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Charge transfer in proton-helium collisions
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An approximate integral form of the close-coupling formalism has been applied to the charge-transfer

process in the proton-helium collision problem. Results for the ground-state capture cross section have

been obtained with the inclusion of the effect of proton-nucleus interactions and compared with the
available experimental and theoretical results. The present values of the capture cross section are in

very good agreement with the experimental observations at high as well as intermediate incident

energies. At low energies the nature of the experimental curve has been correctly reproduced. Results
for the differential capture cross sections in the forward direction and the total elastic cross sections
have also been reported.

I ~ INTRODUCTION

The problem of charge transfer in proton-helium
collisions is of special interest to theoretical
workers because this problem can be handled with
reasonable accuracy and rigor, and reliable ex-
perimental results are available for comparison
with theory. However, there are only a few calcu-
lations on the H+-He collision problem based on
the wave formalism. ' ' Most of these calculations
have been carried out in the Born and impulse ap-
proximation. Hence it is worthwhile to develop a
suitable method to investigate the problem with

rigor .
Ghosh and Basu' and Chaudhuri et a/. ' have used

an integral form of the close-coupling equations
for the e '-H and e -H scattering problem, re-
spectively. This integral form has some advan-
tages over the integro-differential approach in
practice. Here in this paper, we have developed
the integral form of the close-coupling equations
for the H'-He system. The attempt to solve the
close -coupling equations exactly by partial-wave
analysis is impractical because several thousand
l values contribute to the total cross sections
even at moderate incident energies. Therefore
reduction of the three-dimensional coupling equa-
tions to a set of one-dimensional equations by
partial-wave analysis cannot be achieved and
some approximations are required to reduce
the close-coupling method to a tractable form.
Here we have neglected the principal-value part
of the pole term in the kernel. This amounts to
the neglect of the virtual excitations and strong
distortions. This approximation is expected to be
valid in the high-energy region. The infinite set
of close-coupling equations has been truncated to
set the equations in a tractable form by approxi-
mating the total state-function expansion with a
truncated state-function expansion for the descrip-
tion of the atomic collision process. Agreement

with the experiment will justify the validity of this
truncation. The present approximate form of the
close-coupling method when applied to the proton
hydrogen system is identical with the approximate
form of the Faddeev equations as used by Chaud-
huri et a/. ' It has been found that the present
formalism provides a good estimate of charge
transfer and excitation cross sections even at the
intermediate incident-energy range where the Born
approximation fails.

We have calculated the electron-capture cross
section from 1 keV to 1 MeV and results have been
compared with theoretical and experimental find-
ings. We have also presented scattering cross
sections for the direct process and the results for
the differential capture cross sections in the for-
ward direction.

II. THEORY

We have considered the following transitions:

H'(p) He+(n, 1, 2)-H'(p) + He(n, 1, 2),
-H(p, 1)+He'(n, 2),
-H(p, 2}+He'(n, 1}.

(&a)

(1b)

(lc)

In the initial channel we have the proton (p) inci-
dent on the helium atom which is in the ground
state. In the final channels we also have two rear-
rangement channels in addition to the elastic chan-
nel. In the rearrangement channel the helium
atom is stripped of one of its electrons which is
captured by the proton to form a hydrogen atom in
ground state.

We now present a brief derivation of the integral
form of the close-coupling method. The Schrod-
inger equation satisfied by the state function 4 of
the system is

(v -z)@=0,
where II is the Hamiltonian of the system and is
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given by

&y+ &2+ &@+Vox+ Vn2+ Vp2+ V~, + V,2+ V

where

X, = p*,(Vti+ Vt2+ Vt„)p dt', d72,

Here T; is the kinetic-energy operator of the parti-
cle i and V;, is the interaction potential between
the particle i and j. The state function 4 may be
expanded as

W', E, = P*,(II -E)(y tt) F,+y~ F,)d7,dr, ,

y (n, 1, 2, p) = Q [p (n, 1, 2)E,(p) + y (n, 2)
r

X~i~ = k~ito~f[ V„,+ V„+Vt, + Vtnj gM~ dt, d72

xtU (p, l)E, (p, 1)

+y.(n, 1) .(p, 2)F., (p, 2)], (4)
W' E, = g*w* (FI - E)(P E,+y w E,)dr, d't»

where P is the wave function of the target helium
atom, g and zo are the wave functions of the
helium ion and hydrogen atom, F, denotes the mo-
tion of proton, while F ., and F, describe the mo-
tion of the hydrogen atom.

Here we consider the helium wave function P„
to be exact and with the Hartree-Fock variational
principle we get the following set of coupled intc-
gro -differential equations.

