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Calculation of autoionization of He and H using the projection-operator formalism
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Improved calculations of the first several autoionization states of the lower symmetries {"S,"I'',
"D') are reported. Unshifted energies are obtained by diagonalizing QH Q using a Hylleraas basis
with more terms than used previously. Shifts, widths, and photoabsorption shape parameters q (where
appropriate) are obtained with the additional use of exchange approximate nonresonant continuum func-
tions. Our previous calculations of H resonances are recapitulated and slightly augmented by using
various improved nonresonant continua and correcting small previous errors. Comparison with other
calculations and experiments is made. The latter is very satisfactory except for the lowest P autoion-
ization state of He for which a more accurate experimental result is required,

I. INTRODUCTION

In the course of several years and a number of
publications we have carried forward a program of
calculation of resonances of two-electron atomic
systems using the projection-operator formal-
ism. ' ' This program was based on the existence
of explicit projection operators for the two-elec-
tron system'; the major innovation of our calcula-
tion consisted of the introduction of Hylleraas co-
ordin3te s to describe the re sonant state. ' To that
was added the use in the first instance of the ex-
change approximation for the nonresonant continu-
um functions to calculate the width, shift, and,
where appropriate, the q' parameter associated
with the electromagnetic excitation of the reso-
nant state. ' An important additional realization
in this series of papers was the contribution of the
discrete part of the nonresonant spectrum. '4 That
contribution was also calculated in the exchange
approximation.

In addition to the exchange approximation, we
explored several physically more inclusive and
mathematically more sophisticated approximations
of the continuum portion of the nonresonant spec-
trum: exchange adiabatic, ' polarized orbital, and
polarized orbital pseudostate appr oximations. ' In
general these more sophisticated continua did not
materially change the exchange-approximate re-
sults. (An exception is the lowest 'S state of H;
see below. ) In the course of the calculations, how-
ever, several small errors have been uncovered.
Most of these errors have been corrected, '4 and
only in the case of H are they important. One re-
maining correction, recently pointed out by Bards-
ley and co-workers, ' requires the use of the ryd-
berg for infinite mass (R„)rather than the reduced
rydberg (g„)for comparison of calculations with
electron-impact resonance scattering experiments.
The use of A „comesabout by virtue of an effective

cancellation of reduced-mass and center-of-mass
effects. Thus we repeat our H results here with
this additional correction and include results using
some additional continua beyond the exchange-ap-
proximate one. (In the Appendix we derive this
rydberg correction and additionally show that in
photoabsorption, the reduced rydberg is the cor-
rect one. )

This allows us in Sec. IV, to assess the situation
as it now exists. We shall come to the conclusion
that the agreement between experiment and tl..eory
is, with one exception, satisfactory, but that the
accuracy of both should be improved. From the
theoretical side, calculations can only be improved
by definitive lower-bound scattering calculations;
nevertheless even at the present state, the com-
parison as regards the lowest 'P' state of He is
unsatisfactory and calls first for an experiment
which reduces the error in the position by at least
a factor of 5.

II. FORMULAS

In view of the fact that we have given all of the
relevant equations in our previous papers, we
shall only enumerate the final formulas here.

The unshifted energies are calculated from the
variational principl. e

&f( 4'r, s Q& Q@gs& l(@i,s 0@'r,s) f= O . (2.1)

C~~ is an ansatz for the spatial part of a wave
function tof angular momentum I., parity (-1)',
spin 8, where S =0 (singlet) or S =1 (triplet)]:

(r„r,) = P "tcos(-'a8„)[f„+(-1)f „]S"'

+sin(zs'Hn)[fz ( 1) fz ]BI, ] i

(2.2)

S~" are exchange rotational harmonics of sym-
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metric Euler angles' and f~ „are"radial" func-
tions which for Hylleraas calculations are of the
form

and

i«~ i e-(y, &+~„;)~( .)/ ~( - )/
2

N

&(Q CI"&r'r, r"„
g, m, n

(2.3a.)

fi K(rlrmr12) fI, .(r2rlr12) ~ (2.3b)

q =q„,+tan '[2r, /(E-, -E)J. (2.5)

Finally there is a shape parameter q which is as-
sociated with electromagnetic transitions (photo-
absorption) from the ground state of the compound
(electron and target) system to the resonant state.
For an isolated resonance the photoabsorption pro-
file can be represented by'

