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For certain types of classical processes a fluctuation-dissipation theorem {FDT) holds. The validity of
such a theorem is preserved in each order of mass renormalization in the perturbation scheme recently
developed by Martin, Siggia, and Rose (MSR). As a consequence, whenever the response function can
be expressed in terms of the two-point correlation function via a FDT, the perturbation scheme of
MSR simplifies considerably. Especially, it reduces to the scheme constructed by Kawasaki for random
processes obeying detailed balance which are {i) linearly damped and {ii) linearly driven by Gaussian
white noise.

I. INTRODUCTION

Nonlinear classical processes have recently met
with increasing interest. Such processes occur,
e.g. , in the laser, in turbulent liquids, and in
near-critical systems. Except for a few fortunate
cases, however, the corresponding nonlinear field
equations cannot be solved analytically or even
numerically. In general, one has to resort to per-
turbation expansions for the physically relevant
correlation functions of the field considered. More-
over, it was only quite recently that a formalism
was developed which allows one to carry out such
a perturbation expansion, including renormaliza-
tion effects, in a systematic manner. '

Although the formalism of Martin, Siggia, and
Rose (MSR) in many ways resembles Schwinger's,
Feynman's, and Matsubara's perturbation theo-
ries for quantum systems in equilibrium, it is
usually more difficult to handle than its quantum
counterpart for the following reason. Both in the
quantum-mechanical and the classical cases one
has to calculate simultaneously the two-point cor-
relation function. and the response function of the
field characterizing the linear response of the
field to an. external force. For quantum systems
with detailed balance these two functions are lin-
early related to one another by the fluctuation-
dissipation theorem (FDT). It is precisely this
theorem which has rendered the calculation of cor-
relation functions for quantum systems in thermal
equilibrium a conceptually and technically simple
affair, at least for such cases where the renor-
malized perturbation theory needs to be pushed to
low orders only. In the classical case, however,
a FDT does not, in general, exist. Therefore,
the formalism of MSR must usually be worked out
to generate expressions for both the two-point cor-
relation function and the response function. There
are, however, classical processes for which a
FDT does indeed hold. Three classes of such pro-

cesses will be discussed here. Two of these are
random processes characterized by detailed bal-
ance and by the linear appearance of &-correlated
Gaussian forces in the stochastic field equation.
The additional condition of the field equation not
containing reversible terms defines the first class
(class A)." The second class (class B) requires
the irreversible terms in the field equation to be
linear in the field. Finally, class C is constituted
by systems in thermal equilibrium for which the
field equation can be derived from a Hamiltonian. '

For classical processes of all three classes,
the two "Dyson equations" of MSR for the two-
point correlation function and the response func-
tion are compatible with the respective FDTs in
each order of mass renormalization. Therefore
one of these equations can be replaced by the FDT.
The perturbative construction of the correlation
function and the response function then becomes
just as easy a task as it is for quantum systems
in thermal equilibrium.

For class B the formalism of MSR is equivalent
to the diagrammatic perturbation scheme of Kawa-
saki. 4 It is interesting to note that processes of
this class have Gaussians as stationary probability
distributions for the field.

In Sec. II we present the FDTs mentioned. Sec-
tions III and IV explain the formalism of MSR for
stochastic field equations needed for treating the
classes A and B. Sections V-VII demonstrate the
FDTs pertaining to the three classes to be pre-
served in each order of mass renormalization.
Section VI also shows the equivalence of the per-
turbation schemes of MSR and Kawasaki for class
B.

II. FLUCTUATION —DISSIPATION THEOREMS

%e first consider a random process charac-
terized by the I angevin equations
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=F ((j)+fi(t). (2.1)
We will be interested in the stationary two-point
correlation function

The label i of the random variables )t), may be dis-
crete or continuous. Without loss of generality
we assume the (j); to be even or odd under time
reversal,

(j),. - (t,. =e,. (j), , e,. = +1, for t- t. - (2.2)

We will, for brevity, call the set (I) = f(j),}a random
field. The drift vector F, ((j)) may be a nonlinear
functional of the field and represents a nonrandom
force on g;(t). f;(t) is a stochastic force assumed
to be & correlated, Gaussian, and independent of

Espec ially,

&f;(t)f;(t')& =»;j 6(t —t') (2.3)

The symmetric diffusion matrix D, , is assumed
positive.

It is well known' that the I angevin equations
(2.1) are equivalent to the following Fokker-Planck
equation for the probability density P()j), t) of the
random f ield:

C, , (t —t') = &(j),. (t)(j'j(t')& —&))j,. &&(j)j)

dg()), e " ' 'g, P(.

,.p, (2.9)

and the response function R„(t—t') describing the
linear response of the variable g, at time t to an
infinitesimal external force 6F;(t) switched on at
some instant t, as

«0;(t)& = &0;(t)&- &0;&

t
dt'8, .

&
t —t' &E—,. t' . 2.10

00

Let us calculate the response function R, , (t —t')
for the stationary case. To this end we observe
that the external force 6F, (t) enters linearly on the
right-hand side in the Langevin equations (2.1) and
gives rise to an additional term

6L (t) = 5F , (t) 9-/(j(j) ——,.. (2.11)
=L(4)P(4, t), (2 4)

8 82
L(4) = —, —;(0)+,

i i j
Here and later on barred indices are to be summed
(or integrated) over.

