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The interaction between an atom and ion of the same element leads to gerade and ungerade states of
the diatomic molecular ion. The energy splittings between the gerade and ungerade states determine the
cross section for resonant charge transfer. Using the JWKB approach these energy splittings are derived
from the asymptotic forms of the wave functions for the isolated atom and ion. Pseudopotential calcu-
lations of the splittings are reported for Li,+, Na2+, Rb,+, and Cs2+, and are used together with previous
ab initio and model-potential calculations to test the JWKB method. The comparison shows that the
method is sufficiently reliable to facilitate accurate calculations of the cross sections for resonant charge
transfer at low energies.

I. INTRODUCTION

The cross sections for charge transfer at low
energies in the collision of an ion X' or X with
the corresponding neutral atom X are determined
mainly by the potential curves of the low-lying
states of the molecule, X,' or X, , which is
formed temporarily during the collision. The cru-
cial feature which controls the cross section is
the difference between the energies of these
states. ' ' For collisions at thermal energies the
long-range interactions, with say R &10a„are of
great importance. At such separations the energy
splittings are very small and it is difficult to per-
form ab initio calculations with sufficient accuracy
to obtain reliable cross sections.

In 1952 Holstein4 suggested that these energy dif-
ferences could be calculated analytically by a
technique based on the JWKB approach. Some de-
tails of this method were presented in an unpub-
lished report in 1955,' and the method has been ap-
plied by several authors, principally by Smirnov
and collaborators. ' " The purpose of this work is
to obtain a generalized version of Holstein's theory
and to assess its accuracy, by comparison with ab
initio and pseudopotential calculations.

In this paper we will restrict our attention to
positive ions, and will use a one-electro~ model.
This model, which will be described later, is di-
rectly applicable to all atoms with completely filled
subshells, such as the inert-gas and alkaline-earth
atoms, and to those with a singly occupied open

shell, such as the alkali atoms, boron, and alumi-
num. We will also neglect the effects of spin-orbit
interactions.

The aim of the theory, which is described in
Secs. II, IV, and V, is to relate the energy differ-
ence between the gerade and ungerade states of the
molecule X,' to the asymptotic form of the wave
function of the isolated neutral atom. If this as-
ymptotic form is known, then the computation can
be completed without the aid of a computer. In
Secs. II and III we study the simplest systems with
a single valence electron which is in an s orbital
in the separated neutral atom. In Sec. IV we study
atoms such as He, with two s-wave electrons in
the outer shell. We will try to clarify some of the
confusion that has existed in the literature regard-
ing the effects of the indistinguishability of the
electrons in such atoms. In Sec. V we will consi-
der atoms in which the outer electron has nonzero
angular momentum. In this paper we confine our
attention to positive ions. Negative ions will be
treated by the same technique in a forthcoming
publication.

The size of the energy splittings at a given value
of the internuclear distance is strongly correlated
to the atomic ionization potential and may change
by many orders of magnitude as one goes from Cs
to He. Previous theories' ' have demonstrated
that the dependence of the cross section upon the
energy splitting is logarithmic. This slow varia-
tion means that calculation of the energy splittings
with an error of, say, 20 to 30%, can lead to ac-
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curate predictions of cross sections. However,
we will show that overly crude models can lead to
errors which are much larger than this.

Atomic units will be used throughout this paper. g, (r) =N, [u(r, ) +u(r„)], (4)

The wave function for the valence electron can be
written

g (y)= 1+ —+ ~ ~ }r" 'e
~4m r (2)

Only the first two terms in this series will be
needed in our analysis. By substitution into Eq.
(1) we obtain the relations

g=(2e)~', v=1/g and P= —-', v'(v —1).
v is the effective principal quantum number, which
is often denoted by n*. Our discussion of the
choice of the constant q will be deferred until la-
ter.

Let us suppose that the two nuclei are at A and
B, and let r, and rb represent the position of the
electron relative to A and B, as shown in Fig. 1.