(E —Tt Et, )E,, (-P) = Q (X', +W', )F,(P),

(6)

and X3, and 5' ~ E, may be similarly defined.
E&,E&, and E are the binding energies for the
helium, ionized helium, and hydrogen atoms, re-
spectively. Equation (5) can be written in a more
compact form as

(E E„,. —T-, )E„...(R) =Q V„i,i„,E„,(R), (7)

(E —T(t, ) Et, E-)F,,(p-, 1)

= P(X', +W', )E,(P, 1),
m

where V„,„, is the sum of a direct and exchange
operator

Vn a'na Xn' ' a'6aaW+n'a'na(E) &

(E, —T(t 2) Et E„-)F,S-(p, 2)

I' ~ +tv', E, , 2,

where n', n denote states and a', a denote channels.
Following Sloan and Moore' and Ghosh and Basu

we can rewrite Eq. (7) as

(gnaIy]kna) (&IV IP +g
~

dh„(
t1tt gt I gtt + SE

t

with

&
k'n'a'I T'I kna& =P &

k'I V„,.„,I E„";.(R)& .
tl lt g tt

We have considered only the ground states of the
helium atom, helium ion, and hydrogen atom, so
n=a'=n" =1 and hence we drop this suffix after-
wards. %'e have considered three channels so a,
a', a" can have any value from i to 3. The explic-
it form of the integral equations are

ft
+ (1la)
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dk" dk"
(k'I Y2, lk)=(k'I Y['

I k&+ ' . (k'I Y '
I
k")(k"I Y„l k&+ „.(k'I Y '

I k") (k"I Y„l k)

dk"
+ „.(k I

Y["Ik")(k"I Y„l k&, (1lb)

dk" dk"
(k'I Y„lk&=(k'I Y "Ik)+

@ E„. (k'I Y["lk")(k"IY„,lk&+, „- . (k'I Y"'Ik")(k"
I Y,klk)

/I
+ E E„.&k'I Y,',"Ik") &k "I Y„I k), (11c)

where

(k'I Y]]~l k& =(k', ls, Pl Yl k, ls, (x&

(12)

The three coupled integral equations can be reduced to two coupled integral equations because the antisym-
metric combination of (lib) and (llc) is coupled only to itself and can be omitted. The reduced set of
equations are

dk" dk"
(k'I I'

I k) =(k'll' '
I k)+ ' (k'I Y["

I
k")(k"I 1'„Ik)+ „.(k'I Y '

I
k"&(k"I Y'I k),

dk" dk"
(k'IY'I k) =2(k'I 1;', I k&+2 „.(k'I 1''

I k")(k"I Y„l k)+2 „.(k'I Y ' Ik")(k"I Y'I k),
2

where

&
k'I Y'I k& = &k'I Y„I k&+ &

k'I Y„l k&

Pole terms in (13) can be divided into 6-function and principal-value parts by the relation

1 . „P= —i7[6(E E")+
(

-„) (14}

Matrix elements for operators YP„] and YB„are expressed as follows:

(k'I Y[q„]lk& = —(1/4x'p, a)f ss„(k' k),

&k'I Y,„lk) =-(Il4~],}fs.(k'k),
(15}

where f ]]„(k'k) represents the corresponding scattering amplitude of the matrix element for the transition
operator Y[]kk] and f 8„(k'k) is the corresponding scattering amplitude of the operator Y[]„. p. 8 is the re-
duced mass of the channel P. It is important to note that f 8„(k"k) reduces to the first Born amplitude on
the on-shell. Neglecting the principal-value part and using Eqs. (15) we can rewrite Eqs. (13) as

f„(k"k)=f„(k'.k)+ —
{{ [kf„(k' k")f„(k" k)+k f„(k"k")f'(k'"k)]sink"dd dfi"), "

f'(k" k)=kf, (k" k)+ —
{{ [k f„(ii"k")f„(k" k)+k f„(k'.k")f'(k'"k)] nind" dd" ddi"),

~d

(16)
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where k; is the initial momentum of the incident
proton and k„ is determined from the energy con-
servation relation:

k2/2p. , =k';/2p, , E-@+E&+E

Total direct and exchange cross sections are ex-
pressed by the following relations:

o'd, =2w(vz/v&) I f„I'd cos8,
~-1

~1
v,„=2w(v~/v, ) kl f'I' d cos8 .