Graham' has shown that the random processes
characterized by Eqs. (2.1)-(2.3) obey detailed
balance if the drift vector I'; and the diffusion ma-
trix D;,. fulfill the following "potential conditions":

in the Fokker-Planck differential operator. Fol-
lowing the switch-on of 6F;(t) at time t„ the proba-
bility density P((I), t) deviates from the stationary
distribution I',1. It may then be formally expanded
in powers of 6L(t) as'

t

( pt)tt=(ex JpRp [I+et (t )]-p„'
to +

ptei" '()' dt'e " ''6Lit')ei" '()' ~ Pst

D, , =e,- e,. D, , ,

el l Sq jl l ID. -'F-"' (0) = D -'F'-" (0)
j t

F' "(0)+F' "R)Ij;-l F'i" (0) =-o, -
t

(2.5)

(2.12)

R, , (t —t )=6(t —t )Jdt)tt, .e'" ''(- ')P

Pt+ dt'eL(t-t )5Lt' . +"
to

The linear response 6&(t), (t)& therefore reads as
shown in Eq. (2.10) with

where the reversible and irreversible parts of the
drift are defined as (2.13)

Fi'"(4) =-'K (4) —e; F;(4)l,
F';"(0)=RA&(4)+e; F (4)].

(2.6)
By introducing the operator

()j; =-s/s4;, (2.14)

P„(j)=X))e ~ (2.7)

where 'X is a normalization constant and P a
"potential" to be determined by its gradient in g
space,

If detailed balance holds, the stationary probability
density reads'

the response function R;, can be written in the
form of a correlation function

R, , (t —t') =8(t —t')&)j),(t)gj(t')&.
= &(0;(t)(t'j(t')) .&. (2.16)

lt is interesting to note that the operators lt, are
conjugate to the field (j); in the sense of the commu-
tation relations

&~. irr
s( il j (2.8)

l)j)(, gj] =6;j for equal times. (2.16)
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By inserting Eq. (2.8) in Eq. (2.13), we get the
following equivalent expression for R;, :

R;;(t —t') = -6(t - t') &0;(t)F'»'(4(t')})D-„'. (2.17)

P„(g)=X expl .~zg , -C , -»(-0}y »]-

with the stationary second moments

C &(0) = (q (0)y&(O))=-U;-D-.;.

(2.23)

(2.24)
This is sometimes referred to as a "generalized
fluctuation-dissipation theorem. " Nonetheless, it
is of little use, as it stands, since it does not re-
late the response function R, ~ to the two-point
correlation function C,, . It is easy to see, how-
ever, that there are two classes of random pro-
cesses for which (2.17) indeed implies a FDT.

The first of these classes is made up by purely
irreversible random processes (class A), that is
for

F&(0) =FI"(0), F&'"(0)=0. (2.18)

In this case Eq. (2.17) can be rewritten, upon using
the time-reversal properties of g and F and the
Langevin equations (2.1),

R,~(t —t') = - e,e» (F»" (t)g, (t'))D»~6(t —t')

-&»(t) 0;(t') D», 6(t-t')dg »(t)-

or (2.25)

C;y(t- t') =R;» (t - t'}C», (o}+C;»(o)R;» (t —t)

for random Processes with linear damPing and
detailed balance. Random processes of class 8
have been considered by Kawasaki. 4

Let us finally turn to class C, that is to con-
servative systems in thermal equilibrium. For
such systems the set of 2n variables P,. contains
n pairs of conjugate coordinates and momenta
q „P,whose equations of motion are

dq, /dt = sH/sp „, dp „/dt = -sH/sq, . (2.26)

The Hamiltonian H also determines the equilibrium
phase space density as

By using Eq. (2.24) we may write the FDT (2.21) as

R, , (t —t') = 6 (t —t')C,.—„(t—t')C»,.'(0)

(q P) 31e-BH&»i»& (2.27)
= -&,&—,6(t —t') C„,(t t')D—»,

'—

e,e —,6 (t —t') (f» (t)g,. (t'))D—„~'.

For our purposes it is slightly more convenient
to use the variables (, in the following arrange-
ment:

The second term vanishes, for t & t' because of the
step function and for t & t' since the action of the &-

correlated force f~ on g; is-a retarded one. We
therefore arrive at the FDT" that is

(2.28)

or

R, , (t —t') = 6(t —t') -C)—„(t—t')D»,

C, , (t —t') = -R,, (t —t')D „+D—,»R~» (t'--t)

(2.19}

q, for i =v&n
1

p„ for i =n+v &n.

Then Hamilton's equations (2.26) can be written
in the more compact form

-1
D&I Uar =Dry U» (2.22)

and, according to Eq. (2.8}, the stationary proba-
bility density P„(g) to be Gaussian,

for Purely irreversible random Processes with
detailed balance. The second version of the FDT
in (2.19) follows from the first one with C;&(t)
=e;@AC;)( t). -

Let us return to the expression (2.17) and ob-
serve that it obviously leads to a FDT for yet
another class of random processes (class B). If
the irreversible drift F,"'(g) is linear .in the field,

(2.20)

Eq. (2.17) immediately becomes a FDT,

R,q(t —t') =-6(t —t')C( , (t —t')U» —, D», . —(2.21)

Note that the potential conditions (2.5}then imply
the symmetry

dg,. BH
D~ =-D~~ =~1+m.g

—~1-n.y ~

(2.29)

The matrix D, , obeys

(2.30)

We now add time-dependent external forces &F, (t)
to the equations of motion (2.29)

' =D, , +&E,(t) =D, ,.—. [H &H+(t)]—

(2.31}

with

&H(t) =-g-, D—,. —,. &F , (t). —.

To determine the linear response &(g, (t)), we
note that the phase-space density I' deviates, due
to the external perturbation, from the canonical
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form (2.27) according to I iouville's equation. It
may be written as

t
p(t)=(exp I

dt'(I +xI(t )]'
~to +

with the Liouvillian

9+ 8 QII 8

~&v ~Pv ~P v ~&v

(2.32)

&,, (t) =e(t) dyy, e"— (2.33)

After using

8 BH
x( P Sq s(

and Hamilton's equations in the form (2.29), we
arrive at the well-known FDT

R, , (t) =-P8(t) C,—, (t)D,

8&H(t) 8 8&If(t) s 8=-5F( t)
sq ~ sp „sp~ B(f-„8]j)

&

By expanding P(t) in terms of the perturbation
&I (t), we obtain for the response function

[q(z„ t), $(z„t)]=5. . .
[]t)(z„t), (t'(z„ t)] = [(j)(z„t), (t'(i„ t)] = 0, (3.3)

[(t)(1),f (2)] =[(j)(1),f (2)] =0.

