melting. The possi-
bility of having more than one solid phase" has
not been introduced.

Various applications of the same model have

C~
/

i
/

lc'

/C
/

/

FIG. 9. Schematical phase diagram of a paramagnetic
gas. The dashed lines correspond to H =0; v is a quad-
ruple point. The full lines correspond to ~H~ & 0 and C~l
and Cz are critical. points, 7& is a triple point. The
dotted line C'Cz is the projection of the two critical,
lines I,

'H& 0 and 0& 0) which meet with the critical l.ine
C'C„(H = 0) at the tricritical point.



been considered in Sec. VI. In papers II and III
we show that, provided a new term is added to
the Hamiltonian (l), the model also describes
condensation and phase separation in binary mix-
tures, phase separation in ternary mixtures and,
in particular, the effect of pressure and dilution
on phase separation in binary mixtures.

APPENDIX

As with the Lennard-Jones and Devonshire mod-
el, our model indicates the possibility of critical
melting. This contradicts a well-known result of
Landau, "who has shown that the liquid-solid
transition is first order except in isolated points.
We must then reexamine the applicability of our
model to the description of the liquid-solid tran-
sition.

Melting corresponds in general to the disappear-
ance of both positional and orientational orderings.
For simple monatomic solids, only positional or-
dering is concerned. For more complex crystals
such as molecular crystals, orientational order-
ing must be considered too. In our model, a
single orientational parameter M is introduced
to describe the crystalline phase. This is mostly
justified at high pressures, when the liquid is
closely packed (the main mechanism for the tran-
sition is then orientational) and leads to a second-
order transition. At lower pressures, the cou-
pling between M and Q changes the order of the
transition. Using terminology found in the field
of ferroelectric phase transitions, " solidification
is described as an "improper" transition. The
volume change, if any, at solidification is a con-
sequence of ordering in M.

Suppose that a system undergoes a transition
from a phase of symmetry G, to a phase of sym-
metry G (G being a subgroup of G,). According
to Landau" if a transition is second order, the
three following conditions must be satisfied.

(a) The order parameter must transform as a
basis function of a single irreducible repre-
sentation I' of G,.

(b) The symmetric direct cube [I'„]must not
contain the identity representation 1 „so that the
Landau free-energy expansion contains no third-
order term.

(c) The antisymmetric direct product (l J must
not contain the vector representation of G, (sta-
bility condition).

In our problem, M transforms in the repre-
sentation D, of the rotational group 1t'xi (while
the density Q transforms in the identity repre-
sentation D,) and condition (a) is satisfied. Since
M is odd with respect to inversion, odd-order
terms cannot be found in the free-energy expa, n-
sion and condition (b) is satisfied {indeed, [(1),) ]
=D, +D,). Finally, since we are using a lattice
model for the fluid, the stability condition (c)
is irrelevant.

The three Landau conditions being satisfied in
our model, solidification may be second order, as
found at high pressures. M is the leading order
parameter and not Q—otherwise the transition
would always be first order. Our result proves
that the first-order character of solidification
is not necessarily due to the violation of condi-
tion (b), which was the only possibility investi-
gated by Landau. " We may also think that the
third-order term in the leading order parameter
will always be missing for a transition from a
liquid to a noncentrosymmetric crystal.
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