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Rigorous stationary bounds on e -atom scattering lengths: Target ground-state wave
functions imprecisely known
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In recent work, the existence of stationary bounds on bound-state matrix elements for rather broad
classes of quantum-mechanical operators was used to obtain a stationary upper bound on the scattering
length for the collision of positrons with atoms whose target wave functions are not precisely known.
This was done by obtaining calculable stationary bounds on the unknown matrix elements which appear
in the formal expression for the bound on the scattering length. This method is extended in the present
paper to electron-atom scattering for which it is necessary to obtain-in addition to boundsof the previous

type —stationary bounds on the various exchange integrals. These latter cannot be obtained by means of
techniques previously described. New techniques are presented for deriving such bounds, which are then

used to obtain rigorous stationary upper bounds on the scattering length for the collisions of electrons
with helium and with atoms heavier than helium.

I. INTRODUCTION

In recent years, rigorous stationary upper and
lower bounds have been obtained on diagonal and
off -diagonal bound-state matrix elements for rath-
er broad classes of quantum-mechanical opera-
tors. ' ' In a previous paper' we showed how some
of these bounds could be used to obtain a rigorous
stationary upper bound on the scattering length for
the problem of collisions of positrons with atoms
(or ions) whose wave functions are not exactly
known. The starting point is the stationary upper
bound on the positron-atom scattering length, which
is expressed in terms of a trial scattering wave
function. Asymptotically, this trial scattering
wave function is the product of a (known) trial func-
tion of the projectile coordinates and the exact tar-
get ground-state wave function. When the latter is
known, the bound is calculable. ' When the target
ground-state wave function is not known precise-
ly —as is the case for all atomic systems other
than the hydrogen isoelectronic sequence —the
bound is only a formal one, since it contains
bound-state matrix elements containing the impre-
cisely known target ground-state wave function.
The problem of obtaining a stationary bound on the
scattering length in such cases reduces to one of
obtaining stationary bounds on these imprecisely
known bound-state matrix elements. It was shown
in Ref. 2 —for the case of positron scattering —that
this indeed could be done. Rigorous stationary up-
per bounds on all such matrix elements were de-
rived and these were used, in turn, to obtain rigo-
rous stationary upper bounds on positron-atom
scattering lengths.

Although a calculable stationary upper bound on
electron-atom scattering lengths is available for

the target ground-state wave function precisely
known, the method could not immediately be ex-
tended to electron-atom scattering lengths for the
target ground-state wave functions imprecisely
known, because of the appearance of exchange in-
tegrals, which cannot be bounded by the techniques
used to bound the direct integrals.

It will be our principal task in this paper to ob-
tain rigorous stationary upper bounds on the vari-
ous types of exchange integrals which occur in
electron-atom scattering. (Stationary lower bounds
are no harder to obtain, but such lower bounds are
not useful in the present context. ) We will first
write down, in Sec. II, the formal stationary upper
bound on the scattering length in terms of calcu-
lable integrals, plus direct and exchange integrals
containing the imprecisely known target wave func-
tions. Stationary upper (and lower) bounds on the
direct integrals were derived in Ref. 2. Stationary
bounds on the exchange integrals will be given in
Sec. III, thus enabling us to replace the formal
stationary upper bound of Sec. II by a calculable
stationar y upper bound.

In addition to the obvious application to low-en-
ergy scattering, the techniques described below
and in Ref. 2 are useful in still another way, in
that they can be applied, after suitable choice of
trial function, to bound not just A itself, but A
-A~, where A~ is the Born approximation scatter-
ing length. According to the forward disper sion
relation, ' this can be related to the integral of the
total cross section over all momenta, and so pro-
vides a powerful consistency check on higher-en-
ergy measurements as well. The possibility of
using dispersion relations in this way has recently
been exploited for a number of scattering prob-
lems, including positron-helium scattering, by
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Bransden, Macdowell, and co-workers. ' Such re-
sults can be sharpened by use of variational bounds

on, rather than simply estimates of, 4 -A.~.

A cA, + (m/2vh')I,

where

(2.1)

I==4', (H —«,)@,d7, .2, . (2.2)

In Eq. (2.2), H is the total (spin-independent) Ham-
iltonian for the system, e, is the helium ground-
state energy, and dv/23 stands for the 3-particle
volume element dr, dr, dr, . The inner product over
spin functions is to be under stood. We consider a
trial function for use in (2.2) of the form

II. EXPLICIT FORM OF THE FORMAL BOUND

ON THE e -He SCATTERING LENGTH

For simplicity of notation we will limit our dis-
cussion initially to the problem of bounding the
electron-helium scattering length. The techniques
are readily applicable to electrons incident with
zero energy on heavier atoms as well, as will be
discussed in Sec. IV. The problem of scattering by
ions, with replusive asymptotic Coulomb poten-
tials —which was discussed for the positron case
in Ref. 2—does not entail any fundamentally new

problems, a,nd can also be handled by these tech-
niques.