The statistical properties of ]t) are determined by
requiring

{4(l)Q)= o, (3.4)

where Q is an arbitrary functional of (I), (j), and f.
Then (t)(l) must obey the equation of motion

$(1)= Uz(21)g(2) + 2Uz(231)(j)(2)$(3)
1

+ U,'(213)]I)(2)f (3). (3.5)

In order to write Eqs. (3.1) and (3.5) in a compact
form, we introduce the spinors

tic force field f. For the sake of generality, we

have allowed f to enter the field equation non-

linearly and do not, for the time being, make any

specific assumption concerning the statistical
properties of f, i.e. , the behavior of the correla-
tion function (f(1)f(2) 'f(n)). As with MSR, we

introduce a field (t)(1) conjugate to ]t)(1) in the sense

(2.34)

4'(1 ) ] i!)(1

( g(1) j

(()

x (( ) = ( (( )

(f(())
(3.5)

for conservative systems in thermal equilibrium.
Note the similarity to the FDT (2.19) for class A.
Although this similarity is purely formal, its use
will prove fruitful below.

III. THE SELF -CONSISTENT PERTURBATION SCHEME

OF MSR FOR RANDOM PROCESSES

This section reviews the formalism developed by
Martin et at, .' as extended to random processes.
We start from the field equation'

and extend our summation convention such that a
barred spinor index, e.g. , 1, implies a sum over
all spinor components. An underlined index, e.g. ,
1, is allowed to refer to the components (I), ]t) of 4'

only, whereas all other indices occurring in the
following spinor equations may refer to all com-
ponents (I), (,f of 4'. The field equations (3.1) and

(3.5) may then be combined to the spinor equation

io(12)C'(2) =y, (1)+y,(12)C (2)
1

+-'r, (123)C'(2) C'(3), (3.7)

((I)= U, (1)+ U, (12)]t)(2) + U,'(l2)f (2)

U, (123)(1)(2))I)(3) U,'(123)$(2)f (3)

+ U,"(1»)f(2)f (3) (3.1)

Here the index 1 = fi„t, t represents the time and

all discrete and continuous variables. Barred in-
dices are to be summed or integrated over. The
coefficients U„(1 n) are assumed known functions
of their arguments. Especially, the U„are instan-
taneous and stationary

U„(1 n)-5(t, —t, )5(t, —t, ) ~ 5(t, —t„). (3.2)

The field equation (3.1) differs from that con-
sidered in Ref. 1 by the appearance of the stochas-

with appropriately chosen coefficients p„(1 ~ ~ ~ n)
and the matrix

0 &(12) 0)zo12 =

-5(12) o o3
(3.8)

We remark that the coefficients y„can be chosen
symmetric in their arguments 1 n with the re-
striction that the underlined index must not refer
to f.' Note also that only those components of the
"bare vertex" y(123) do not vanish for which one
and only one index refers to g.

We now turn to the calculation of the expectation
values {]j)(1)),{$(1)(j)(2)), and {{(|)(1)(t)(2)),). To
this end, we introduce the. generating functional
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S(A) = &(exp[A(1)4(1)]).&

= &(exp[@ (1)g(1 ) + &i (1)f (1)+ &(1)f (1)])

and the cumulants

~&" lnS (A)«(I) ( ) " ( )» =
$A(1)gA(2). . . gA(.„}

(3.9)

(3.10)

Whenever necessary in the following, we shall
write the vertices I'„ in a more explicit form by
displaying the spinor components as, e.g. ,

$2L

~ «4(1)»«&f (2)»

or, even more explicitly, e.g. ,

with the auxiliary parameters

(n()))
A(1) —

l &i(1)

)))3
which will, eventually, be set equal to zero. The
double brackets indicate that the average is to be
performed for A4 0, e.g. ,

$2L

&«0(1)»&«f (2)» '

$2L

&«0(1)»«&f (2)»
'

By using the prescription (3.17), we easily find
for the first few vertices

I',($(1))=-&i(1), I'($(1))= —q(1),

&(4(1)exp[A(1)4(1)J)+&
s )

(3.11) r, (f(1)}= ~(1),
(3.19)

Note that for A =0 the time-ordered two-point
cumulants

«4(1)4(2)» I A =Q = &(4(1)4(2)).&- &4(1)&&4(2)&

(3.12)

have the desired correlation functions C(12) and

ft(12) as their matrix elements. By using the
definition (3.9) of S and the field equation (3.7), we
can generate an infinite hierarchy of equations of
motion for the cumulants «4(1) 4(n)» of all
orders. The first of these equations reads

G „'&(12)«4 (2)» = y, (1)+A(1)

+ -'&,(1»)[«4(2)4 (3)»

+(&4(2)»«4(3)»] (3.13)
with

«4(1)4(2)» I'3(») = -&(»), (3,19)

«4 (1)4(2)4 (3)» = «4'(l)4 (1)»«4 (2)4 (2)»
x «4(3)4(3)»F (123). (3.20)

We may now rewrite the equation of motion (3.15}
for the two-point function with the help of Eq.
(3.20):

G(,'&(12)«4(2)4(3)» = &(13)+Z(12)«4(2)4(3)»

(3.21 )

with the "self-energy"

~(12)= ~,(123)&&4 (3)&&

+-'r, (123)«4(2)4(4)»&(4(3)4(5)»i;(452)
=- &"'(12)+ ~'(l2). (3.22)

G&,'&(l2) = — iv(12) —y3(12).
1

(3.14)
Finally we get an equation for the three-point ver-
tex by combining Eqs. (3.21}and (3.19):

f-(«4», «f&)) =1~ -A(1)&&4(1)&& (3.16)

and, as its derivatives, the renormalized vertices

5"L,

t&«4(1)»&«4(2)». &«4(»)» '

