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%'e present the results of a Dirac-Hartree-Fock calculation of Rayleigh scattering from He atoms in

the energy range 0—500 Ry. The second-order S matrix is used to describe the scattering; the dominant
correlation corrections are extracted from the fourth-order S matrix. The scattering amplitude is decom-

posed into a multipole series and numerical methods are employed to study the multipole amplitudes.
For low photon energies the scattering is accurately described by a single electric-dipole amplitude; in
this low-energy region correlation corrections modify the second-order amplitude significantly. At higher
energies many multipoles contribute to the scattering; above 100 Ry the absorptive part of the second-
order amplitude together with the fourth-order correlation corrections are negligibly small. For these
very high energies the scattering is accurately described by a scattering form factor.

I. MULTIPOLE EXPANSION OF RAYLEIGH-SCATTERING

AMPLITUDE

The present work represents an extension of the
theoretical treatment of Bayleigh scattering devel-
oped by Brown and co-workers' during the 1950's.
In these early papers Brown and co-workers treat-
ed scattering of hard photons by K electrons in Hg
(Z =80). This older treatment employed the Furry
bound-interaction representation to evaluate the
second-order S matrix and made use of Dirac Cou-
lomb wave functions to describe the electrons.

We start our analysis of the S matrix from a
slightly different point. In an attempt to include
the electron-electron interaction in the unperturbed
Hamiltonian and consequently in the electron wave
functions, we employ a Dirac-Hartree-Fock (DHF)
description of the atomic electrons. The ground-
state DHF potential is introduced in the unper-
turbed Hamiltonian along with the nuclear Coulomb
potential. The use of an unperturbed Hamiltonian
including the DHF potential requires the introduc-
tion of a DHF counterterm in the interaction Harn-
iltonian. To second order the expansion of the S
matrix is formally identical to that employed by
Brown and co-workers; in fourth and higher orders
the DHF counterterm gives rise to additional con-
tributions.

In order to gain insight into the effects of elec-
tron correlation we carry our calculation to fourth
order. We restrict the fourth-order calculation by
examining electron-electron interaction terms and
DHF counterterms only. We omit electron self-
energy and vacuum polarization contributions,
which are expected to be small. ' Moreover, we
limit our treatment of virtual photon exchange to
the unretarded Coulomb part (the entire electron-
electron interaction in the nonrelativistic limit).
We find that the DHF counterterms cancel some of
the electron-electron interaction terms in the

fourth -orde r S matrix. The remaining terms rep-
resent fourth-order correlation effects. The pres-
ent calculation is restricted to two electron atoms
for simplicity.

We set up some basic notation in the paragraphs
below. In Sec. II we write out the DHF equations
and give the expansion of the S matrix to fourth or-
der. Section III is devoted to a theoretical discus-
sion of "perturbed orbitals" and gives the final
formulas for the scattering amplitudes. In Secs.
IV and V we discuss numerical evaluations of the
scattering amplitudes for low-frequency photons
(below the photoelectric threshold) and at high fre-
quencies (above threshold), respectively. Our nu-
merical examples are carried out for He (Z = 2)
where correlation effects are expected to be larg-
est. These studies accomplish the following.

(a) They illustrate the relation of the present
scheme to the coupled-Hartree-Fock (CHF) tech-
niques of nonrelativistic quantum mechanics;
(b) they reveal sizable correlation corrections at
low frequencies; (c) they show the diminishing
importance of correlation above threshold; and

(d) they indicate the accuracy of a "-form-factor"
description for energies well above threshold in the
case of low-Z atoms.

The differential cross section for Hayleigh scat-
tering can be written'

where a is the fine-structure constant and M is the
scattering matrix element in units of &, . To de-
scribe the scattering in the simplest terms we ex-
pand M into a multipole series. Let A represent
the vector potential of a photon with propagation
vector k and polarization vector e. We expand A
using'

A = ie'" ' ' = Q C~„„(c,k)a~„(r), (1.2)
Jhf X
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where

C „q (e, k) = 41' ~ Y~M[(k) (1.3)

ao~N =j ~(wr) Yz~N(r) =j ~(&ur) Yz'„(r), (1.4a)

J+1 j.f 2

aJM 2J 1
— r YJ'J- M r

J i/2

jr+1( ) JJ+1 N(

jJ+1 Y r

are the multipole expansion coefficients and where
the multipole components of the vector potential
are

j = l + —,', and m is given by

1 iG„,(r) ~„.(;)~
I F„,(r) 0 „(r)j

where G„,(r) and F„,(r) are the large- and small-
component Dirac radial functions and 0, (r) is a
spherical spinor. From Eqs. (2.1) and (2.2) follow
the radial DHF equations