Consider, then, the problem of an electron in-
cident at zero energy and zero relative angular
momentum on a helium atom in its ground state.
(We shall always use the phrase "scattering length"
to imply that we are concerned with incident elec-
trons having relative orbital angular momentum L
=0; however, the results can be extended to L&0.)
Making the almost certainly correct assumption
that there is no He bound state, a bound on the
scattering length is given by'

ee, (1, 2, 3)y(1, 2, 3), (2.6)

where C, is any known quadratically integrable
function over the 3-particle configuration space and
8 is the antisymmetrization operator. Inclusion of
the term (2.6) in (2.3) would, when employed in
(2.2), result in the appearance of additional terms;
those which a,re unknown would be typically of the
form

g(1, 2)g(1, 2, 3) d7„„ (2.7)

where ((1,2, 3) is a known, quadratically integrable"
function. After performing the integration over the
space coordinates of particle 3, expression (2.7)
reduces in form to that of the inner product of a
known quadratically integrable function with an im-
precisely known bound-state wave function. Sta-
tionary bounds for quantities of this type are readi-
ly obtained by methods described in Ref. 2. It will
accordingly suffice for our purposes to limit dis-
cussion to trial functions of the form (2.3).

If (2.3) is substituted into (2.2), the result can be
expressed in the form

f= (I, +I,) —(z, +J,),
where

(2.6)

2 1 1
I~= 1~2 ug 3 — + +

V3 V/3 Jp3

spin projection of the incident electron to be posi-
tive, the function y(1, 2, 3) in (2.3) may be taken to
be the doublet spin function

)t,g, ,)2(1, 2, 3) =2 'i'o(1) [a(2)P(3) —P(2) ««(3)].

(2 6)

Equation (2.3) does not represent the most general
type of trial function that one might wish to employ.
One could add a term of the form

+,=3 '~'[u, (1)g(2, 3)x(1, 2, 3) —u, (2)g(1, 3))t(2, 1, 3)

-u, (3)q(2, 1)y(3, 2, 1)]. (2.3)

Here g represents the exact (unknown) spatially
symmetric space part of the helium ground-state
wave function satisfying f g'(i, j) dr, dr& = 1 and u,
represents a trial scattering function component
which satisfies the boundary conditions

xu, (3)q(1, 2) dr„, ,

I2= 1, 2 u] 3 T3M] 3 1, 2 d~x23)

2 1 1
J~= 1)3 u] 2 — + +

+3 +13 +23

xu, (3)q(1, 2) dr„„

(2.9)

(2.10)

(2.11)

u, (i) - const, r, —0;

u, (i) - (A, r, )/r„r, — .

(2.4)
J2= 13 ut 2 T3u& 3 12 d7&23& (2.12)

where A, is the trial scattering length. (To obtain
the scattering length for nonzero orbital angular
momentum L, the boundary conditions (2.4) need
only be replaced by the boundary conditions appro-
priate to zero-energy scattering at relative orbital
angular momentum L.') Arbitrarily choosing the

and where

T, —= -(h'/2m) v', . (2.13)

is the kinetic-energy operator for the ith electron.
We must now face the fact that the helium

ground-state wave function g is not precisely
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known. I, and I,—after the integral over the coor-
dinate r, is performed —are of the form (g, Wg)
where W is known, and stationary upper (and low-
er) bounds for quantities of this type are given in
Ref. 2. J, and J„on the other hand, are exchange
integrals. Techniques for bounding quantities of
this type comprise the subject matter of Secs. III
and IV.

III. STATIONARY BOUNDS ON EXCHANGE INTEGRALS:
ELECTRON- HELIUM SCATTERING

We first note that both J, and J, can be written in
the form

f7 7 P 0 123 )

U„(1,2, 3) = u, (2) — + +
2 1 1

+3 +13 +2

U, (1, 2, 3) = u, (2)T,u, (3) .

u, (3), (3.2a)

(3.2b)

In discussions which are valid for both n =1 and
n = 2, we will drop the subscript n on J„and U„.
Now let g„(i,j) be a variational approximation' to
the exact helium ground-state wave function ((f, , j),
where i, j are chosen from among 1, 2, and 3. I et