[The above assumes (-l)~ = (-1)"; if (-1)~"
=(-1)", then L is replaced by L+1 in (2.3a). The
double prime on the sum in (2.2) indicates every
second value of x is to be included, i.e., only K s
of the given parity. ]

The number of eigensolutions which result from
the variational calculation (2.1) is ¹&k, where fq

is the number of linear parameters in (2.3a) and
k is the number of different z's in (2.2). Each
solution whose eigenenergy g~ is below the thresh-
old for inelastic scattering corresponds to a res-
onance in the elastic scattering at energy $„
which is shifted by an ambient 4~ from $~:

(2.4)

(X represents the sequential order of the reso-
nances; other quantum indices such as I and S
are suppressed. ) The resonance is also character-
ized by a width I', which theoretically is most
easily expressed as the energy interval in which
the phase shift q increases by m radians over its
nonresonant value q„,:

v, =(PT„IIIIqe). (2.9b)

In (2.8) (, is the ground state of the compound sys-
tem and T is an electromagnetic transition opera-
tor. We shall only be concerned with helium as
far as q' is concerned, so that go is the ground
('8) state of the helium atom; (taken as a 50 term-
Hylleraas expansion with one nonlinear parameter)
T is taken as the dipole. length operator:

T Zg + ict2 ~

In addition we define

&, =(QCI &I q.& (2.10)

~ =kv(E) v'(E) . (2.11)

The resonance parameters can then be given in
terms of the above as follows (E is the resonance
energy):

r =-r(E) =2kI v(E)I', (2.12)

(2.13a)

For each resonant state A. the nonresonant functions
span a continuum of energies E' and they may also
include a discrete spectrum E,' as well. In the
formulas which follow we shall suppress the A. in-
dex. (With regard to the nonresonant functions, all
our approximations of Y will in fact be independent
of A. .) The continuous spectrum will be denoted by
Y(E') (normalized as plane wave at infinity), and
the discrete spectrum by Y, (assumed quadratical-
ly normalized to 1). All quantities may be ex-
pressed in terms of the following integrals:

(2.8a)

(2.9a)

and their discrete counterparts

(2.8b)

o„=(q+e)'l(1+a'),

where

& = (E -Ey)l2r),

(2.6)

(2.'1)

q =qo+Qq~+ Qq, ,

where

(2.14a)

The photoabsorption shape parameter (q) is more
specialized than the foregoing quantities in that it
is usually (for experimental purposes) restricted
to states which are dipole allowed from the ground
state, whereas scattering resonances can occur in
almost all angular momentum parity states.

The quantities ~~, I'z, and q~ are, in addition
to g~, the fundamental quantities of the resonance
calculations. As opposed to g~, which relates
solely to 4~, the former three quantities depend
also on a nonresonant continuum function T~(E').

r, =2mI v, I',

q. = &g/&,

&v ~.
5qg ='U

p V

(2.13b)

(2.14b)

(2.14c)

(E')V(E')k''
(2.14d)

The lower limit I, in (2.14d) is the start of the
elastic scattering continuum, which is -4 By in
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the case of e+He' (IIe) and -1 Ry in the case of
e+H (H ). It should be realized that the discrete
spectrum for H consists of only one state and only
in the 'S partial wave. Note also that the absence
of a i'actor w

' in (2.14c) represents an additional
correction to Ref. 3 which was not contained in the
erratum '[The factor k' in the numerator of (1.11)
of Ref. 3 is a typographical error. ]

Finally we record the explicit form of the pro-
jection operators:

P =P~ +P2 -P,P2,
=1-P,

(2.15a)

(2.15b)

(2.15c)

where P,(r, ) is the ground-state wave function of
the target system containing the ith electron (i
=1 or 2).

III. RESULTS

Vfe give first our helium results. For S states
the previous QHQ calculations have been improved
by using two nonlinear parameters and N = 84 linear
parameters for all states (How. ever, in the inte-
gral expressions for I' and b we used an K = 70
one nonlinear parameter Q4. ) The nonresonant
continuum functions here and in all other cases in

Table I are those of the exchange approximation
except for the "D states as noted in footnote c of
the Table. For the second and third eigenvalues
of the 'P results we use the g values of Chung
and Chen. " These are based on a configuration-
interaction-type wave function and are slightly
better than our present results as can be seen
from footnote b. This indicates that the larger
size of autoionization states rapidly dilutes the
effectiveness of the short range x» correlation.
The B-state calculations" have only been altered
by the inclusion of the bound-state contribution to
the shift ~ It is evident that this contribution can
exceed the continuum contribution in some cases.