(3.1'7)

The whole hierarchy can be obtained from Eq.
(3.13) by differentiating with respect to A. For
instance, by differentiating just once, we obtain

G(o&(12)«4(2)4(3) »= &(I 3) + 3 Y3(123)

x [2 ((4 (2)»«4(3)4(3)»
+ «4(2)4(3)4(3)»]. (3 15)

In order to replace the infinite hierarchy by a
finite set of equations in a convenient manner, we
introduce the Legendre transform of S as

G(o&& (12) = -1;(12)+ Z (12) (3.23)

and differentiating this with respect to (&4(3)»,

t&&(12) &&'(12)
I', (123) =

g«4(3)» +3(123)+
~(( )&&

. (3.24)

Were it not for the presence of the stochastic
forces, we would, up to now, have just repro-
duced the procedure of MSR, and Eqs. (3.13),
(3.21), (3.22), and (3.24) would constitute a com-
plete set of equations for ((4(1))&, «4(1)4(2)», and
I'3(123). In our case, however, these equations in-
volve but do not determine the "pure f vertex"
I;(f (1}f(2)f (3)) . Even worse, Eqs. (3.22) and

(3.24) contain the term

= I;(f(1)f(2)f (3)f(4)), (3.25)
& « f'(4)»

that is the pure f vertex of fourth order which,



of course, can also not be calculated from the
equations of motion. This lack of information is
due to the absence of an equation of motion for the
random force f(1). However, we have assumed
the statistical properties of f(l), that is, e.g. , the
pure f cumulants «f (1) 'f(n)»~ &=, to be known.
It is natural to expect and indeed proven in the
Appendix that all pure f vertices can, for A =0,
be expressed in terms of the pure f cumulants.
The strategy for calculating the wanted correla-
tion functions « +(1)@(2)» in renormalized per-
turbation theory is therefore obvious. From Eqs.
(3.22) Rlld (3.24) one gellel'R'tes eltllel' Rfl expRll"
sion of I, in terms of y, (mass renormalization)
ol' of y3 ln ter1Tls of +~ (vertex renormallzatlon).
Once such a. series is obtained, one sets A =0 and
feeds in the values of the pure f vertices con-
structed from the known pure f cumulants. In the
case of mass renormalization, two nonlinear equa-
tions for «g(1)p(2) »~,1=0 and «$(1)p(2) »~ ~, result,
whereas in vertex renormalization a complete set
of equations for these two functions and the ver-
tices &,(123)& 13(f(l)f (2)f (3)) is obtained. This
procedure is, in general, somewhat more com-
plicated than fol nonrandom processes since the
pure f vertices are of zero order in the interac-
tion p3. So, in order to get ~3 correct to nth order
in y„one has to iterate Eqs. (3.22) and (3.24)
more than n times.

We will, in the rest of this paper, be concerned
with random processes of much lesser generality
than those admitted by the field equation (3.1). For
random processes obeying a fluctuation-dissipa-
tion theorem, all results of this section simplify
enormously as we shall see immediately.

IV. THE SPECIAL CASE OF LINEAR GAUSSIAN

RANDOM FORCES

AVe have already referred to a theorem, to be
proven in the Appendix, which allows the calcula-
tion 'bf the pure f vertices from the pure f cumu-
lants. It is..a trivial and quite intuitive conse-
quence of this theorem that for a random force f
with Gaussian statIStics all pure f vertices of
order n ~ 3 vanish for A =0 (even for g =0; II, A

arbitrary). It follows that the mass-renormalized
expansion of T,

' involves no ingredients other than
the propagators &(C (1)C'(2) » and the bare inter-
action y, (123). If, moreover, the Gaussian noise
f (1) enters the field equation (3.1) linearly, with
U,'(l2) = 5(12) as is necessary for the FDTs of Sec.
II to hold, the bare interaction y, has no f index.
Then the self-energy is, in mass renormalization,
made up by the propagators «4(1)4(2) && and bare
interactions and cannot have an f index either.
By writing out the "Dyson equation" (3.21) in com-

ponents, we then have, for A =0,

G o'(0(I)4(2))«0(2)0(3)»= &&f(1)4(3)&

+ E(&t(1)0(2))&«t(2) ((3)»

+ E(4(1)V~(2)) &&lj(2) 0(3)&&,

(4.1)

G col(((1)P(2)) «g(2) g(3)» = 5 (13)

+ E(0(1)&t(2) )«4(2) 0(3)»,

(4.2)

G,.',(0(1)0'(2)) «0(2)f (3)&& = « f (I)f (3)»

+ E((&(1)lj'(2)) « lj(2)f (3)».

(4.3)

2D(12) =

0 «f(1)f(2)»&
(4.5)

we may write the Dyson equations for «4'(1)4'(2)»

G„', (12)«~(2)~(3) &&
= ~(»)

+ [E(12)+2D(12)H&+(2)@(3)»

(4.6)

and determine the self-energy ~ from the original
MSH equations

~(») = r, (»3)«+(3)»+ E'(»),
E'(12) =-'r. (I»)«~(2)~(4)&&

x «e(3)e(5)»1;(452),

F,(123) = r, (123)+ tl~'(12)/f &&+(3)&&,

(4.7)

(4.3)

(4.9)

where none of the indices refers to f any longer.
When showing, in the next two sections, how Eqs.
(4.6) and (4.7) simplify when a FDT holds, we shall
use the diagrammatic notation suggested by MSR
(see Fig. 1). Instead of writing down the complete
set of rules for constructing the diagrams corre-
sponding to the mass-renormalized self-energy
in all orders (which we shall not need), we prefer
to draw the reader's attention to the following
naive but nonetheless important observations.
(i) Z contains a "left" and a "right" corner vertex
each of which has one "free" index. (ii) All other
indices of all vertices are joined by lines. (iii)
Each vertex has one g index and two g indices.