(2 2)

[i1, —aZ(r)/r]u„, (r) = e„,u„„(r), (2.1)

withe, = o, p+pm. By virtue of the spherical sym-
metry of Z(r) we can write u„„(r) in a spherical
basis as

(drj ~(&ur)

[g(J +1)]1/2 ZN( (1.4b)
d

— F„,+ m-g„, — G„, =O,

c
d [( o(Z(r)

+ nK+ F„,=0.
K

(2.3)

~M1. ~ M 1 C~M, (er )C~ „„(, ).
JM); JM (1.5)

By virtue of the spherical symmetry of the two-
electron ground state the matrix element M is
diagonal in the multipole indices,

JN1. J'M'1 —( /4 ) JJ MN 51 1 XZy (R) . (1.6)

In Secs. II and III we set up the theoretical back-
ground required for a numerical study of the multi-
pole amplitudes X~1(&u).

II. DHF EQUATIONS AND PERTURBATION EXPANSION

The second-order Rayleigh-scattering matrix
element and the dominant correlation corrections
are to be evaluated using DHF electron orbitals
constructed from the two-electron-ground-state
self-consistent potential. ' In this section we brief-
ly review the DHF procedure and describe the per-
turbation expansion of the S matrix based on the
DHF orbitals.

Let Z(r) =Z —Y(r) represent the "screened"
charge at a distance r from the nucleus. The DHF
equations for an electron with principal quantum
number n and angular quantum numbers [(=+(j+—,'),

In Eqs. (1.2)-(1.4) J and M represent the angular
momentum of the multipole field and A, =l (0) desig-
nates electric (magnetic) multipoles. The photon
frequency is denoted by u, as usual.

Employing the above multipole expansion for both
the incident and scattered photon we may extract
the dependence of Rayleigh scattering on propaga-
tion and polarization directions by writing

H, = -ie d'r y ~ A (2.5)

H, =-n d'r yYr r

Let us consider the perturbation expansion of the
S matrix using Eqs. (2.5) for the interaction Ham-
iltonian. To second order in e the matrix element
M determined from the Feynman diagrams of Fig.
1(a) is

For simplicity we designate the two-electron-
ground-state radial functions (n =1, M =-1) by
G, (r) and F,(r). The corresponding energy eigen-
value is designated by E'y and the four-component
Dirac orbitals are designated by u, (r) for m =+—,'.
The "screening" charge Y(r) may be written in
terms of G, and F, as

dr
Y(r) = dr'(G', +F21)+r, (G', +F', ) . (2.4)

0 r

Equations (2.3) and (2.4) are solved self-consis-
tently to give the radial functions G, (r), F,(r), and

Y(r), along with the eigenvalue e, . Having deter-
mined Z(r) =Z —Y(r), one may calculate other or-
bitals of the complete set of solutions to Eq. (2.1)
by numerically integrating Eqs. (2.3).

Since we include a screening correction in the
electron orbitals we must subtract a screening
counterterm from the quantum-electrodynamic in-
teraction Hamiltonian. In the following calculations
we adopt the Lorentz-gauge interaction Hamilto-
nian,

BI=Hi +Bc ~

M'„r, „r = Y j f d'r, d'r, [ (ar,r) a(dr, ) ad (r„r„r,ra)a ~ a (r,)a, (r, )
m= k 1/2

+u, (r, ) a a~zM(r, )SN(r„r„e, —(M)a1I M (r, ) ~ ou, „(r,)], (2.6)
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FIG. 1. Solid lines represent bound electrons and wavy
lines represent transverse photons, while the dashed
lines give the Coulomb interaction. The symbol x is
used to indicate the DHF potential. Diagrams (a) give
the second-order terms —coupling of the two electrons
to a Sp state is designated in (a) and understood. in the
remaining diagrams. Those terms in the fourth-order
8 matrix considered in the text are illustrated in dia-
grams (b), (c), and (d). The diagrams (c) are identically
canceled by the DEAF counter-terms in (d).

where the Feynman propagator S~(x„x„e)is de-
fined by

u„(x,)u~(x, ) g„(x,)M„{x,)
E. —f —2'g —6 +2'g)0 72 (O ll

n

(2.7)

VVe will describe the methods used to simplify Eq.
(2.6) in Sec. ill; before doing so, let us turn our

attention to the higher-order terms in the S matrix.
The effects of electron-electron interaction have

been partially accounted for by the DHF screening
potential in the one-electron orbitals [and there-
fore in S~(x„x„e)]. To study the remaining elec-
tron-electron effects we look at the next-order
terms in the perturbation expansion of the S ma-
trix.

