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Energy-loss distributions of 4y Th, g,Pb, gHg, and Gd after passage through hydrogen
are reported in the energy interval 100 <E <500 keV. The first three moments were ex-
tracted and compared with theoretical values of Lindhard ¢ al. and reasonable agreement
was obtained. Calculations of the energy-loss distributions were performed for the case
where the projectiles lose their energy by elastic collisions with target atoms. Examples
of calculated distributions are shown together with measured distributions.

INTRODUCTION

The present paper is part of a more extensive
experimental investigation of energy loss and en-
ergy straggling suffered by keV ions penetrating
gas targets.’ The other parts of the work have
been published previously.?’3

The energy loss of ions with a velocity v<0.1
Xv,Z%3, where v, is the Bohr velocity and Z,
the atomic number of penetrating ions, is due
mainly to elastic collisions with target atoms. A
theoretical treatment of energy loss and energy
straggling in these so-called nuclear collisions
was presented by Lindhard et al.* Rather few
measurements of stopping cross sections exist
in the region where nuclear stopping is the domi-
nant mode of energy loss. Sidenius® measured
stopping cross sections and energy straggling in
hydrogen for various heavy ions 26<Z,<92 in the
20-50-keV energy interval. Zahn,® Marx,” Poole
et al.,® and Hancock ef al.? determined the energy
loss of a-recoil particles in carbon foils; Hog-
berg!® reported energy-loss measurements from
which the nuclear stopping was extracted. Re-
cently, Sidenius'! has reported energy-loss mea-
surements for light ions in methane.

When the projectile mass M, is of the same
order or smaller than the mass of the target atom
M,, the distribution in nuclear energy loss may
depend strongly on the angle between the initial
beam and the direction of observation. In this
respect, the situation is simpler for heavy pro-
jectiles and not-too-thin targets, and it was there-
fore decided to investigate nuclear stopping for
heavy ions penetrating a hydrogen gas.

Energy loss of a charged particle in random
matter is a statistical phenomenon in which the
collisions responsible for the loss are indepen-
dent events. Often only the average value of the
resulting energy distribution is measured. How-
ever, in the following we shall investigate the dis-
tributions in more detail and make comparisons
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with theoretical predictions.

Measurements of the first three moments in
the energy-loss distribution are performed on
oTh, &Pb, ; Hg, and ,,Gd in H, gas in the energy
interval between 100 and 500 keV. In a few cases,
the complete distribution is calculated as de-
scribed below, and these theoretical distributions
are compared with measurements.

THEORY

The slowing-down process has been described
by Bohr,'? who showed that the mean energy loss
and the mean-square deviation of the energy dis-
tribution after passage through a target of thick-
ness AR can be expressed as

(AE)=NaR [ Tdo(T). &)
and
(AE - (aB)) =02=NaR [ T2do(1), @

where do(T) is the differential cross section for
an energy transfer in the interval (7, T +dT) and
N is the number of atoms per unit volume. Itis
assumed that do(T) is approximately constant on
the pathlength AR, i.e., (AE) <E,, where E, is
the initial energy.

As shown by Bohr, the energy losses will be
distributed according to a Gaussian,

W(AE) = (21Q2)" Y 2exp[ - (AE - (AE))2/202], (3)

provided >T,, T, being the maximum energy
transfer in a single collision. The energy-loss
distribution in Eq. (3) is fully characterized by
the two parameters (AE) and Q. If the condition
Q>T, is not fulfilled, one must have recourse to
a more general method for obtaining the energy
distribution. As described by Landau,'® the gen-
eral kinetic equation for the energy-loss distri-
bution of particles having traversed a layer of
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matter of thickness AR can be written in the follow-
ing form,

oW(AE,NAR) (1

~W(AE,NAR)|do(T). (4)

Here it is also assumed that we are in the so-
called “thin-absorber” approximation where do(T)
is independent of AE. The upper limit of the inte-
gration may be chosen as « since W(AE,NAR) =0,
for AE <0 and do(T)=0, for T>T,,.

Landau®® solved Eq. (4) by making a Laplace
transformation with respect to AE and obtained

1 iw+g
WE,NaR)=z— [ ap
xexp[I)AE—-NAwa(l—e‘”’)do(T)].
0

(5)

The integration over p on a straight line parallel
to the imaginary axis is to be performed for a
positive value of o.