The third of these equations is immediately solved
by expressing the mixed correlation function
«P f&& in terms of the response function

«4(1)f (3)» = «((I) t(2)»«f (2)f (3)» (4.4)

This can be inserted into Eq. (4.1), whereupon
&g'f» is completely eliminated. By introducing
the matrix
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= «g(1) P(2) %

(123)

=
ys (123)

FIG. 2. Example of a vanishing chain of ((gg)) lines.

(12)

= «y(i)q (a)»

= «y()) y(2)»

= 13(f ()),y(?),y(~))

= y (f(~),g(2), P(5)}

sx' (iz)
8&&+(&)+(4)» (c)

the two drawn pieces of the diagram. Obviously,
Z'(g(1), g(2)}=0 for t, & t, . Finally, &'(gg) consists
of two trees joined together by ((gP)) lines [see
Fig. 3(b)]. Note that the tree structure of &'(gg)
and the double-tree structure of &'(gg) are pre-
served when one has to encounter bare interac-
tions y„of higher than third order (Fig. 4).

As a final preparation for the considerations to
follow, let us write the Dyson equations (4.6) for
the correlation function

(4.10)

and the response function

R(t) =R„(t)= ((y—,.(t)j,.(0)))I,=,

in the slightly more convenient matrix notation

dt' &f, a(t —t')C(t')

+ dt'Zyq t- t' R -t' (4.11)

FIG. 1. Symbols for the propagator and the vertices
(a) and their components (b). Representation of Eqs.
(4.8) and (4.9) (c) and the first terms of the mass-re-
normalized expansion of Z (d).

The products occurring here have to be under-
stood as matrix products with respect to the in-
dices i We hav. e used ((f(1)f(2)))lA=, =(f(1)f(2))
=2D6(t, —t, ) and y, (f(1)g(2)}=U, 6(t, —t, ). R is the
matrix adjoint of R.

(iv) Each line is either ((gg)) or ((Pg)). (v) A closed
chain of ((gg)) lines vanishes (e.g. , Fig. 2}. This
follows from (($(1)g(2)))=0 for t, &t,. (vi) The g
index of any vertex within a diagram is followed by
a (((g)) line ending at another vertex whose g index
is again taken up by a ((gf)) line and so forth. The
arising chain of (($()) lines is either closed and
thus vanishes or ends a free g index.

Observation (vi) immediately yields E'(gg} =0,
since no diagram to &'(gg) has a free g index. For
Z'(gg) we conclude that all vertices are connected
to the "left g index" by a chain of ((gg)) lines.
Therefore &'(gg) has the structure of a tree as
shown in Fig. 3(a). All lines not drawn out there
may be imagined to be ((gg)) lines joining the g
indices of internal vertices or ((Pg)) lines joining

A . , A

FIG. 3. Tree structure of Z -& (a) and double-tree
structure of Z-'- (b).
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x„( 0 00@I (aj

y, (k00PQ) =

I'IG. 4. Bare vertices of higher order.

F,. =F,"'

(5.1)

The bare interactions y„are subject to the poten-
tial conditions

V. FDT FOR RANDOM PROCESSES OF CLASS A

Recall that random processes of class A obey
detailed balance, are driven by Gaussian white
noise, and are purely irreversible. Let the drift
vector F be

rVV'4

I"IG. 5. Graphical representation of the potential con-
dition (5.2) (a) and the FDT (b) for class A, where the
arrow on C(& &-& 2) means 8/&&.

arrow on the wavy line C(t, —t, ) means a/at, (an
arrow of opposite direction would mean a/at,

' = -a/at, ).
We now assert that the Dyson equations (4.11)

and (4.12) for C and R are equivalent to one of
these equations and the FDT (5.3) where the self-
energy ~ may be taken in any order of mass re-
normalization. To prove this statement we con-
sider Eq. (4.11)for positive times (as for t &0 we

may invoke the time-reversal properties of C and
R) and differentiate with respect to t:

which are easily derived from Eq. (2.5). For the
case n =3 we may represent this potential condi-
tion and the FDT (2.19)

+ Z~ t", (t —t')R(-t')j,

C (t ) = -R (t )D +DR (- t )8t (5.3) t&0.

in graphical form as shown in Fig. 5 where the By using the FDT (5.3) we may write this as

+ ao az"" t t'
—U, A(t)D = )( dt Z&&(( —t')[ R'(t )D +DR( I')]'+ -8(--t')).

8t at

Since Z&&(t) and R(t) vanish for negative times and ~""-&(t), we obtain

0——U, R t D = dt'Z~~ t —t' R t' D —
i

dt' Z~~ t —t' D+ —Z~y t- t' R -t' .
&o oo

(5.4)

This is compatible and indeed identical with the
equation of motion (4.12) for the response function
if and only if

Z
~ t" (t) = Z't-, t, (t)D. (5.5)

Similarly, the equation of motion for C may be
derived from that for R by invoking the FDT (5.3).
The exact self-energy obeys, of course, Eq. (5.5)
which is nothing else than the FDT expressed in
terms of ~. We have to prove, however, that Eq.
(5.5) holds in each order of mass renormalization.

Consider an arbitrary diagram contributing to
&&&, that is Fig. 3(b), and differentiate with re-
spect to t. The differentiation acts only on the left
vertex. Since y, is instantaneous, we can shift
a/at through the left vertex by using

Graphically this is represented by Fig. 6 where we
introduce the rule that a diagram with several
arrows (time derivatives) means a sum of several
such diagrams each of which carries one of the
arrows only. By using stationarity and integrating
by parts, we then shift the time derivatives to the
next vertices as

. ((4 (t) )C'(t) ))) = — t, ((4'(t&)4'(t) )))

(5.7)
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+- C t„—t~ =0. (5.8)

We may thus omit all arrows on C lines within the
left tree. With respect to the C lines joining the
two trees of the diagram we must distinguish three
cases.