I p(i, j)) be the helium ground-state ket for particles
i and j, let

Q(f, j) =1 —Ig(f, j))(g(f, j) I (s.sa)

be the operator which projects off the ground state,
and let

S = q(i, j)q„(i, j) dr,. dr, . (s.sb)

be the overlap of p and („. An identity for the wave
function in terms of these entities is readily seen
to be

~]„(i,j) —Q(f, j)q„(i,j) (3.4)

If this is substituted into (3.1) the result can be
written

K„—Kq —Kg + KqgJ--
S

(s.5)

K.= q„(1, 3)v(1, 2, 3)g„(1,2) dT„,, (s.6)

Kg=, 1, 3 U 1, 2, 3 Q 1, 2 „1,2 dv;23,

(3.7)

(3.1)

where, by comparison with Eqs. (2.11) and (2.12),
we have

Kg 1 3 1 3 U 1 2 3 1 2 d7y23

(s.6)

Kgg= @1 3 „1 3 t'J1 2 3

x]Q(1, 2)g (1, 2)] dy„, . (3.9)

When necessary, we will write the subscript n(=1
or 2) on J and on each of the four K quantities in
Eq. (3.5). (Note that the Q's always operate only
on the adjacent g„'s.) The unknown quantity S'
which appears in (3.5) has been studied extensively
in the literature, ' and stationary upper and lower
bounds for it are well known. We may therefore
treat 8 henceforth as a known quantity, with the
understanding that it must be replaced by the ap-
propriate stationary bound wherever it appears.
The only unknown in the foregoing equations (3.6)—
(3.9) is then the projection operator Q.

We now consider in turn each of the four inte-
grals in Eqs. (3.6) —(3.9). The first of these, K„of
Eq. (3.6), is calculable as it stands and represents
a stationary approximation to J. The remaining
three terms are of second order or higher. The
first of these, K@ of (3.7), we rewrite in the ob-
viously equivalent form

K, = 1, 3 Z, '2 S', 3 U1, 2, 3

x IE,(2)F, '(3)]@(1,2) q„(1, 2)/] dT„, , (3.10)

where we have introduced the function F, (j) = E,(r~).— .

We wish to apply the Schwarz inequality to inte-
grals such a.s (3.10), with the integrand partitioned
in the manner indicated by the square brackets.
The purpose of the F's in (3.10), and in similar
integrals that will occur later on, is to assure that
the two factors that result are finite. More gene-
rally, we could have introduced an f(i, j) having this
property instead of the separable form F,. '(f)E,.(j).
However, it is to be noted that terms of the type
K@ and K@ are second-order quantities, because
of the appearance of Qg„. (The quantities K~~ are
fourth-order qua'ntities. ) The particular choice
of F's can therefore be expected not to be critical,
except insofar as the resulting bound is relatively
easy to obtain. The emphasis will therefore be
placed on finding .F's which keep down the amount
of calculational effort required. The separable
form given does indeed appear to be the simplest,
and the form of F,'(r, ) suggested by the form of
the integrals to be bounded is that of a polynomial
in r, IThe cho. ice E,(r, )proportional t. o .e 8"~ leads
to difficulties in obtaining a bound. ] Most often, it
will be found necessary to calculate the integral
J u', (j)E,. '(j) dr, Since u, approaches a constant
asymptotically, E, '(r&) must fall off fast. er than
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Moreover, the requirement that the integrals
in which it appears converge means, of course,
that F,'(j). must not increase too rapidly with r,
reasonable and simple choice therefore appears to
be

F,.'(j) =1+~,.&,'. (3.11)

(The constant term is necessary since F ' must be
finite at the origin. } The number o& can be varied
to produce the best bound for the given form of I'.

At this point we introduce the notation

S,&(B) —= (Q(i, j)g„(i,j))B/Q(i, j)g„(i,j))dr, dr,.

(3.12)

for any operator B. The indices i and j indicate
that the integral is only over r,. and r, , even if B
is a function of r„as well as of r,. and r, We pro-
ceed with the derivation of stationary bounds on
the real number' J, by noting that since —as we
have just seen —the real number K@ is a second-
order quantity, then ~Kz ~

will also, of course, be
a second-order quantity. Hence, use of the bound

Kc (
j K+ ~

in (3.5) will still yield a stationary bound
on L We now apply the Schwarz inequality to ~Kz ~

and write as a (formal) upper bound on K

were first derived in a slightly different context
by Aranoff and Percus"; some of these are rede-
rived and some new results are derived else-
where. ' " The simple bounds on $, , (x/) and

B&&(r(,)t.hat will be needed in order to complete the
bound on J are tabulated for convenience in Ap-
pendix A, where some new results are also ob-
tained. Thus, if we replace the Q' ' factor in Eq.
(3.13a) by the simple upper bound

[~(+)(F2(2))]1/2 I@(+)(1) + ~(+)( 4))s/a

where X)(;, (1) and S(;, (y,') are given in Appendix A,
the result will be the required simple upper bound
on the second-order quantity Az. (We will use the
notation C ') to denote an upper bound on some
number C.)