We restrict ourselves to the Feynman diagrams
of Figs. 1(b)-1(d), involving one-photon exchange
and counterterm corrections to the amplitude. The
diagrams of Fig. 1(b) give those corrections for
which the absorbed and emitted photons are on dif-
ferent lines, while those of Fig. 1(c) involve both
photons interacting with a single electron line.
The diagrams of Fig. 1(d) arise from the counter-
term II, in the interaction Hamiltonian.

The electron-electron interaction mediated by a
single transverse photon consists of two parts, an
instantaneous Coulomb interaction and a retarded
Breit interaction. To simplify the algebra with
little sacrifice in accuracy we neglect the Breit in-
teraction in comparison with the Coulomb term.
Making use of expression (2.4) for P(r) one finds
that the contribution of the diagrams of Fig. 1(c)
cancel identically with those of Fig. 1(d). The re-
sidual correlation corrections are represented by
the Coulomb-interaction diagrams of Fig. 1(b).

In the above discussion we have neglected fourth-
order contributions such as electron self-energy
and vacuum polarization corrections. We expect
these neglected terms to be insignificant compared
with the correlation corrections discussed above.
Higher-order correlation corrections, which are
expected to be important at lower energies, are al-
so neglected —such corrections are contained
among the terms of the sixth- and higher-order S
matrix.

If we express the matrix element M as a series
in a—M =M' + mV'+ ~ ~ ~, where I' is given in
Eq. (2.6)—we then find from the diagrams of Fig.
l(b) a fourth-order matrix element:

d'x, d'x, d'x, d'x,
fx, -x, (

~~[4&
'"'su&: z'w'&'

u'2
m2= * u'2

x/[u, (x,)a „(x,) oS (x„x„e,+~)u, (x,)+u, (x,)S {x„x„e,—u)a „(x,) mc, (x,)]

x[Mlm (x3)SE(x3& x4& 6z +~)+ a«(x4)M'1m (x4) +Barn (xc) (x a«(x4) E(x4& xss Ez (a&)R& {x3)]

—[u, (x,)az.~ (x, ) oS~(x„x„e,+e)u, (x,)+u, (x,)S~(x„x„e,—&u)a~ „(x,) ou, (x,)]

@[M,~ (x,)Sr(x»x„e, ++)n a«(x, )u, ~ (x,)+u, ~ (x,)n a«(x, )S~(x„x» c, —v)u, ~ (x,)]j .

(2 6)
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The relative importance of the correlation cor-
rection M~4~ will be discussed in detail in Secs. IV
and V.

III. AUXILIARY FUNCTIONS AND MULTIPOLE
AMPLITUDES

To evaluate the expressions for M' and M" in-
troduced in Sec. II in a convenient way we intro-
duce a family of auxiliary functions w» (&u, x).
Following the procedure developed by Brown and
co-workers' ' to treat ~yleigh scattering in Hg
we set

la „(ta x)= f d x' S (x x', E, +Id)a'R (x')u, (x').

(3.1)

These auxiliary functions satisfy inhomogeneous
Dirac equations

[t(o —o)Z(x)/x —E~ —(d]Ã» (((), x) = o) ' a»Q~ (x) .

Additional functions I) ~» (—((), x) with &u - -u& and
o. ~ a»-a~„~ o. in Eqs. (3.1) and (3.2) are also re-
quired The. auxiliary function au~» (v, x) has an
obvious physical significance; it is the perturba-
tion of the Dirac orbital u, (x) caused by the multi-
pole component JMA, of the absorbed photon;
tv~„„(-&u, x) is the perturbation caused by the emit-
ted photon. We refer to these auxiliary functions
occasionally as perturbed orbitals.

The inhomogeneous differential equations (3.2)
may be reduced to a form suitable for numerical
evaluation. To simplify the numerical work near
~ =0, we replace the inhomogeneous driving term
n ~ a~» on the right-hand side of Eq. (3.2) for the
electric case (A. =1) by a mathematically equivalent
expression:

~ 'aJ~-~m+ ~ 'c J~~

where

lar-momentum states ~z—„—((&, r). These new
auxiliary functions ~~—„—(&, r) are again solutions
to inhomogeneous Dirac equations; they may be
expanded in a spherical basis as

iS~~—+, x n —„-z
r (T~~—„(ur, r)Q —,—(")f

'

The expression for ~J„ in terms of ~J—,—is

(3.4)

The corresponding expansion coefficients are

.