(i) The C line in question neither starts nor ends
at the left nor at the right corner vertex. Then the
neighborhood of the C line looks like Fig. 7(a).
But then there are other diagrams, occurring in

the same order of mass renormalization, identical

FIG. 6. Representation of Eq. (5.6}.

We keep shifting arrows through vertices in this
way until all arrows sit on C lines. It is easy to
see that out of the potentially many terms repre-
sented by such a diagram decorated with arrows,
at most a single one survives to give a nonvan-
ishing contribution to SZ&&/St: Recall that, ac-
cording to (4.16), C lines either connect g indices
of vertices within the left tree or join the left tree
of the diagram considered with the right tree.
Every C line within the left tree carries two ar-
rows. The corresponding two terms cancel each
other because of

left corner (a)

to the one considered except that the part shown
in Fig. 7(a) is replaced by Fig. V(b) or by Fig.
7(c). In fact, the three diagrams referred to here
are one and the same diagram with respect to the
spinor propagator ((@(1)+(2))). We now use the
FDT [Fig. 5(b)] to rewrite Figs. 7(a)-7(c) as Figs.
7(d)-7(f). Finally, with the help of the potential
condition (5.2) on Fig. 5(a), we transform the
two terms in Fig. 7(d) into Fig. 7(g). We now see
that the first term in Fig. 7(g) [or (a)] is canceled
by the second term in Fig. 7(f) [or (c) and the
second term in Fig. 7(g) by the first one in Fig.
7(e). The terms qualified as "one other term" in
Figs. V(e) and 7(f) cancel in a similar way with
contributions from other diagrams obtained from
the same spinor diagram by filling in g and g in-
dices differently. Consequently, no diagram to
Z&f, can contribute to (8/St)Z~f, other than those
for which a junction of the left and right trees by
a C line involves either the left or the right corner
vertex.

(ii) The C line in question starts at the left
corner vertex. Then its neighborhood looks like
Fig. 8(a). The second equality holds since a chain
of ((gP)) lines from the left corner vertex to the

left corner

(b)

(c)

right corner

(c)

(4)

(e)

right corner

(4)

right corner

+ one other term (e)

ght corner

one other term

FIG. 7. (a), (b), (c) Parts of diagrams for (8/Bt)
Z -(t-t') with C-line junctions between left and right
tree in the interior. (d), (e}, (f) same as (a), (b), (c),
respectively, after using the FDT. (g) same as (a) and
(d) after using the potential conditions.

FIG, 8. (a) Part of a diagram for (8/Bt)Z'. -(t-t') with
C-line junction between left and right tree at the left cor-
ner vertex reexpressed with the help of the FDT and by
using t &t'. (b) Diagram to (8/8t) Zg& (t-t') cancelling
the one in {a). (c) Similar to (a) but with C-line junction
at the right corner vertex. (d) Diagram cancelling the
second term on the right-hand side in (c). (e) First term
on the right-hand side in (c) reexpressed using the po-
tential conditions. (f) Bight corner of an arbitrary dia-
gram to &&&. (g) Bight corner of a diagram to Zc -.
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right corner vertex gives no contribution for t &0.
The remaining term cancels against a contribution
from Fig. 8(b) in a manner described for case
(i) (a "one other term" is involved). We conclude
that only those diagrams to ~&& contribute to
(8/Bt)Z&& which have a C line junction between the
left and right tree ending at the right corner ver-
tex. This case is left for discussion.

(iii) The C line in question ends at the right
corner vertex. Then its neighborhood looks like
Fig. 8(c). The second term there cancels with a
contribution from Fig. 8(d) in a manner described
for case (i) (again, a "one other term" is in-
volved), whereas the first one may be trans-
formed by using the potential condition (5.2) or
Fig. 5(a) so that we get, effectively, Fig. 8(e).
This, however, is the neighborhood of the right
corner of a diagram to ~&&, multiplied from the
right by -D.

W'e thus arrive at the following conclusion. The
set of diagrams pertaining to &&p(t) in a given
order of mass renormalization leads, upon dif-
ferentiation with respect to the time t, to a set of
diagrams of the same order pertaining to

&&&(t)D.-To complete our proof, we are left
with the task of showing that (S/Bt)&&& gives all
terms of -~~&D in nth order of mass renormal-
ization. This is easy, however, since if in an
arbitrary diagram pertaining to &&&(t), that is in
the tree drawn in Fig. 3(a), we replace the ele-
ment of Fig. 8(f) by that of Fig. 8(g), we get pre-
cisely that diagram pertaining to Zyg(t) which
regenerates the starting contribution to ~~ ~, apart
from the factor -D, upon being differentiated with
respect to t. Hence there is a one-to-one corre-
spondence between the diagrams pertaining to
(8/Bt)&&& and &~&D. We-have thus demonstrated
the FDT (5.5) to hold in each order of mass re-
norm al ization.

The self-consistent perturbation theory obtained
from Eqs. (4.6)—(4.9) by iterating (4.9) now sim-
plifies considerably. One needs to use only one of
the functions C and R and has to determine only

&&,; or &f~. Note that Eqs. (4.6)-(4.9) uniquely
determine C and &.

Let us conclude by noting that the validity of the
above considerations is by no means restricted to
the case of cubic interactions. Eventually present
vertices y„(1 n) with +& 3 would be represented
pictorially by nth- order polygons and obey the poten-
tial condition (5.2) which may be drawn as in Fig. 9 for

n = 4. None of the steps in the above considerations
depends in anyway on the number n —1 of g indices
of the bare vertex y„.

VI. FDT FOR RANDOM PROCESSES OF CLASS B

We assert that for random processes with de-
tailed balance and linear damping which are driven
by Gaussian white noise the Dyson equations (4.18)
and (4.19) for C and R are equivalent to one of
these equations and the FDT (2.25),

C (t) =R(t)C(0) + C(0)R(-t) (6.1)

&,(g, f , g )C,—,(0—)C —,(0) + &—,(g, g , g )C„—(0)—C«—(0)—
+ r, (j,q-, q-.)c-„(0)c-.,(0) = o.