Equation (3.13a) is valid for both K@, and Ko»
however, in the latter case it is possible to im-
prove on this result by recognizing that the inte-
gral

TQ~3

exists. This enables us to choose F,(3) =1, so that
by partitioning (3.10) somewhat differently we ob-
tain

K - )Ig„(1,3)F, '(2)F, (3)&(1,2, 3) (I

Z/2

x F, '(3) dr, n~'(F', (2)), (3.13a)

Kaa (
II q„(1, 3)F '(2)((,(2) II

X!2
x T M 3 'dr3 $]Q +' 2 . 313b

where, for arbitrary g,

llg ll=-(s, g)"
represents the norm of the function g. The prop-
erties of F, (j) discussed a. bove guarantee that the
first two factors on the right-hand side of (3.13a)
are finite. All the quantities appearing in these
two factors are known and calculable. We note,
furthermore, that —by virtue of the fact that g„ is
a variationa. l estima. te of g—the remaining factor
in (3.13a), the B'/' factor, is a second-order quan-
tity. If we can find a simple bound on this S' ' fac-
tor, i.e., a bound which is still a second-order
quantity, then use of such a bound in (3.13a) will re-
sult in a simple upper bound on Kz. Heplacement
of Kz by such a bound in (3.5) will result in a sta-
tionary bound on J—provided the same is done for
K(I and Ko~. (These latter will be considered
shortly. )

Simple bounds on quantities such as

In general, it is clear that the partition of the
integral (3.10) is not uniquely determined, either
for Eg1 or Kgp For example, it is possible in the
case of K@, to make use of the properties of the in-
teraction potential (in a way exactly analogous to
the treatment of Kzz, in Appendix B) in order to
derive a bound on E@, that is alternative to that
given in (3.13a). However, because Ko is a second-
order quantity, the exact choice of partition is
probably not critical.

The above techniques for obtaining bounds, and
other remarks concerning K+, apply equally well
to K, since the two are similar in form.

It remains therefore to obtain a simple upper
bound on K. At this point it is convenient to dis-
tinguish from the start between two types of J in-
tegrals, viz. , 8, and J, of Eqs. (2.11) and (2.12),
respectively. Thus, to obtain a stationary upper
bound on J» we need to obtain a simple upper
bound on Az+„where

Kzo& = (Q(l, 3)g„(1,3))u, (2)(-2r, '+r, 3'+r,,') u, (3)f Q(1, 2)(L(l, 2)) d7»,
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and where, in turn

&l(1, 3, 2) -=(@{1,3)q„{1,S)p', (3)+, '(2)u, (2) . (3.15)

Applying the Schwarz inequality separately to each

of the three terms in the last form of (3.14), with
the partitioning of the integrand into two factors
denoted by the position of the multiplication sign,
one obtains

I./"
Zoo, a 2 u (2)E (2)u (3)F (3) dr dr, {[G+&(I/z'.) + o( ~i+& (y~)]'~~[I)('&(I) + o( ~(+&(y4)]'~2

(3.16)

where the X)('&(y') are given in Appendix A and rep-
resent upper bounds on K),, (r',.). (In order to sim-
plify the writing, we drop the subscripts on + and
&('& whenever no confusion can arise. ) In obtain-
ing the right-hand side of (3.16) w'e have, for ex-
ample, used the fact that, for r, fixed,

+ ™++~~@(+) + ~ ~(+) 8 (+)

for any value of r, . This follows from the fact that
an upper bound on D, &(I/r,',. ) for s =1, 2 is also an
upper bound on $,,(1/r,',) for a. rbitrary r, . [See
Appendix A, particularly Eqs. {A1)and {AS).] The
partition of the integral Kco, indicated in (3.14) is
not unique; however, since K+ is a fourth-order
term, the choice of partition is probably not cri-
tical. [An alternative bound on K@s„which does
not involve K)(r',.), is given in Appendix B.]