( ()„,), —; )(J+1)(2J+)) )')'
4))(2j +1)Z

xc(-,' Jj;—,'0)c(-,' Jj;mMm ) .

(ii) For a magnetic perturbation (& =0) with
photon angular momentum J, M, the perturbed
orbital quantum numbers K j m are

K=J+1, j =J+-,', l=J+1, m=m+M;

K= —J, j =J —2, l=J-1, m=m+N.

The expansion coefficients in this case are

i (7( —1) )~,, g, —,. )( 2(2 Jp1)
[&(&+1)]'~' ( 4w(2 j +1)

xc(-,' Jj;—,'0)c(-,' Zj; mMm ) . (3.6b)

The radial functions S~-, and T~~ „of Eq. (3.4-)

satisfy inhomogeneous radial Dirac equations

~,"„.(~, r) = g, (3.5)
K teal

where the expansion coefficients c-„—are limited
by the following selection rules.

(i) For an electric perturbation (A. =1) with photon
angular momentum J, M, the perturbed orbital
quantum numbers K, j, m are given by

K=- J-1, j =J+-,', l =J, m=m+M;

KJ j J --,' l J mm+M.

(de fur)c»(r) =
(~(~ 1)]„,r" Y»(r}.

(3.3)

T —(+ &u r)
c

K
JK

m- c~ 7- & — SJ— + (d, f' =g J + (d, g
o)Z (r)

To show that substitution (3.3) leaves the second-
and fourth-order matrix elements unchanged, it is
necessary to substitute Eq. (1.4b) into Eqs. (2.6)
and (2.8) and to perform partial integrations. The
resulting expressions are formally identical to
Eqs. (2.6) and (2.8), with o. ~ a,» replaced by the
expression given in Eqs. (3.3).

With the above substitution in mind we may
expand the functions M)z„((d, r) in terms of angu-

(K;(~M, r)) f'E, (r))
I 1.~0(z&u, r)) ~

(G, (r)f ' (3.8a)

( + — S~-„(+~, r)

m+c, +M+ TJ—„y ro, y = —I'rZ (+)

(3.7)

with inhomogeneous driving terms given by
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(~&)l
G

I ~ (s.8b)

Substituting the perturbed orbitals from Eqs.
(3.1) and (3.5) back into the expression (2.6) for
the second-order matrix element and carrying
out the sum over magnetic quantum numbers, we
arrive at a remarkably simple expression for
the second-order multipole amplitudes:

X', (rr)=2
d Sd )[R,(-d —), rr) R (-d-), -rr)]

Sd 1[R (d, rr)+R (Z, —rr)]),

Xr,',r
( )=2( d [R,(-d, )rR, (-Z, —rr)]+ [R(drl, , rr)+ R( d+ ), —rr)]),

(3.9a)

(s.ob)

where the radial integrals Rz(7c, a(d)) are given by

R~([(:,war) =
I

dr[S~ „(~&-u, ] )K~~(+&a, x)+T~ „(~&a,-~)L~~(s&u, r)] (3.10)

for both values of ~: ~=0 and ~=1.
Equations (3.7) are solved numerically for

various values of , and the radial integrals
(3.10) are then carried out. The resulting values
for the second-order amplitudes are discussed
in Secs. IV and V.

We may evaluate the fourth-order correlation

I

correction given in Eq. (2.8) in terms of the aux-
iliary functions also. Substituting Eqs. (3.1) and

(3.5) into Eq. (2.8) and carrying out the summa-
tions over magnetic quantum numbers, we find
the following expressions for the fourth-order
multipole amplitudes:

d) 2o,(J+1) 2(J+1) 2J

J+1+,[f)]~(-J—1, (2); —J—1, (2)) + [Q]~(-J —1, -(();—J —1, -(2))]

J—(2J~1)2[Qz(J && J &)+(2)g(J -&;J, -&)]

4J(J+1)
+ (Sd, )), IQ (d rr; -2-1, rr)+Q, (d, -rr;-d-), -rr)[),

XzQ=2J 1
Re 2J 1[Cd 2(-J, ~;-J, ~)+Qg, (-J, -~;-J, -(u)+2q, ,(-J, (o;-J, -(u)]{@ 2Q J+ 1

(3.11a)

J
+ [Qr„(drl, rrdrl, rr)+Q. ..(dr), -rrdrl, -rr)r&Q„, (Z+l, rrd+l, -rr)I).