Lindhard et al.* argue that the elastic interaction
between two atoms can be derived from a potential,

V() =(Z,Z,e2/r)o,lr /a), (6)

where ¢, is the Fermi function belonging to an
isolated atom and a=0.8853a,(Z%%+2%3)"Y/2, Here
a, is the Bohr radius and Z, and Z, are the atomic
numbers of the projectile and target, respective-
ly. This type of potential is shown to lead to a
differential cross section,

do = —Ta? (dt /2623 F(1?) (7
where
2
. TE#(%?.) , ®)

E being the projectile energy and f(t*2) tabulated
in Ref. 4.

Lindhard et al.* also consider other potentials,
among which the ILenz-Jensen static potential
will be used in the present calculations. Equation
(6) is, however, still valid in this case, but f has
to be derived for each potential used. For the
present purpose, f has been approximated by the
analytical expression,

f(x) =§x”2(0.48 +.x3/3.2)-1.6 s (g)

when the Lenz-Jensen potential is used. The
values of f(x) calculated from this expression
agree to within 2% with those reported by Lind-
hard et al.*

On the basis of the differential cross section in
Eq. (7), a reduced stopping cross section and

straggling can be expressed in dimensionless
units for energy, range, and mass, €, p, and y
respectively, where

aM E
ZlZzez(M1+M2) ’
p=4ﬂa2M!Mz
(M, +M,)?
and

€= 10)

NR, (11)

4M M,

YT, M) a2)

The reduced stopping cross section is given by

t1/2)
se)= —2€ 72_ 13)

and the straggling by
€2

w(e) = 5%2’ f t2f (Y 2) dt . (14)

s(e) and w (€) corresponding to the Thomas-Fermi
screening function ¢, are tabulated in Ref. 4. The
connection between the measured values (AE)/AR
and £2/AR and the corresponding reduced quantities
is given by the relations

s(e) =422 s (15)
and
w35 (5) 55 (16)

As can be easily shown, the third moment of
the energy distribution can also be expressed as
an integral over energy transfer in the following
simple way,

2= ((AE - (AE)" =NAR [ Todo, (17)

or in dimensionless units,
2

a(e)=%f€ B2 (112) d (18)
0

This reduced quantity is related to Z3/AR through
the equation,

(VR L
a(e)—AR<E> IR 19)

With the cross section (7), we can solve ex-
pression (5) for the energy-loss distribution (see
Appendix), and in dimensionless units we obtain

Wae, ) =1 [ expl-(/7) AW)]
Xcos[yae - (o/¥)C(y)]dy, (20)

where
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A(y)=2 fssin2<%t—2y> %le dx (21)
and 0
C(y):fesin (Y—jiy> f—i?—dx. 22)

Kessel’man'? considered the same problem,
including the effect of multiple scattering, and
Vavilov,'® Seltzer and Berger,® and Shulek et al.'”
solved Eq. (5) using the Rutherford-scattering
cross section for collisions with the target elec-
trons.

EXPERIMENTAL PROCEDURE
AND EXTRACTION OF DATA

Since the details of the experimental procedure
were presented in a previous paper,? only a brief
description will be given here. The ions were
produced in the Aarhus 600-keV heavy-ion ac-
celerator and selected in a 75° sector magnet.
After deflection, the ions passed through a 828
+1 mm long differentially pumped target chamber
(Fig. 1).

By means of an analyzing magnet, the energy
distribution of the emerging ions was determined.
Detector D counted neutrals and was used for
normalization, and thus fluctuations in the beam
current did not influence the measurements. The
incident energy E; was also determined by means
of the analyzing magnet with no gas in the target
chamber. The energy resolution of the analyzing
system was ~0.1%. The commercial supplier
stated the purity of the H, gas to be 99.9994%.

The energy spectra obtained were analyzed in
terms of moments. Let us first consider the
simple situation in which the energy distribution
is a Gaussian. In this case, (AE) is the energy
difference between the peak values of the energy
distribution measured with and without gas in the
target cell.  is given as (1/2.36) X FWHM (full
width at half-maximum) of the distribution mea-
sured with gas in the target cell. No correction
was made for the width of the primary peak be-
cause it was less than 1% of the width of the en-
ergy distribution after penetration.

For asymmetric energy distributions, the mo-
ments P,=(AE), P,=Q? P,=%%were found from
the following expression by numerical integration,

_[” AE W(AE) d(AE)

Py= T WAE) d(aE)

p = fom(AE - (AE))" W(AE) d(AE)
" ["W(AE) d(AE)

, n=2. (23)

The stopping cross section is given by S=(AE)/

y
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FIG. 1. Diagram of the apparatus.