In a similar way, ere have

A«, = Jt fq(I, S)(l&„(I,S))u,(2)E, '(2) x [r,u, (3)]

xE,(2)(Q(1, 2)((& (1,2)/ d~„„
where, in line with the discussion given in connec-
tion with Eq. (3.1Sb), we have chosen E,(3) =1.
Thus we have

Kqq &f u (2&F (2)dr xu(1&

')go
T~t P

(3.17)

We have novr found simple bounds on all the un-
known (second-order or higher) integrals of (3.5)
and hence stationary bouods on the integrals j,
and Z2 of Eq. {2.8). When tbe techniques of Ref.
2 are used ta obtain stationa. ry bounds an I, and I„
the resulting stationary bound on I yieMS a station-
ary bound cm the scattering length Recording to
(2 1)

%e note in passing that jn caaes where the com-
putationa, k effort involved in ebtaining a variatiova, l
approximation g„ to the true helium ground-state
wave functiori is felt not to be warran0M, all of the
foregoing boeeds are valid when p„ is replaced by

an arbitrary normalized trial function g, . How-
ever, if this is done, the bounds will contain first-
order error terms; that is, they will no longer be
stationar y.

IV. EXTENSION TO MORE COMPLICATED SYSTEMS

We begin with a few general remarks concerning
the application of the foregoing to atomic systems
beyond helium. In the general case, when the spin
8 of the target differs from zero, there will be two
scattering lengths, associated with the two values
S+ —,

' of the total spin of the target plus electron.
The total spin of the system will be reflected in
the form of the trial function 4„and a separate
calculation of the type indicated above must be per-
formed for each of the two possible values. (As
always, we ignore all spin interactions; it should
not be difficult to include them. )

Secondly, we note that the number of factors
E,.(j)F,. (j) by which the integrand should be multi-
plied prior to partition should be the minimum num-
ber such that the two integrals which appear after
application of Schwarz's inequality remain finite.
As in the foregoing example, this number is just
tzvo, regardless of the number of electrons. Thus,
each of the integrals occurring in the N-electron
problem will be identical in form (with different
multiplicative factors) with those occurring above,
with ()(„(I,2) replaced by g, (1, 2, . . . , N), etc. ; it
is also clear that the X) terms which will occur are
identical to those which occurred in (3.16) and
(3.17); no new 3& forms will appear.

Finally, we note that in cases where the ion,
formed by the addition of an electron to the target,
has a bound state, the procedure must be modified
so that the effect of the bound state is "subtracted
out, " in a manner described previously" in a dif-
ferent context.

It is clear that extensions to the case of nonzero
projectile orbital angular momentum go through
just as in the case of helium, provided the target
ground state has zero orbital angular momentum.
(Note that conservation of energy requires the
initial and final target states —and hence the ini-
tial and final target orbital angular momenta —to
be the same. ) When the target has nonzero orbital
angular momentum (er more generally, when spin-
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(N+1) iSz

f 1

x [g (1, 2, . . . , N) zz, (iV + 1)cz(N + 1)]

+C,(1, 2, . . . , N+1), (4.1)

where P,, is the operator which interchanges the
jth and 0th particles, $ is the total (space +spin)
normalized antisymrnetrized ground-state atomic
wave function, and u, has the asymptotic form in-
dicated in (2.4). As before, we are temporarily
considering ((1, 2, . . . , N), the exact tar get wave
function, as known. In general, it will be of the
form of a sum of products of space and spin co-
ordinates

$(1, 2, . . . , N) = Q P ~(1, 2, . . . , N)
e

x)t8(1, 2, . . . , N); (4.2a.)

similarly $„ in Eq. (4.3) below will be of the form

$„(1,2, . . . , N) = Q y 8„(1,2, . . . , N)
e

xXe(1, 2, , N), (4.2b)

but the exact form of Eqs. (4.2) is not relevant for
the purposes of the present discussion.

The function @, appearing in (4.1) is some suit-
ably chosen antisymrnetrized function of the space
and spin coordinates of the %+1 particles and rep-
resents distortion of the target by the projec-
tile. It falls off faster than 1/r, . for all r„and
therefore all the matrix elements in which it ap-
pears [after substitution of (4.1) into (2.2) and use
of the N-particle analog of (3.4)], are either known

or can be bounded by previous techniques. The re-

dependent or tensor forces are present) —and re-
gardless of the orbital a.ngular momentum of the
projectile —the problem becomes a multichannel
one. In the zero-energy limit, formal bounds on
linear combinations of elements of the reaction
matrix, in which matrix elements involving the
exact target wave functions appear, have been
given previously. " The question of obtaining
bounds on such matrix elements when the target
wave function is unknown requires separate inves-
tigation although in the atomic case, at least, it
appears that the methods developed here ean be ap-
plied to the more general multicha, nnel problem.