(3.11b)

The Slater-type radial integrals (2]~ appearing in Eqs. (3.11) are defined by

~L
Q~(e, &u; g', ar) =

I dr dr»2'„[S (&~u)G, +T~ „(~)F2]2[S~,.(~)G, + T~ „(&u)F2]2,
J

~L
(rtdQ'll, —I)=ff rd, r, dr, ', , [2,', ( )G, r,', (rrr)R, ]r,[S",( r)G, ~ r „(r-rrr)R,], , -

Qg (K& —(2)& K& (2)) = qy (K& (2) & K& -(2))
&

Q (r;-rr;&', —rr)=Jf r—dr', ,d[S",, (—rr)G, +r „(-rr)R] [Sr, , (-rr)G, ~ r"„',(-rr)R [, .

(3.12a)

(S.12b)

(3.12c)

(3.12d)

The entire amplitude to the order considered is
given by

x~), ((u) =x~e'), ((o) +x(~d)„((u) .
The most difficult numerical step encountered

in evaluating the Rayleigh-scattering amplitude is
the numerical solution of the radial differential
equations (3.7). Once this step is accomplished
one may evaluate the amplitude to second order by
computing the radial integrals of Eq. (3.10), and
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determine the fourth-order correlation correc-
tions by performing the radial integrals of Eqs.
(3.12). In Secs. IV and V we shall discuss the re-
sults of our numerical studies in detail.

IV. SCATTERING OF PHOTONS WITH ENERGIES BELOW

PHOTOELECTRIC THRESHOLD

Let us consider low-energy photons: photons
with energies +& m —e„ the photoemission thresh-
old. In this low-energy region the scattering am-
plitude is real. The amplitude has poles at photon
energies ~=a, —e„, the orbital eigenvalue differ-
ences. The reality of the amplitude and its singu-
larity structure can be inferred from the behavior
of the solutions to the perturbed orbital equations
(3.7).

The multipole amplitudes X~„(~) are convenient-
ly expressed in terms of frequency-dependent elec-
tric and magnetic susceptibilities in the low-fre-
quency region. Let a~(v) represent the electric
2~-pole susceptibility and y~(v) the corresponding
magnetic susceptibility. We may write

J( ) g(2g 1)t ) (2g I)t )
1 g$( )

&Xz(&) (~+ I)~" (X .(~)

Since the amplitudes X~„(co) grow as aP~ at low
frequencies, it follows that the susceptibilities
n~(&u) and y~(&o) approach finite limits as ~- 0.

Corresponding to the decomposition of X~ q(~)
into a second-order DHF part and a fourth-order
correlation correction, there is a parallel decom-
position of the susceptibilities. The evaluation of
susceptibilities to second order by the methods
outlined in Sec. III has been considered previously
in Ref. 6(a). It has been established in Ref. 6(a)
that the second-order calculation of susceptibili-
ties is the generalization to the Dirac theory of
the nonrelativistic uncoupled Hartree-Pock (HF)
techniques. The fourth-order perturbations give
correlation corrections to these HF calculations.
Before presenting our numerical results let us
digress slightly to discuss the relation between
our fourth-order calculation and the coupled
Hartree-Fock (CHF) technique for calculating sus-
ceptibilities.

As a specific example let us examine the electric
polarizability n, (&u) If w.e factor —', ~ from Eq.
(3.8b) and neglect terms of order (&or)' we obtain
the following system of equations for n, (&o):

o., ((u) =-,'a( —', [R(-2, (u) +R(-2, -a))]+-,'[R(1, u)) +R(l, -(o)]

——,
' o.1-, Q(-2, (o; -2, -(u) + -', Q(1, (o; 1, -(o) + -'[Q(-2, (u; -2, (o) + Q(-2, -(o; -2, —~)]

—-'[Q(1, (o; 1, (o) + Q(1, -(c&; 1, -(o)] + -'[Q(1, (o; -2, (o) + Q(1, -(o; -2, -(u)] j), (4.2)

where

R(z, +to) = t drr[G, S„(+v,r)+F,T,„(+&a,r)] (4.3)
0

uated numerically, and o,,(&o) is determined from
Eq. (4.2).