III. RESULTS AND DISCUSSION

The coupled integral equations (16) have been
solved numerically. In obtaining results, Krylov's
quadrature formula' of maximum trigonometric de-
gree of precision has been applied to perform the

Q integration. The inputs f z„have been evaluated
analytically (Appendix). All numerical computa-
tions have been performed with sufficient care so
that the cross sections are given with an accuracy
of four to five decimal places. In solving the in-
tegral equations we have used the Gaussian quad-
rature method for evaluating the integrals. In
heavy-particle collisions the scattering amplitudes
are sharply peaked in the forward direction and
the angular spread of the scattering amplitudes
decreases with the increase of the incident energy.
To take care of this feature we have used z as
our integration variable instead of 8, where z is
related to 6I by the following transformation:

k~ 1+z
—,' (1 —cos8) =

1 —z'

We have calculated total cross sections for the
elastic and rearrangement processes for the inci-
dent proton energy varying from 1 keV to 1 MeV.
We have also calculated the differential cross sec-
tions in the forward direction. Convergence of the
results for the total cross sections was tested by
increasing the number of Gaussian points.

We have used the simplest Hylleraas ground-
state wave function of the form

y(x„x,) = (z'/ma', )) exp[- (s/a, )(x, +x,)],
with z =1.6875. Bransden and Sin Fai Lam calcu-
lated the capture cross section for the same pro-
cess with the two-state impact-parameter forma-
lism for a number of approximate wave functions.
Their results show that this Hylleraas-type wave
function is sufficient to express the capture cross
sections with reasonable accuracy for a, range of
proton energy E & 30 keV. Bransden and Sin Fai
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FIG. 1. Present calculations of the ground-state
charge-transfer cross section compared with the experi-
mental results of Allison, Stier and Barnet, and Barnet
and Reynolds (Bef. 11}, Welsh et al. (Bef. 12), Berkener
ei al. (Bef. 13), and Schryber (Ref. 14) and with the
theoretical curves of Bransden and Sin Fai Lam (Bef.
8), Mittleman (Bef. 9), BDK (Bef. 1), Mapleton (Bef. 2),
Green et al. (Ref. 10), and Begun et al. (Ref. 16) in the
energy range 1 keV-1 MeV.

Lam' and Mapleton' have noticed that better wave
functions for helium enhance the capture cross
sections in the low-energy region. Thus our re-
sult is expected to be increased in this energy re-
gion with a better wave function.

Another point we would like to emphasize is that
we have taken the prior form of the interactions in
our calculation throughout. Mapleton' has ob-
served that the difference between the values of the
cross section using post and prior forms of the
interaction is less than 10% in the higher-energy
region in the framework of the Born approximation
with a Hylleraas wave function. He has observed
enhancement in the values of the capture cross
section when the post form of the interaction is
used instead of the prior form in the low-energy
region. It is expected that our result would also
increase in the low-energy region with the post
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form of the interaction.
Figure 1 shows our results for the ground-state

charge-transfer cross section along with the cor-
responding theoretical results due to Mapleton, '
Bransden et al. (BDK),' Bransden and Sin Fai
Lam, ' Mittleman, ' and Green et al." Experimen-
tal findings" '" for the total charge-transfer cross
section are included in the same figure for com-
parison. Results of the recent theoretical calcu-
lation of Begum et al."using the distorted-wave
approximation in the impact-parameter formula-
tion are also included in the figure for compari-
son. Our results are in better agreement with the
experimental data in the high-energy region where
they have higher cross-section values. Their
cross-section values show more or less the same
feature as obtained by Mapleton' as well as by
ourselves (Table O in the first Born approxima-
tion. The slight upward trend as observed by
Barnet et al. ' around the incident proton energy
1 MeV has not been found in the recent measure-
ments' ". In the energy region 250 keV-1 MeV
our results coincide with the experimental points
more closely. First Born results of Mapleton"
using a six-parameter wave function show a lower
estimate of the total capture cross section. A
similar observation was made by Bransden and
Sin Fai Lam in their calculation. This leads us
to conclude that our method provides a good fit to
the high-energy experimental points. In the ener-
gy region 50-250 keV our curve lies below the

experimental findings. The present curve pro-
duces the peak in the cross section as observed by
Barnet et al,."and this was predicted by Green
et al. ,

"who have used the two-state approximation
as suggested by Bates. However, the position of
our peak is slightl. y shifted towards the lower en-
ergies.

The results of the calculation for the elastic
cross section for various proton energies together
with the capture cross section are presented in
Table I. In the calculation of the elastic cross
section we have considered the effect of couplings
to the rearrangement channels. Calculated first
Born elastic and capture cross-section results
are also, presented for comparison. It may be
mentioned that the values of the first Born capture
cross section using the present wave function are
always greater than the values obtained from our
approximation. With increasing energy, the dif-
ference between the present char ge -transfer re-
sults and the corresponding Born results de-
creases.