To see explicitly how the many-electron ease
works out, consider an X-electron atom with spin
St,„,t =0, so that there is effectively only one scat-
tering length. (As noted above, the only difference
in the more general case of nonzero spin is that
there are two. ) We also assume I,,„„,=0 to avoid
multichannel complications. A suitable trial func-
tion can be written as

maining matrix elements are each of a form which
ean be written either as

Jt g„(1,2, . . . , N)U(1, 2, . . . , N+1)

or

[@4(zz~ z» ~ zx)] d+iz. . .z+z (4.3a)

„1,2, . . . , N U 1, 2, . . . , %+1

x[@(„(z»z». . . , z„)]d~» ~+» (4.3b)

where i„i„.. . , i„„represents some permutation
of 1, 2, . . . , N+1 and where U(1, 2, . . . , N+1) rep-
resents a product of three factors: zz, (N+1) on the

left, followed by either the kinetic-energy operator
Tg 1 or the interaction potential

N-p 1

+/+1 — +X+1 j

and finally u, (i„„)on the right. [The argument of
the Q's in Eq. (4.3) is of course the same as the
(„'s on which they operate ].

lt is clear that after multiplying M, (N+1) by
[F '(N 1+)F(i~„.)] and M, (i„„)by [F '(i„„,)F(N+1)],
bounds on (4.3) can be obtained exactly as de-
scribed in Sec. III.

V. SUMMARY OF CALCULATIONS NECESSARY

TO OBTAIN A STATIONARY UPPER BOUND ON

THE e -ATOM SCATTERING LENGTH

In order to replace the formal stationary bound
of Eq. (2.1) by a calculable stationary bound, sta-
tionary bounds on the four quantities I„ I„J„and
J', must be obtained. [See Eqs. (2.8)-(2.12).] The
first two of these are direct integrals, and tech-
niques for bounding these have been given in Ref.
2. Specifically, the bound on I, and I, is given by
Eq. (4.13) of Ref. 2, except that the interaction po-
tential will be of the opposite sign. [The choice of
tria. l function indicated by Eq. (2.3) of the present
paper is equivalent to the choice )i, =0 in Eq. (4.13)
of Ref. 2. Such a choice is not at all necessary, as
indicated by the discussion of Eq. (2.6) above. ]

To obtain stationary bounds on J, and J„ it is
first necessary to obtain a variational approxima-
tion q„ to the true target ground-state wave func-
tion g [e.g. , Eq. (2.27) of Ref. 7]. Then K„, and

K„, [Eq. (3.6)] can be computed. To bound the re-
maining terms in (3.5), it is necessary to calculate
II q„(1,3)F.'(2)F, (3)U, (1, 2, 3) II and II q„(1,3)F.'(2)
xU, (1, 2, 3) II where F,. (j) is given by (3.11) and
where U, and U, are given by (3.2a) and (3.2b),
respectively. The integrals
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E,. '( j) dr, , (A4)

u', (j)&,. '(j) dr, nl/2(1/ 2) ( nl/2(p2)2
) (A5)

must also be calculated, as well as stationary
bounds on the overlap 8, and on c,. Finally,
simple upper bounds on the quantities n(r', ) for
q = -2, 2, 4, and 8 and on n(1/r, ', ) for s= 1 and 2

must be obtained. Methods for doing this are given
in Appendix A. [The necessity of obtaining a bound
on n(r') may be circumvented by means of an al-
ternative procedure given in Appendix B.]

It might be worth noting that the direct integrals
can also be bounded by the methods of the present
paper, using the identical techniques used for the
exchange-integrals. [A moment's consideration of
Eqs. (2.9) and (2.10) shows that, for example, the
I' factors would have to be introduced in exactly
the same way, and so forth. ] It is not yet clear
whether such a treatment of the direct integrals
would offer any advantage over the method of Ref.
2.

APPENDIX A: BOUNDS ON g),,(r; )

In order to utilize the bounds derived in Sec. III,
we must obtain simple upper bounds on the quanti-
ties n, , (r',.), for q = —2, 0, 2, 4, and 8 a.s well as on

the quantities n(1/rf, .) for s= 1 and 2. We must a,i-
so show that an upper bound on n, ,(1/r';, .) is an up-
per bound on n, &(1/r', ,) for. arbitrary r2. [Note tha, t,
because of the indistinguishability of the electrons,
we have n, , (r', ) =n, , (r,'. ) for i, j =1, 2, 3.]

In the remainder of this Appendix we shall drop
the subscripts ij on Q wherever no confusion can
arise. The formulas obtained will, in fact, apply
equally well to the problem of heavier atoms with
X electrons discussed in Sec. IV, provided it is
understood that the X)'s are defined by the obvious
N-electron generaliza. tion of (3.12).