As an alternative we can consider the Dirac ver-
sion of the CHF scheme. In the CHF scheme we

use the following simpler expression for o,(m):
and

Q(K, &u; g', v') =
t dr, dr, 2' [G,S,„(v)+F,T„(v)],

o.,(~) =an(3[R(-2, ~)+R(-2, -~)]
+-', [R(1, u)) +R(1, -(u)]],

with

(4.6)

x [G,S,„,( ') +E,T„,(u&')], . (4.4)

The functions S~, and T~„of course satisfy Eqs.
(3.7); however, the driving terms given in Eq.
(3.8b) are now replaced by

(sc,lr)) (a, (r))
(4.5)

The procedure employed to calculate the electric
polarizability is first to solve Eqs. (3.7) numeri-
cally using the driving terms given in Eqs. (4.5)
above. The integrals (4.3) and (4.4) are then eval-

R(g, +~) = t drr[G, S~„(+~,r)+E,T~„(+~,r)].
0

(4.7)

Equation (4.6) for o.,(u) contains only the second-
order terms of Eq. (4.2), and the integrals R(v, +&u)

in Eq. (4.7) are identical in form to the correspond-
ing second-order expressions of Eq. (4.2). The
functions Sz, and Tz„of Eq. (4.2) are now replaced
by more complicated functions S~, and T~„. These
modified radial perturbations S~, and T~, satisfy
the inhomogeneous differential equations (3.7);
now, however, the driving terms (3.8b) are re-
placed by the rather involved expressions



(4.8a)

(
2 I', (1, (u;~) 1 I',(-2, ~;~)

, 1.,(r) . 9 r 9 r
1 Y,(-2, -u);r) G, (r) )
3 r F,(r) f'

(4.8b)

The functions I,(z, ~;x) of Eqs. (4.8) are given by

n, (~), which includes the fourth-order correla-
tion corrections as well as some —but not all —of
the sixth- and higher-order corrections.

We can of course write down similar sets of
equations for electric and magnetic susceptibili-
ties of higher multipolarity. Moreover, the solu-
tions to the inhomogeneous Dirac equations may be
used to determine electric and magnetic shielding
factors as well as susceptibilities. To illustrate
these remarks we list in Table I values from the
second-order, fourth-order, and CHF calcula-
tions of several static (o& =0) susceptibilities and
shielding factors„and compare our values with
previous nonrelativistic calculations.

In the low-frequency region the Rayleigh-scatter-
ing cross section is dominated by the single multi-
pole amplitude X»(a&) or, equivalently, by the elec-
tric polarizability o., (a&). We may write

dA
—= -', (1+cos'0)(o'[o. ,((u) ]' (4.10)

+r' dr —,[s,„(+(o)G, + T„(+(u)E,].1

(4 9)

The inhomogeneous differential equations (3.7) in
the CHF scheme become integro-differential equa-
tions which can be solved numerically by iterative
techniques, , A single iteration of Eqs. (3.7) using
the driving terms (4.8) with all of the F, functions
set to zero givesthe second-order resultsfor n, (&u)

alluded to previously. Continuing the iteration
procedure one step further, using the results of
the first iteration to evaluate the functions
I', (a, +re, r), and then solving Eqs. (3.7) for 5„,
I'„yields exactly the results of our fourth-order
calculation of Eqs. (4.2). By continuing the itera-
tion of the CHF equations until self-consistent solu-
tions for S„and T„are obtained we arrive at

as an accurate low-frequency approximation to the
differential cross section.

In Fig. 2 we plot theoretical values of n, (&o) in
the second-, fourth-, and CHF approximations to-
gether with semiempirical values for n, (&u) The.
theoretical values of a, (u&) given here are in close
agreement with previous nonrej. ativistic calcula-
tions. ' Our second-order calculation is 5-10%
larger than the semiempirical susceptibility,
while our fourth-order values a.re 5-10% too low.
The CHF calculation improves the fourth-order
values only slightly. We conclude that the present
fourth-order perturbation theory gives the correct
order of magnitude of the correlation corrections,
but that a precise determination of correlation ef-
fects requires a careful evaluation of sixth- and
higher-order terms in the S matrix.

TABLE I. Static electric polarizabilities n& and e2, the magnetic susceptibilities X~ and X2,
and the electric shielding factors y ~ and y 2 are compared with nonrelativistic values. All
values are in atomic units. Numbers in parentheses represent powers of 10.