(6.2)

For later use we provide ourselves with the pic-
torial representations of the FDT (6.1) and the
symmetry (6.2) shown in Fig. 10.

We now take the equation of motion (4.11) for C
for t&0 (for t&0 we may invoke the time-reversal
properties of C and R),

t——U, C(f) = dt' Z;, (t t')C(t')-
Ot

0
+ dt' &~~(t —t')R(-t'), (6.3)

and insert the FDT (6.1)

-- = c{o)=-U D

with the self-energy ~ taken in any order of mass
renormalization. Moreover, the equation of mo-
tion (4.19) for R and the FDT (6.1), together with
the mass-renormalized expansion for ~~& ac-
cording to Eqs. (3.22) and (3.24) are equivalent
to the graphical perturbation scheme developed by
Kawasaki. 4

In order to prove the above statements, we first
use the last of the potential conditions (2.5) and the
expression (2.20) for the linear damping to obtain
for the cubic vertex y, (g«g, P ), which now repre-
sents a reversible interaction,

&xvx- Ia)

FIG. 9. Class-A potential condition for the bare vertex. FIG, 10. FDT (a) and potential condition (b) for class B.
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(a)

+ Z~s(t —f')]R(-t').

(6.4)

This is the equation of motion (4.19) for R(t) if
and only if the self-energy ~ obeys the FDT

Z&&(t)C(0) =-Z&&(t) for t&0. (6.5)

Similarly, one derives (4.11) from (4.12). Our
above assertions require as a proof that we demon-
strate (6.5) to hold in any order of mass renor-
maliz ation.

Next, we prove the following auxiliary state-
ment: the integrand of an arbitrary spinor dia-
gram for &(t —t') with all time variables f, fixed
vanishes when any vertex within the diagram is
taken at some instant t, K [t', t] Aver. tex within
the diagram is connected to three other vertices
as shown in Fig. 11(a). Let us assume, without
loss of generality, t, & t, &t4. In order to see
whether the corresponding factor in the integrand
indeed vanishes for t, t„we insert indices. We
may omit all terms containing a ((g(t, )g(t, ))) line
since these certainly vanish for t, & t, . Therefore
the element of Fig. 11(a) gives rise to Fig. 11(b).
The first equality follows from the FDT [Fig. 8(a)],
and the second one from the potential condition
[Fig. 8(b)]. Consequently, for t&t', the smallest
time argument in the integrand corresponding to
an arbitrary ~ diagram is t' which refers to the
right corner vertex. '

It follows from the above auxiliary statement
that in an arbitrary diagram for ~& ~ that is in

Fig. 3(b) the right tree degenerates, for t& f', to
the right corner vertex. Therefore, the compo-
nent ~~& of an arbitrary spinor diagram for ~ may
be pictured as in Fig. 11(c)where the shaded cir-
cle means the sum of all left trees obtained by
filling in internal indices into the original spinor
diagram. Similarly, the component Z&&(t —t') of
the original spinor diagram has the structure
shown in Fig. 11(d). Now, by inserting the FDT
[Fig. 8(a)] into Fig. 11(c), we get Fig. 11(e), where
the two equalities arise from using the potential
condition [Fig. 10(b)] and then invoking the FDT
[Fig. 10(a)]. But this just says that the self-energy
FDT (6.5) is preserved in each order of mass
re normalization.

Let us note that the stationary functions C(t) and

R(t) are already uniquely determined by using one
of the Dyson equations (4.11) or (4.12) and the
FDT (6.1) for f& 0 only, if we complement these
equations by the initial condition

0 (b)

(c)

Xjy(t t) =

Xyg(t-t') =

(e)

Kawasaki this paper

FIG. 12. Correspondence between Kawasaki's (Ref. 2)
and our graphs.

= -xyy(t-t') c(0)

FIG. 11. (a) Part of a self-energy diagram with un-
specified indices on the lines. (b) Sum of contributions
from (a) when t& &t2, t 3, t4 reexpressed using the FDT and
the potential conditions. (c) Structure of all diagrams to
& - which donotvanishbecause of the equation in (b). (d)
Structure of all diagrams to Z - which do not vanish be-
cause of the equation in (b). (e By invoking the FDT and
the potential conditions Z'-- as shown in (c) is trans-
formed into —Z&&&C(0) with Z- as shown in (d).
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R, ,(0') =5,,. (8.8)

VII. FDT FOR CONSERVATIVE SYSTEMS IN

THERMAL EQUILIBRIUM

Here again, one of the Dyson equations (4.18)
for C and (4.19}for R can be replaced by the FDT
which now is given by (2.34).

In complete analogy with the considerations of
Sec. V for class A, one first writes the FDT in

terms of the self-energy ~. The result is

1 8
Zt-, t, (t) D ———&t-, t-, (t) =0 for t&0.

Bt
(7.1)

The equivalence of the MSR formalism to Kawa-
saki's perturbation scheme for random processes
of class B is now obvious. The translation rules
are listed in Fig. 12.

Kawasaki uses the following rules for construct-
ing his self-energy diagrams. (i) Draw all trees.
(ii) Omit all reducible diagrams containing self-
energy insertions. (iii) Omit all decorations.
Rule (i) is Fig. 3(a), rule (ii) is a consequence of
renormalization, and (iii) is the above auxiliary
statement.