As is indicated in footnote a of Table I the results
havebeen converted to eV using'„, because the
rydberg for infinite mass is the appropriate one
for comparison with e-He' collisional resonance
experiments' (Appendix). Such experimentally de-
termined positions have been most completely
compiled by Martin, ' to which reference the read-
er is referred. In all cases the experimental re-
sults are in agreement with results of Table I
within the experimental errors; the latter are
quoted as being of the order ~0.05 eV.

The 'P' results are not given in Table I because
experimentally they are more accurately deter-
mined from photoabsorption experiments. Also

TABLE I. Summary of first four autoionization states of He of S, P, and D angular momentum (excluding P).

8 (eV)' I (eV) 4„(eV) A~ (eV) 4 (eV) (eV)

-1.557 626 5
—1.245 497 1
—1.180 159 7
-1.096 467 8

-1.205 210 7
-1.119533 2
-1.097 699 O

-1.065 025 9

57.8223
62.0691
62.9581
64.0968

62.6173
63.7830
64.0800
64.5246

1.25
6.67
3.87
2,412

4.21
7,09
1.22
1.32

x 10 I

x]p 3

xlo
x10 3

xlo 5

xlp 6

x 1O 4

x]p 4

1,177xlo ~

5.307 x10 ~

3.355 xlo
1.478x10 ~

4, 73 x 10
1.97 xlo '

6.6O xlo '
3.24 x] p

9.346 x lp 3

1.664 x10
9.959 x]0 4

2.V48x10 '

2.061 x lp '
8.294 xlO '
2.353 x10
1.594 x10

2.112 xlo
2.195x] 0 2

4.351 xlp 3

4.226 x10 3

2.066 xlp "5

1.026 xlp 4

3.013 xlo 4

1.626 xlo 4

57.843 5
62.0911
62.9624
64.1010

62.6173
63.7831
64.0803
64.5247

—1.522 983
—1.169 776
—1.158 012

—1.405 634
—1.138 752
-1.112 855
—1.OV3 241

-1.167611
—1.121361
-1.083 336
-1.066 831

58.2937
63.0994
63.2 594

59.8903
63.5215
63.8738
64.4128

63.1288
63.7581
64.2755
64.5000

8.90 xlp 3

2.61 xlo 3

4.88 x10 '

0.0729
0.0187

5.81 x10 '
7.12 x]0 3

2 72 xlP-6
].92 x]0 4

3.3] x10 6

136»O 4

1.455 xlo '
5.013 x lp ~

4.V3O xlO '

0.0220
0 .0044

1.815 xlo 4

1.667 x10 3

2.60 x]0
9.17 x10 5

1.20 x10 4

xlp ~

] .267 X] 0
2.219 x 10
6.825 x] 0

0.0023
O.65 x10-'-
O. 1O xlO '
0.56 x 10

9.91 xlP 4

3.62 xlO '
2.78 xlp 4

5.5O xlO '

2.720 xlo 2

7.232 xlp 2

7.298 xlo

0.0243
0.0045

1.915x10 4

1.673 x10 '

1.25 x10
9.53 x 10
3.98 x10
5.57 xlp

58.3209
63.1066
63.2595

59.9146
63.5259
63.8740
64.4145

63.1301
63.7582
64.2759
64.5001

Besults in eV relative to the ground state of He —5.80744875 By IC. L. Pekeris Phys. Bev. 146, 48 (19663] using
A =13.605826 eV from B. N. Taylor, W. H. Parker, D. N. Langenberg, Bev. Mod. Phys. 41, 375 (1969).

From Chen and Chung, Bef. 11. Our latest results for these eigenvalue are -1.169462 and —1.157 964, respectively.
~'3D widths and A~ have been calculated with polarized orbital nonresonant functions (cf. Bef. 10). All other results

utilize the exchange approximation (cf. text) ~
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TABLE II. Summary of ~P autoionization states of He.

Calc.
iP (1)

Expt. Calc.
iP (2)

Expt. Calc.
~P (3)

Expt.