Second order Including fourth order CHF
Nonrelativis tie

HF CHF

1.48"
2.36

-2.103 (-5)

1 ~ 322
2.326

-2.103 (-5}

1.294
2.325

-2.103 (-5)
7.896 (-5)

2.33'

1.00'
0.397

1.000
0.3962

1.487
a, 2.359

-2.103 (-5)
6.356 (-5)
1.236 1.23
0.4206 0.417

' The second-order results are consistent with those obtained in Ref. 6(b).
A. Dalgarno, Adv. Phys. 11, 281 (1962).
From one-electron integrals computed by E. Clementi, C. C. J. Roothaan, and

M. Yoshimine I Phys. Rev. 127, 1618 (1962)j.
A. Dalgarno, W. D. Davison, and A. L. Stewart, Proc. R. Soc. Lond. A 257, 115 (1960).
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V. SCATTERING OF PHOTONS WITH ENERGIES ABOVE
PHOTOELECTRIC THRESHOLD

4-
n O
U

0 3-

I I I I I I I I I

0 2 4 6 8 l0 l 2 I 4 I 6 I 8 20
&o (eV)

FIG. 2. Present second-order calculation is found to
overestimate the low-frequency susceptibility n&(~),
while addition of the fourth-order correlation correction
gives results which are too small. The CHF results
which include some —but not all —of the higher-order
correlation effects improve the fourth-order results
only slightly. The experimental values are taken from
the semiempirical formula of Dalgarno and Kingston
(Ref. 8). The disagreement for & 14 eV is due partly
to the inadequacy of the semiempirical formula at this
high frequency.

rex Mx+ere', Mr

where the amplitudes Mx and M„are given in
terms of the multipole amplitudes Xz&(&o) by

(5 1)

There are two characteristic modifications in
the behavior of the multipole amplitudes XJ q(&u)

which occur in the high-energy region ~& m —q, .
First, the solutions to Eqs. (3.7) for the perturbed
orbitals become complex; consequently, the mul-
tipole amplitudes are complex above threshold.
Second, more and more multipoles contribute as
energy increases; the description of Rayleigh scat-
tering in terms of the electric polarizability is no
longer adequate.

An expression for the Rayleigh scattering of po-
larized photons in terms of the multipole ampli-
tudes has been derived in Ref. 6(a). If the polar-
ization vectors of the incident and scattered pho-
tons (e, e') are decomposed in the two coordinate
systems X, Y, Z and X', Y', Z' shown in Fig. 3, then
we may write the scattering matrix element M, in-
troduced in Eq. (1.1), as

(5.2a)

oo

J =1
(5.2b)

In Eqs. (5.2), P~(cose) is an associated Legendre
function (Pz =Pz).

The optical theorem relates the imaginary part
of the forward-Rayleigh-scattering amplitude to
the photoelectric cross section, above the photo-
electric threshold. From Eqs. (5.1) and (5.2) we
find

iEh

(5.3a)

=—Im Q (2Z+1)[X„((u)+X„((u)].

(5.3b)

It is apparent from Eqs. (3.11) that the fourth-
order correlation corrections are real, even
above threshold; it follows that only the second-
order part of X~~(&o) contributes to the photoelec-
tric cross section in Eqs. (5.3).

In Table II we list values of the second-order
multipole amplitudes X'z'z(u&) determined by the
numerical procedures outlined at the end of Sec.
III. We limit the number of multipoles tabulated
at each energy to the number needed to obtain am-

FIG. 3. Axes X, l; Z are attached to the incident
photon (k ~~Z}, while X', Y', and Z' are attached to the
scattered photon (k'~(Z'}. The outgoing photon is in the
X& plane, while Y' is assumed parallel to F. The vec-
tors &and ' are the polarization vectors of the incident
and scattered photons, respectively.
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TABLE III. Fourth-order multipole amplitudes Xz&(cu) in atomic units. Numbers in paren-
theses represent powers of 10, which are adjusted to agree with those given in Table II. Col-
umn headings are in the format (J, A,).

co (Ry) (1, 0) (2, 1) (2, 0) (3, 1)

5
10
20
30
40
50
60
70
80
90

100
200

-0.100 (-2)
-0.034 (-2)
-0.010 (-2)
-0.042 (-3)
-0.023 (-3)
-0.014 (-3)
-0.010 (-3)
-0.007 (-3)
—0.005 (-3)
-0.004 (-3)
-0.003 (-3)
-0.001 (-3)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—0.110 (-7)
-0.017 (-6)
-0.018 (-6)
-0.002 (-5)
-0.002 (—5)
-0.001 (-5)
-0.001 (-5)
-0.001 (-5)
-0.001 (-5)

0.0
0.0
0.0

0.133 (-11)
0.018 (-10)
0.002 (-9)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0.003 (-9)
-0.001 (-8)
-0.001 (-8)

0.0
0.0
0.0
0.0
0.0
0.0
0.0

do' = —,'r', (1+cos'6) iE(q) i', (5.4)

plitudes M~ and M~ accurately to one part in 10'.
In Table III the fourth-order correlation correc-
tions X~+4'„(e) are listed with a similarly limited
format.