NAR at the energy E=E; - 3{AE), and at the same
energy, the straggling is given as Q?/NAR.

The nonsystematic errors are ~3% in the gas-
pressure measurements and ~1% in the temper-
ature measurements. Systematic errors are due
to uncertainties in target length (0.5%), in McLeod-
gauge calibration (0.4%), in magnetic field (0.5%),
and in energy (0.1%). The uncertainty is therefore
estimated to be ~5% for S and ~10% for Q2/NAR.

DISCUSSION AND RESULTS

The results can conveniently be divided into two
groups, one corresponding to >T,, and one to
QsT,.

For >T,, the energy-loss distribution is ex-
pected to be Gaussian and experimentally it was
found that whenever Q= 2T, this is indeed the
case.

In the experiment, only the central cone of the
transmitted beam was energy analyzed. The ac-
ceptance angle was normally smaller than the
root mean square of the angular distribution, but
as shown by Sidenius,® the energy loss is inde-
pendent of the acceptance angle as long as the
energy distribution is symmetric (also see below).

Figure 2 compares the theoretically predicted
stopping cross sections with the values measured
here and with those obtained by Sidenius. The
three theoretical curves represent nuclear stop-
ping calculated from a Thomas-Fermi potential
and from a Lenz-Jensen potential and the total
stopping as the sum of Thomas-Fermi nuclear
stopping and electronic stopping. The latter is
found from the formula,

= -0.1€2, (24)

(see, e.g., Lindhard ef al.'®). It is noted that in
the present € range, the electronic contribution
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FIG. 2. Reduced stopping

cross sections s as a func-
tion of €. Fully drawn
curve corresponds to the
Thomas~Fermi potential,
dashed curve to the Lenz-
Jensen potential, and dash-

° «® <~ - e Pb dot curve to the sum of nu-
015F - \LJ = Hg _ clear- (TF) and electronic-
v Gd stopping cross section (see
o Pb SIDENIUS text). The points are ex-
| 1 1 | L1114l ] 1 ) perimental values.
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to the total energy loss is estimated to amount to
less than 10%. It is assumed that the hydrogen
molecule acts as two independent hydrogen atoms,
an assumption which seems justified by the facts
that the collision time is ~1073 times a typical
vibration time for a H, molecule and that the inter-
action potential is mainly determined by the heavy
collision partner.

All of the experimental points fall from 10% to
30% below the theoretical curve for the total
stopping cross section. Deviations of this order
of magnitude between theory and experiment have
also been found by others®™'° for various pro-
jectile-target combinations. The results for Pb
and Hg are seen to agree very well with the theo-
retical curve calculated from the Lenz-Jensen
potential. At 60 keV, the present value for Pb
is 25% lower than the one reported by Sidenius.®
This rather large discrepancy has not yet been
understood.

Any interaction potential of the form V(r)
=(Z,Z,e*/r)u(r/a) leads to a universal function
s(€). Thus all of the experimental points should
fit a single curve in a plot of s(€) vs €, irrespec-
tive of the projectile-target combination. Obvious-
ly this is not the case as the points scatter much
more than the experimental errors. Besides a
possible failure of the similarity approximation,
the reason may stem from differences in the in-
elastic energy loss. Oscillations in the inelastic
energy loss as a function of Z, have been observed
by several authors, see, e.g., Ref. 19. It has
been demonstrated that the amplitude in these
oscillations increases with decreasing projectile
velocity. It has further been found that the ampli-
tude in these oscillations is ~50% of the theoretical
value at velocities ~3 times as large as the pres-
ent ones. It is therefore reasonable to assume
that the large stopping-power value observed for
Th is caused by a larger -than-average contribu-
tion from inelastic collisions.

Figure 3 shows the experimental straggling
values together with the theoretical curves, based
on the Lenz-Jensen and the Thomas-Fermi models
of the atom. For comparison, also Sidenius’s
experimental values for Pb®% are shown. It should
be noted that the theoretical curves agree rather
well with the general trend of the experimental
data, and within the experimental uncertainty,
the measured points lie on a single curve. This
indicates that in the present energy range, the
similarity may be a better approximation for the
more violent collisions which dominate the energy
straggling. This was to be expected since the
similarity is exact in the limit of an unscreened
Coulomb potential.

For = T,, the problem is more complicated
for two reasons. First, the energy distribution
is no longer fully characterized by the two param-
eters (AE) and . Second, the energy distribution
in the forward direction is not always the same
as the distribution obtained when all of the trans-
mitted particles are counted since ions suffering
large energy losses are more likely to be scat-
tered through large angles than are ions which
have only experienced soft collisions.