8 (Ry)
b„(ev)'

(eV)
Db (eV)
a (eV)
Z (eV)
r (eV)

qp

bq

6q~

q

-1.385 789 5
60.152 15
-0.0073

1.715 x10 4

-0.00713
60.1450
0.0363

-2.4513
0.2370

-0.0767
-2.2910

60.130+0.015
0.038+ 0.004

-2.80 + 0.25

-1.194 182
62.758 77

0.719 x 10
483 x 10

6.202 x 10
62.7594

1.165 x 10"4
62.756 + 0.01

-1.127 716
63.662 97
—0.0021

0.853 x 10 4

-0.0020
63.660 96

0.010
63.653 + 0.007
0.008 + 0.004

'Values taken from Chung and Chen, Ref. 13. Our values are —1.194171 and —1.126399, respectively (Ref. 21).
Reduced rydberg R&=13.603 976 eV used in conversion.

'Experimental values from Madden and Codling (Ref. 14),
dValue has been corrected by factor 7t from Ref. 3 including erratum.

the theoretical result for this comparison requires
use of the appropriate reduced rydberg, R„(Ap-
pendix). It is because of the greater experimental
accuracy that we have subjected these states to
more extended calculation by utilizing several in-
creasingly more sophisticated nonresonant contin-

uum approximations. The latest results are given
in Table II. Our calculations of g are those al-
ready reported' and again the upper two are re-
placed by those of Chung and Chen" which are
lower than ours (cf. footnote a). In this case be-
cause the experiment" is more accurate, these

TABLE III. H resonances.

Our

8 (Ry)
$„(eV)'

Nonresonant approx.
6, (eV)
&a
6=4~+A~
E (eV)
L' (eV)

Other results

Exch.
-0.0066
+0.0033
—0.0033

9 ~ 5539
0.0406

-0.297 563
9.557 24

Ex.-ad.
-0.0046

0.0027
-0.0019

9.5553
0.0436

Pol. orb.
-0.0027

0 ~ 0019
-0.0008

9.5564
0.0476

-0.285 196 9
9.72549
Pol. orb.

0.0130

0.0130
9.7385
0.0063

-0,256 174
10.120 37
Pol. orb.

0.0040

0.0040
10.1244
0.010

Scattering
Burke, Ref. 19

Complex rotation I
Doolen et aI, Ref. 18

Kohn var iational
Shimamura, Ref. 20

Stabilization
Bhatia, Ref. 18

Q-projected Kohn
Chung and Chen, Ref. 16

Complex rotation II
Bardsley and Junker, Ref. 21

Nesbet and Lyons, Ref. 24
experiment

Sanche and Burrow, Ref. 22

9.5603

9.5570

9.5574

9.5572

9.5542

9.5572

9.571

9.558
+0.010

0.0475

0.0472

0.0559

0.0411

0.0474

0.0492

9.7417

9.7403

9.738
+0.010

0.0059

0.0049

0.0056
+0.0005

10.1267

10.128
20.010

0.0088

0 ~ 0073
+0.002

Result relative to ground state of H using R =13.605826 eV.
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differences in g are more significant in obtaining
satisfactory agreement. For the lowest state we
have examined three nonresonant continuum ap-
proximations. The results are very close to each
other and have been given in Table II of Ref. 3.
Thus we here confine ourselves to the exchange-
approximate results while again emphasizing that
the 6q, contribution has been corrected by a factor
w as noted in footnote c. Nevertheless the final
value q is somewhat outside the experimental er-
ror for the first state, and as can be seen the
value of E is on the very edge of the experimental
el ror.

We now turn to H . With regard to g we use our
best previous results which were obtained in Ref.
4 with one nonlinear parameter and N = 70, 84 for
'S, 'P states respectively. For D states the cal-
culation also previously published" requires two
independent "radial" functions: each was de-
scribed with one nonlinear parameter and ¹56
linear parameters. " The results are given in
Table III, where they are compared with the best
previous calculations. For comparison with ex-
periment the reader is referred to a recent article
of Risley, Edward, and Geballe" which contains
a fairly complete compilation of results plus the-
oretical calculations. Unfortunately the calcula-
tions have been converted to eV using A~ instead
of 8„.Suffice it to say that use of A„which
amounts to a +0.008-eV shift upward in the theo-
retical results removes the previous appearance
of calculated results to be low compared to experi-
ment. Within the lesser accuracy of the experi-
ment the agreement can now be described as de-
finitely satisfactory. Discrepancies that now exist
are on a smaller scale and are significant only
among the calculations themselves (cf. Table III).