The bounds on n(r', .) and on n(r,', ) for negative
values of q proceed along identical lines: One
writes down, for example, the commutation rela. —

tions"

i
pi

l

ri ri
2 ~ ~ ~ ~ P2 2

i
(A2)

p2 2
+ik +ik

Considering both sides of each of Eqs. (Al)-(A3)
as the argument of a Q function, and applying
Schwarz's inequality to each of the right-hand
sides, we obtain

nl/2 (1/ 2
) ( nl/2( 2)

2

n(1) may be obtained directly from (3.4) (or its
many-electron generalization). We find

n(1) =(1 - s'). (AV)

[In (A4) and (AV) 1 is the unit operator. ]
Because of the indistinguishability of the elec-

trons, we have

n(p2,.) ( (2m/N)n(t),

where

(A8)

t=gr,

b = (mN/2h ')' '(2Z +N —1)e', (A10)

where e is the electronic charge. Explicitly, Eqs.
(A4)-(A8) become, in terms of (A9) and (A10),

n(1/r, ,) ( [(1 —S2)(2m/Nk2)nt'(t)]'/2, (All)

n(1/r;. ) (8m/N@2)n" (t), (A12)

n(1/r;. ,) (8m/Nb')n'&(t) . (A13)

Note that in verifying Eqs. (Al) and (A3), the vec-
tor r, plays no role; thus Eqs. (All) and (A13)
verify the validity of the contention made in the
first paragraph of this Appendix.

In order to obtain a, bound on n(r', .) for positive
q's, we proceed along slightly different lines than
those followed previously. " " ' The reason is
that the previous methods appear difficult to use
for q+4: The commutator of ry' ' ' with II is
equal to a quantity which can be related to y' '
In Eq. (E8) of Ref. 11, for example, the product
of the two commutators in the K) term can thus be
related to z' '. However, the powers of y occur
multiplied by powers of momenta, and the Schwarz

is the kinetic-energy operator of the target atom.
A simple upper bound on n(t) is given by" '

nl/2(t) ( [n(+)(t)]1/2

=-,'{(I—S')"b+ [(1 —S')b'

+4
) E, —S'f., ~

)'/'j, (A9)

where &, is the ground-state energy of the target
atom (or the appropriate bound), e, is the expec-
tation value of the target Hamiltonian with respect
to t)I„, and the number b for the —case of an N-elec-
tron atom of nuclear cha, rge Z —is given by
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inequality must be applied to separate the tmo. Af-
ter this is done, the remaining expression involves
a term in y" '. Thus, the expression gives useful
information if and only if 2q —4 ~ q, that is, if q
~4. The following method mill be seen to be ap-
plicable to all even powers of q, and hence to odd
(and fractional) powers as well, by virtue of the
relationship

n( q) ~nl/2( 2a)n1/2(r21)

mhere q=o+7.
We begin by considering the more general prob-

lem of obtaining a bound on n(A'), where A' is an
operator expressible in the form

(A14)

and where A is a vector operator of odd parity.
Using the N-particle analog of (3.4) one may readi
ly verify, using commutator notation, that

n(A' (h —«, )A)=n(A' [h, A])

+ (Qq„, A'(h —«, ) q.),
where h is the Hamiltonian for the atom (or ion),
e, is the ground-state energy, and we have used
(h —«,)/=0. We now proceed to treat the first term
on the right-hand side of (A15) in a manner very
similar to that employed in obtaining simple bounds
on (g, A'g) in Sec. IV A of Ref. 11. (Excited states
may be correspondingly handled by methods simi-
lar to those of Sec. IVC of Ref. 11.) We write

n(A' (h —«, )A)= &Q&„ IA' (h —«&)A I Q&„&

= g &Q(„IA'(h —«, ) I g„&&q„IAI Qg. &

n=1

= g («„- «, )&Qq„lA' I e„&&q„ IA I Qv~. &

[A, [h, A]] = c, (h'/m)r',

where

(A20b)

c& =3 c,=e, c3=11, c,=18).. . (A21)

Since we then have A'=r', ', Eq. (A1. 9) becomes

n(r', .') ~ («, —«, ) '[(c,h'/2m)n(r', '').
+(I —.~')" ll. (h —«, )q„ll].

(A22)

The set of Eqs. (A21) and (A22), with the choices
I=4, 3, 2, 1, bounds n(r', ) for q=8, 6, 4, 2 in terms
of calculable numbers plus n(l) which can be
bounded by using (A7) and bounding S.