However, if the angular distribution of the entire
transmitted beam is well described by a Gauss-
ian, the energy distribution is expected to be in-
dependent of the acceptance angle of the analyzing
system. This is so since a Gaussian is obtained
when the angle of emergence of a particle con-
tains no information about the deflection experi-
enced by the particle during penetration.

The mean-square deviation of the multiple-
scattering distribution of ions emerging from a
target is given by

Pm
W¥=NAR j @3do, (25)
0

where do is the cross section for angular deflec-
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FIG. 3. Reduced energy straggling as a function of .
The symbols are the same as those used in Fig. 2.

tion in the interval (¢, ¢ +dg) and ¢,, is the maxi-
mum deflection in a single collision.

A Gaussian energy distribution is obtained for
Q>T,. Similarly, the deflection results in a
Gaussian angular distribution for ¥>¢,,.

It can easily be shown® that the target thickness
required to give a Gaussian angular distribution
is smaller than that required for a Gaussian en-
ergy distribution. Thus, in an intermediate re-
gion of target thickness, the energy distribution
is expected to be asymmetric but independent of
the acceptance angle. In this region, a few mea-
surements were performed, and Figs. 5 and 6
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FIG. 4. Third moment in reduced units as a function

of €. Fully drawn curve corresponds to the Thomas-
Fermi potential. Experimental values for Ag in H, and
Th in He are also included.

I ARB. UNITS

6 20 30 40 B0 60 70
AE (keV)

FIG. 5. Energy-loss distribution of 300-keV Pb ions in
4.51 x 101" molecules/cm? hydrogen. Fully drawn curve
is calculated from Eq. (20), using a Lenz-Jensen poten-
tial. Dashed curve is the measured distribution.

show that asymmetric energy distributions were
indeed obtained. Stopping cross sections and
straggling were evaluated from the curves, and
the values agreed well with the corresponding
values measured for thicker targets. This indi-
cated that the energy distribution in the forward
direction was the same as the energy distribution
of the entire beam. In order to further check this
assumption, the third moment was also extracted
and compared with theory since higher moments
will be more sensitive to the escape of ions having
suffered violent collisions. Figure 4 shows that
even the measured third moment agreed with the-
ory within the experimental error. It should fur-
ther be noted that the Lenz-Jensen and the
Thomas-Fermi potentials lead to almost the
same value of a(e). The reason for this is that
the higher moments are dominated by the more
violent collisions for which the two potentials
lead to approximately the same energy transfer.
Figures 5 and 6 also show a comparison of the
measured distributions and the theoretical energy-
loss distributions calculated from Eq. (20), using
the Lenz-Jensen potential. The two examples cor-
respond to cases in which the three first moments
are known to agree nicely with theory, and we ob-

~N
T

1 ARB.UNITS
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BE(keV)

FIG. 6. Energy-loss distribution of 400-keV Pb ions in
5.40 x 101" molecules/cm? hydrogen (cf. Fig. 5).
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serve that under these circumstances, the Lenz-
Jensen potential gives a good account of the full
energy-loss distribution.
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APPENDIX

Here, the calculation of the energy distribution
W(Ae€) is described. Equation (5) can be written
in the form

where
Tm
I=pAE—NARf (1—e"™)do. (A2)
o

By means of the equations,

T=T,t/€*, : (A3)
__PE

NAR =57 (A4)

p,=bE/e, (A5)

and the cross section (6), Eq. (A2) can be written
as

€2 1/2
t
I=P1A€—5— f (1 —e"'"e”l)f—é—th) dat . (A6)
0

Using the definition p, =p, +iy and performing the
integration along the imaginary axis, the following

1 i®©+0
W(AE, NARF%[ el dp, (A1) formula is obtained with x =¢"2
i =i+ O
J
e p (€ zzc_~)f_(x)]
W(Ae,p)—27r J‘_mexp{zyAe on [1 exp<— pald B dx pdy, (A7)

or, as the imaginary part is zero,

W(Ae,p):—;; f_: exp{—g j;e ':1 —cos(y—ziyﬂ%x)dx} cos l:yAe —s j: sin(%—y)%’z—cldx] dy, (A8)

or

W(Ae,p)=117 f: exp <—§A(y)> cos[ yae - (p/¥)C(y)ldy, (A9)
where

A(y)=2 ]: sin? < %y) L(xg—l dx (A10)
and

C(y)=fE sin(lz—z-y> f—izx—) dx . (A11)
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