From the point of view the present type of pro-
jector operator calculation the 'S resonance of H

presents a special problem. For in calculating the
shift, there is one bound-state contribution, and
this tends to cancel the continuum contribution-
how much depends sensitively on the approximation
of the nonresonant functions used. Three calcula-
tions are shown in Table III. Whereas the exchange
approximation tended to support the Q-projected
Kohn calculation of Chung and Chen" as we previ-
ously reported, the use of polarization approxima-
tions, which results we now include, gives more
cancellation between ~, and ~, and raises the value
of E more in the direction of the newer complex
rotation and stabilization calculations. "" We be-
lieve that the best present calculations show the
position of the 'S resonance to be 9.556+0.002 eV
and that as yet no calculation can claim to be more
definitive than indicated by that error. This 'S
calculation plus 'P and 'D results is given in Table

III together with a selection of other calculated
results using other methods. ' In addition we
include the experimental results of Sanche and
Burrow" which still appear to us to stand out as
the most precise experimental determinations of
the resonance structure. Even so one can see that
the errors are such that they really do not allow a
definitive selection of the best theoretical calcula-
tions.

IV. CONCLUSION

In general the agreement between calculations
based on the projection operator formalism and ex-
periment is satisfactory. The most glaring excep-
tion is the lowest 'P autoionization state of He

(Table II). The insensitivity of & to the approxima-
tion for the nonresonant continuum' makes it un-
likely that an error can be attributed to it. The
convergence of the QHQ calculation4 as supported
by other configuration-interaction-type calcula-
tions" renders the value of g even more secure in
this case. On the other hand the experimental er-
ror, considering that it refers to a photoabsorp-
tion experiment, '~ is surprisingly large. We there-
fore feel that the first priority is for a reduction
of that error.

From the theoretical point of view, one now re-
quires in effect a definitive scattering calculation.
When such a calculation is carried out in the reso-
nance region, omission of the resonance term in
the expansion of the optical potential gives a defini-
tive calculation of the nonresonant continuum, and
with such a nonresonant function the projection
operator formalism can be carried out; but it then
becomes a convenient alternative way of doing the
scattering calculation itself. Such calculations are
under way in this laboratory both for the resonant
and nonresonant scattering; a preliminary report
of the latter has been given. This paper therefore
concludes our present program of projection opera-
tor resonance calculations for two-electron sys-
tems.
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APPENDIX

We consider here the energy that is appropriate
for the comparison of theory with experiment in the
two main types of resonant measurements (a)
photoabsorption and (b) electron scattering. Both
reactions can be written

a+T=C,
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where a is the impinging particle (photon or elec-
tron), T is the target, and C is the resonant state
of the compound system. In both cases we envisage
the target (atom or ion) to be initially at rest in the
laboratory frame:

@total g int @labT T T (A2)

where E'"' is the internal energy (i.e., that com-
p«ed with R„).Thus the total momentum is just
that of the incident particle a. Conservation of mo-
mentum and energy (in the laboratory frame) then
gives

I g Int
pintT (A8')

1
Eg = p&leV ~ pg =Rl~V . (A9)

In this case (A3) and (A4) reduce to (m=m, )

(AIO)

(A8) says that for photoabsorption measurements
the experimental measurements are to be com-
pared with theory using R~ and to great accuracy

C

M, can be replaced by MT.
(ii) a=electron, then

+ @HitQ T C

Pa =&c )

E""=E'"'+P' /2M

(A8)

(A4)

pl v=P

which can be solved as

1-m/M, ' (A12)

E, =hv, P, =kv/c.

Here (A3) and (A4) reduce to

jl v+Eint Eint+P2/2M

(A5)

(A8)

where P, is the (magnitude of the) momentum and

M, the mass of the compound system in the lab
frame. We now consider the two cases separately:

(i) a=photon, then

But now, we observe that

(A13)

~ =Mr +O(m),

we see that

(A14)

(oo)
@~int c'~ T

1+m/M, r '

where E~"~ refers to energy computed using A„.
And using again the fact that

h v/c =P, ,

from which solving for h v we find trivially

Eint gint
AV c T

1-h v/2M, c' '

(A7)

(A8)

E(.") E$")
pm' =1

( j )2+O(m/Mr)

or finally

2mv =E~"~ —E~~"~+O(m/Mr)

(A15)

(A18)

Since k v«100 eV and 2.VI,c'&10' eV for essentially
all cases of interest (in particular H and He),
(A8) is equivalent (to better than seven significant
figures) to

This says that (again to about seven significant
figures) the electron impact resonant energy is
the difference of autoionization and target-state
energies computed with infinite rydberg (R„).
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