Several comments are in order regarding Ta-
bles II and III. First, it should be noted that the
imaginary parts of the amplitudes are rapidly de-
creasing functions of frequency compared with the
real parts. As a consequence the entire amplitude
is effectively dispersive (real) above 100 Ry. Sec-
ond, it can be seen that for all frequencies con-
sidered the imaginary part of the magnetic-dipole
amplitude vanishes; this fact can easily be under-
stood in terms of the nonrelativistic behavior of
Eqs. (3.7) for X =0, 8=1, discussed in Ref. 6(b).
Third, the fourth-order amplitude, like the imag-
inary part of the second-order amplitude, is a
rapidly decreasing function of frequency, indicat-
ing the appropriateness of treating Rayleigh scat-
tering at high frequencies without concern for cor-
relations.

In Table IV we list for each of the energies con-
sidered (a) the number of multipole amplitudes re-
quired in the calculation of the second-order cross
section, (b) the fourth-order correlation correc-
tion, (c) the resulting theoretical Rayleigh-scatter-
ing cross section, and (d) the photoelectric cross
section derived from the optical theorem using Eq.
(5.3b).

In Fig. 4 we present angular distributions for
several frequencies for Rayleigh scattering from
He computed using the second-order amplitude,
the second- plus fourth-order amplitude, and the
"form-factor" approximation. ' " This latter ap-
proximation is simply the Thomson cross section
modified to account for the momentum distribution
of bound electrons. Specifically, we have

with

E(q) =2 dr (G', +F', )jo(qr),
0

where q = ~k —k' ~. We see that the form-factor
angular distribution is indistinguishable from that
calculated from the second-order theoretical ex-
pressions for v =100 and 500 Ry; furthermore,
we see that the correlation contributes negligibly
in this high-energy range. The remaining illustra-
tion in Fig. 3 for (d =10 Ry shows the importance
of correlation, and the inadequacy of the form-fac-
tor approximation, at lower energies. The fact

cu (H,y) J 0 tot 0'pe

5
10
20
30
40
50
60
70
80
90

100
200
300
400
500

3.889
3.247
2.890
2.769
2.702
2.652
2.607
2.563
2.519
2.472
2.423
1.865
1.346
0.968
0.714

0.616
0.206
0.055
0.024
0.013
0.008
0.005
0.004
0.002
0.002
0.002
0.000
0.000
0.000
0.000

4.505
3.453
2.945
2.793
2.715
2.660
2.612
2.567
2.521
2.474
2.425
1.865
1.346
0.968
0.714

9.024 (5)
1.454 (5)
2.037 (4)
6.100 (3)
2.536 (3}
1.270 (3)
7.163 (2)
4.396 (2)
2.872 (2)
1.968 (2)
1.401 (2)
1.453 (1)
3.780
1.448
0.694

TABLE IV. Theoretical second-order cross sections,
fourth-order correlation corrections, and the resulting
cross sections, including correlation, are tabulated
together with a~„ the photoelectric cross section derived
from the optical theorem. The column labeled J gives
the number of multipoles used at each energy. Cross
sections are given in b, and numbers in parentheses
represent powers of 10.
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cu = lO Ryd
a) = IOO Ryd au = 500 Ryd

0
0

——----- Form Factor
e ~o~a

2nd+ 4th

60 90 I 20 I 50
8 {degrees)

I 80 0
0— I I I i I

I I

O SO 6O 9O IZO ISO I8O
8 (degrees)

FIG. 4. Comparison of the second-order, fourth-order, and form-factor calculations of the Rayleigh-scattering dif-
ferential cross section at different energies. For ~ =100 and 500 By, the fourth-order correlation corrections are in-
significant and the resulting differential cross section is indistinguishable from the form-factor approximation.

that the form-factor approximation is such a good
approximation at high energies is due to the low g
of the atom under consideration (He; Z = 2). For
higher-g atoms, substantial modifications to the
form-factor behavior are expected at high ener-
gle s.

In summary, the angular distribution of Rayleigh
scattering for He varies smoothly between a dipole
shape characterized by the electric polarizability
at co =5 By and a distribution given by the Thomson
cross section modified by an atomic form factor
above co =100 By.
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