(bj

(c)

FIG. 13. Representation of the matrix D (a), the FDT
(b) and the potential condition for y3 (c) and y4 (d) for
class C.

sign which does not matter. The proof of the self-
energy FDT (7.1) in each order of mass renor-
malization thus carries over from Sec. V without
change.
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The proof of (7.1) being preserved in all orders of
mass renormalization can also be reduced to the
one given in Sec. V for class A. To that end we
introduce the pictorial representations of D and of
the FDT (2.34) shown in Figs. 13(a) and 13(b).
Furthermore we provide ourselves with the follow-
ing properties of the bare interactions y„(1 ~ n)
which follow from the fact that the field equation

d,
* = r, (p;) +r, (4;0;)0;+ (1/2')r-, (4; 0;0;)4-

+(1/3')r (0 4 4 , 4 , )4 -;4 ,-4-& +"-.-
now derives from a Hamiltonian as

dg, BH
dt ' 9(—'

We obviously have

APPENDIX

We here demonstrate that for A=(q, q, &) =0 all
pure f vertices F„(f(1) f(n))~~=, are deter-
mined by the pure f cumulants « f(1) ~ ~ f(n)»~~, .
This statement has already been used in Sec. III.

Let us start out with n =3 and let g =0 but, for
the moment being, q and ~ arbitrary. Then the
following three cumulants vanish:

« tt'(1)i(2)4(3)»= « i(1)i(2)f(3)»

= &&((1)f(2)f(3)»=o. (A1)

1;(y(]), tt (2), y(3)) = r,(y(1), q(2), f (3))

= I;(g(1),f (2),f (3)) = 0. (A2)

As explained in Fig. 16, these identities imply that
all third-order vertices without g index except for
the pure f vertex vanish:

~4II
r.(0;4&44i) =D&

It follows that

(7.2) The argument displayed in Fig. 16 makes use of
the general relation (3.20} (Fig. 14) and the graphs
for ((ff» and «Pf» defined in Fig. 15. As a con-
sequence, we see that only the pure f vertex con-
tributes to the pure f cumulant,

(1/P}D$.y, (4.4J ik) = y-, (i; 4-f 4.)(1/P)&;-
and similarly for y4, y„.. . [see Fig. 13(c)j.

These symmetry conditions have the same ap-
pearance as the potential conditions (5.2), Figs.
5(a) and 9. The FDT (7.2) has the same form as
that for class A, Fig. 5(b), apart from an over-all

(& @(1)g (2) + (3) )&

I'LG. 14. Graphical version of Eqs. (3.20).
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= «4(() e(2)»
= r„„(g(1) g(i)f (i +1) f (s+1))=0.

2.
= &c t ()) f (2)&&

= «P(i)~(2)»

FIG. 15. Symbols for the propagator including sto-
chastic forces.

r„($(1) t!I(i)f (i +1) f (n)) =0. (A4)

That is, we claim that I"„vanishes for q =0 unless
it is a pure f vertex or has at least one $ index.
This is most easily verified by induction. Suppose
(A4) to hold for some order &. Then, by differ-
entiating with respect to q(n+1) and &(n+1), we
have (@=0)

5r( ~ ~ ) 5r( ~ ~ )
5 (s 1) 5« "(~ 1)&&&&$(n+1)g(n+1)))

5r( ~ ~ ~ )
+

5« ( 1)))
« tc'(~+1)0(++1)&&

+
5

"
« f(&+1)5('&+1)»

5 fn 1+

5r( ~ ~ )=
5« "(

—
)»

«|C'(&+1)0(&+1)»

We conclude

=r„„,(g(1) g(i)f (i +1) f (n)P(n+1))

((f (1 )f (2)f (3)» = «f (1 )f (1 )))« f'(2)f (2))&

x « f(3)f(3)»r,(f(1)f(2)f (3)

(A3)

This proves our initial statement for n =3.
Next, we generalize (A2) to all orders:

Since (A4) has already been shown to hold for
n = 3, the induction is complete.

We now phrase the statement at the beginning
of this appendix as a Theorem: The pure f cumu-
lant &(f (1) f (n)»~ „=,can be expressed in terms
of the second-order cumulant (&f (1)f (2)»( „,and
the pure f vertices r (f (1) f (m)) with m &n

Obviously, this theorem allows the calculation of
all pure f vertices from the known pure f cumu-
lants. To prove the theorem, we again proceed by
induction. For n=3 it holds, as shown in (A3).
Assuming it to hold for some arbitrary order n,
we differentiate the corresponding equation with
respect to &(n+1}. Thereby the quantities in-
volved go over into (r! =0!)

((f (1) f (n)»- «f (1) ~ f (n)f (n+ 1))&,

r.(f (1) f (m))- r...(f (1) f (m)c'( +1))

x «4(m+1)f (n+1)»

= r „(f (1) f (m)f (m + 1))

~ «f (I+1)f(.+1)»,

(&f(1)f(2)»- «f(1)f(2)f("1)»
= « f (1)f(1)»«f (2)f (2)»« f (&+1)f(3))&

xr,(f(1)f(2)j(3)),

where (A4) has been used. Thus the theorem holds
for all orders n.

We finally specialize to Gaussian noise. To dis-
play the relation between pure f vertices and pure
f cumulants explicitly for this case, we let q =0
and q =0 but keep, for the time being, ~ arbitrary.
The generating functional (3.9) then becomes

and similarly

S (I!= 0, q = 0, ~) = &exp[&(T)f (1)]&

=exp[-,'&(I)&f (I)f(2)&&(2)] (A5)

(( 4'(1) 4(2) 4(3) )& 0

with some given second moment &f (1)f (2)), With-
out loss of generality, we have assumed (f (1)&=0.'

By differentiating 1nS(&}with respect to &, we ob-
tain the cumulants

C& 4(1)4'(2)&(3) & o =

1 2

«f (1)&)= &f(1)f(2)&~(2),

((f (1)f (2))& = (f (1)f (2)&,

«f(1)'''f(&)»=0 «r s-3
g& f(1) f(2) &(3) )& + + +

2 21 21 2

FIG. 16. Vanishing components of the three-point cum-
ulant.

Since all pure f cumulants vanish for n~ 3, the
pure f vertices r„ for n~ 3 vanish, too. As antici-
pated in Sec. IV, mass renormalization then con-
tains the bare interactions Z„only.
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