This completes the information necessary to
bound all of the quantities n(r') which are needed
in order to calculate the bounds in Sec. IV.

n(At ~ [h, A] —[h, At] ~ A) -=n([At, [h, A])

=2 Ren(A~ ~ [h, A]),

(A18)

and that, for all operators A that me shall con-
sider, A~ ~ [h, A] will be real. Inserting Eqs. (A15)
and (A18) into Eq. (A17), applying Schwarz's in-
equality to the last term in Eq. (A15), and using
Eq. (A7), we obtain the inequality

n(A') ~(«, —«, ) 'f-,'n([A~, [h, A]])

+(1 —s')" IIA'(h —«,)q, II).
(A19)

The usefulness of (A19) lies in the fact that the
second term involves only known functions, while
the argument of the first term reduces to some-
thing quite simple for many operators of interest.
Specifically, after a moderate amount of commuta-
tive algebra, one finds, on choosing

A~ =A=y',. 'r, , l=1, 2, . . . , (A20a)

that"

= (., —«, ) g &Q&„l A'I&„&g„lAl Qe.&

n- 2

(A16)

We now assume that g„has been chosen to have the
same parity as y(=p, ). Since A is of odd parity, it
follows that &Qg„ IA I g& =0. The sum in (A16) can
then be extended to include the value n = 1, and the
sum can then be evaluated by closure (A16) can.
therefore be written

n(A') ~(«, —«, ) 'n(At [h —«,]A).

%e couple this with the observation that

APPENDIX B: ALTERNATIVE BOUND ON ONE OF

THE EXCHANGE INTEGRALS

As mentioned previously, the partition of the
various exchange integrals, leading to the bounds
of Sec. III, is not unique, and other choices are
possible. It is not a Priori clear that a particular
choice will be superior to all others in every case;
the alternative bounds presented in this Appendix
are specifically constructed to avoid the necessity
of computing the upper bound on n(r', ) that occurs
in Eq. (3.16). We will still need a bound on n(r',.),
so that the ealeulational effort saved will not be
very great. The principal advantage is that the
bound on n(r';), although formally of second order,
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may tend to be ra.ther large numerically for all
but the most accurate wave functions. (For ex-
tremely accurate wave functions, it is clear that
the details of partition are irrelevant. ) The prin-
cipal disadvantage is that the exact form of the
bound will be different for different trial scattering
wave functions.

We are concerned, then, with integrals of the
form (3.14). We write the interaction potential as
the sum of two terms

(Bl)

f=F.(2)F (3)

and note that, the integral

(B4)

so that (3.14) breaks up into the sum of two inte-
grals, one of which can be written

&q'q, = (Q(I, 3)g„(1,3)/M, (2)f '

x ——+ —fu, (3)/Q(I, 2)y„(1,2)) d T„,,
1 1

(B2)

where f remains to be chosen. It will be clear
that the other integral, corresponding to the first
of the two terms in expression (Bl), can be treated
in an identical manner, so we will confine our at-
tention to (B2).

If we apply the Schwarz inequality to (B2), par-
titioning the integral as suggested by the multi-
plication sign, we obtain

Ifo'o, - III,(2)f 'Q(1, 3)O.(1, 3) II

x Jj
——+—fu, (3)Q(1, 2) y (1, 2) IJ .

1 1

3 23

(B3)
We must choose f so that both factors on the right-
hand side converge. For simplicity, we take f to
be

converges even for n = 0, but for our purposes it
will be convenient to choose n =2. In order for
the first factor on the right-hand side of (B3) to
converge, F,(2) must fall off faster than x', . The
simplest choice therefore appears to be

f= (1 + o.,r~) (1+ n x2)

With this choice, the second factor on the right-
hand side of (B3) becomes

m'„'[(I+ a,r', )g (r,)]. (B6)

We note that g(z, ) vanishes at r, =0, and behaves
as 1/y, at large r, g(r. ,) will be everywhere
bounded by some number g,„~0. Then, since
(1+oy', ) is always positive, a simple bound on
(B6) will be given byg', '„ times a simple bound on
K)'„'(1+a,r', ), which we previously saw how to ob-
tain.

It can now be seen that a simple bound on the
integral (B2) will be given by

K~'», g (1 —S )[1 —S + o. ~i'~(y )]
2 X/2

&&[6 (1)+o. S ' (y')] dr(.) (,), ~~(2)
1 + G2g2

(B7)

This bound is a simple bound which does not in-
volve K) '~(y',.); it is, moreover, calculable in terms
of previously discussed bounds. It is also clear
that the other half of the integral (3.14) can be
bounded in exactly the same way.

The bound (B7) was derived primarily as an ex-
ample, to show the sorts of manipulations that
can be performed on the exchange integrals of Sec.
III, to obtain variants of the bounds on these inte-
grals that were obtained in that section.
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