In the high-energy region the effect of neglecting
the coupling with higher states, virtual excitation,
and the strong distortion is not expected to in-
fluence the ground-state capture cross section.
Sin Fai Lam" observed that the effect of the in-
clusion of the excited states of hydrogen does not
improve the results over the energy range 1-1000
keV. So the discrepancy in the intermediate- and
low-energy results can be attributed to the choice

TABLE I. Ground-state total cross sections' for the elastic and charge-exchange scattering
of protons by helium atoms in units of ~a&.

Lab energy
(keV)

Close coupling
Direct

Born
Direct

Close coupling
Capture

Born
Capture

1
5

10
15
18
20
22
24
26
30
35
40
50

100
200
395
500

1000

2.6011
1,8081
1.4922
1.2494
1.1409
1.0799
1.0260
0.9783
0.9355
0.8623
0.7883
0.7284
0.6370
0.4140
0.2589
0.1546
0.1276
o.7os8 (-1)

81.8212
16.3642
8.1821
5.4547
4.5456
4.0911
3.7191
3.4092
3.1497
2.7274
2.3377
2.0455
1.6364
0.8182
0.4091
0.2071
0.1636
O.8182 (-1)

0.3816
1.6982
2.0351
1.8512
1.7011
1.6006
1.5031
1.4114
1.3237
1.1656
0.9967
0.8557
0,6393
0.1855
0.2995 (-1)
O, 2611 (-2)
0.9700 (-3)
o.s77s (-4)

83.4066
18.0532
8.5918
5.5279
4.4805
3.9485
3.5089
3.1405
2.8257
2 s3211
1.8534
1.5069
1.0374
0.2486
o.s14s (-1)
0.2958 (—2)
O.1O88 (-2)
O,4176 (-4)

Number in parentheses in each entry is the exponent of 10 by which the cross-section value
should be multiplied.
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of the wave function, the prior form of interaction,
and the neglect of the principal-value part of the
pole term which we have considered in this calcu-
lation. The choice of a better wave function and
the post form of the interaction is expected to in-
crease the value of capture cross sections in this
encl gy region.

In Fig. 2, we have plotted the differential cross
section for the charge transfer at 0' scattering
angle. No other results have been obtained for
comparison. The feature of the curve is similar
to that as obtained in the case of the O'-H colli-
sion problem. Considering the results over the
complete range of energy investigated we think
this method uniquely provides a correct picture
for capture cross sections over a wider range of
energy.
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APPENDIX: EVALUATION OFfp

f z can be expressed as (our notations are the
same as used by Mapleton'):

f« ——— 2 dx, dx, p(x, )20(x )V; &p(x„x2)tx 2

FIG. 2. Hesults of forward-direction differential cross
section presented. from 25 keV to 1 MeV (in units of
gao) .2

"exp(A, r, +A, r, -A2 r, )

[r, +r, -r2~

X -&& I r& I -II2 Ir2 I -ls I rs ld8 e e 1 j 1'2 r~ ~

(A2)

Using the Fourier transforms

xexp[i(A, x, +A, x, -A2. x2)],

(Al)
elP 1'

-X I r I

P (l
2 )„2)2

V; =Vp„+Vp, + Vp2,

~f ~pn+ ~2j. + ~2n+ ~pg-

We evaluate the type of integral I defined below
by which one can get expression (Al): we get

ip [k -k') d
(Rm)2

and the representation

(A4)

I =A
j, (q2[(q+A, )2+12]2[(j+A2) + l2] [(j+A2) +12] } 'dq, (A5)

where K =2'mly lglg By expanding in partial fractions we get

I=K — q q+A +l q+A +l' 'dq —— q+A +l q+A +/ q+A '+l' ' 'dq

[[[(j+A,).*+(,']'[(2+X,)*+(;j'[lt)+X.,)'+),*j') 'dt));, - (A6)

Next we show the evaluation of the third integral
of (A6) which is the most difficu1t one. After
simple transformation of the integration variables
we can rewrite this third integral as

8 9 8

8$ $ $ g) 8$ 8E

where

(A 7)
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J = ( (q'+ l', )[ (q+A,')'+ l,'] [ (j+A,')'+ l', ]] ' d j .

(A8)

This can be evaluated with the help of Lewis'"
method; the result is where

+ l, (l', + l', +A,"),
P = l, [(A,' -A,')'+ (l, + l, )']+ l, (l', + l', +A,")

J = 2g + ~2 tsu ~(N &2/P)

where

&=~&y,

a,y, = [ (A,' -A,')'+ (l, + l, )'] [A22 + (l, + l, )']

x [As'+ (l, + l, )'],

(A 9) A,'=A2-A, , A,'=A, -A, .

In our case A, and all its powers are very small
Quantities (A, = 10 4A, ). We checked our results
with A, and with A, = 0 and came to the conclusion
that A, can be safely dropped without any damage
to the accuracy of the results. In this paper we
have presented our result with A, =0.
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