II. BASK THEORY

In this paper we will assume that the spatial
part of the wave function for the neutral atom in
the asymptotic region in which one electron is far
from the nucleus can be written as the product of
the wave function for the positive ion and an addi-
tional orbital. This assumption is clearly valid
for the alkali-metal atoms. In this section we stu-
dy the interaction between an atom X, which pos-
sesses a single valence electron in an s orbital,
and the corresponding ion X' at a distance A. We
will further assume that in the isolated atom X the
valence electron can be described by a wave func-
tion u, (r), which is the solution of an equation

[--,'v'+ V, (r) + e]u, (r) =0.
In this equation V,(r) could represent the Hartree-
Fock self-consistent field, or it could be an em-
pirical model potential or pseudopotential. The
binding energy of the valence electron is denoted
by e. We will need an explicit form for u, (r) only
in the asymptotic region, in which V,(r) = —1/r. In

this region we can expand u, (r) in inverse powers
ofr

u(r. ) = u, (r,)v(r, ) = u, (r.) exp( —S, —S, —.. . ) (6)

in which S„S,are of successively higher order in
1/R. The change in the energy of the atom due to
the presence of the ion is of order 1/R', and in
the calculation of S, and S, this change can be ne-
glected. We therefore demand than

[--,V'+ V,(r, ) —1/r, +1/R+e]u(r, ) =0. (6)

Substituting (5) into (6), with a change of sign, we
obtain

,(r, )V'v(r, ) + vu, (r,) ~ Vv(r, )

= (1/R —I/ )r(u) r(rv, ) .

In our further development we will need to know
the behavior of u(r) for points close to the median
plane between the nuclei. Thus we will regard
1/r„1/r„and 1/R as being of the same order of
magnitude. To first order we find

depending upon the desired symmetry of the molec-
ular orbital. Our aim is to determine the differ-
ence in the energies of the two states g, (r). The
function u(r„) can be obtained from u(r, ) by reflec-
tion in the median plane. Note that for Z states
this implies that (, and g possess, respectively,
gerade and ungerade symmetries with respect to
inversion.

The functions u(r, ) and u(r, ) can strictly be de-
fined only from the molecular states, using Eq.
(4). However, our first step is to assume that the
function u(r, ) represents the wave function for the
valence electron in an atom, centered at A, which
is distorted by the presence of an ion at B. %e
compute this wave function only in the half of space
for which r, &~b. At such points we know that rb
+ —,'R, and we assume that R is sufficiently large
that the interaction of the valence electron with the
ion at B can be approximated by -1/r~ We .then
express u(r, ) in the form

A

~Sr -su (r )e '~ = ———u (r )e '&.
y. 0 a g y. 0 a

a b
(6)

FIG. 1. Coordinate system used for molecular ions
with a single valence electron. The two nuclei are at
A and B.

In deriving this result we have assumed that
(O'S, /sr', ) is of higher order than SS,/ r„end ala-
ter we will make a similar assumption concerning
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S,. These assumptions can be verified from the
expressions for S, and S, that are presented be-
low.

Using polar coordinates, as shown in Fig. 1,
Eq. (8) has the solution

S,(r,)-0 for all values of e,. This condition guar-
antees that the behavior of the atomic wave func-
tion at the nucleus is not changed by the presence
of the ion.

The second-order terms in Eq. (7) lead to

r, +rb —Acos0,
R R(1 —cos e,)

(9) S, = —,
' [v'S, —(VS,)'] + - —— S, .

a a a
(10)

Equation (8) would, in general, permit the addition
to S,(r) of an arbitrary function of 1). This function
is eliminated by the requirement that as r, -0,

This differential equation can be solved by a tedi-
ous but straightforward calculation, using elliptic
coordinates. The solution is

) R+r, +r, R+r, —v,
(

r, +)) —r, cos6)

1 r, R+rb+r, R R
f'R 2R R+ b a R+ b R+ b+

r —
+ r ds.

(12)
In terms of the distorted atomic orbitals u(r, ) and

u(r~), this equation becomes

[E (R) —E, (R)] [u'(r, ) +u'(r, )] dv

a 8
u (r, ) —u (r,) —u (r,) u(r, ) —ds .

(13)

Using the symmetry of u(r, ) and u(r, ) we can write

~(R) =E (R) -E, (R)

u(r, ) —u(r, ) d u'(r, ) dr, (14)

in which the volume integral is evaluated over all
space. Retaining terms of order 1/R, the normal
derivative at points on the median plane is given
by

—u(r, ) = -u(r, ) [g cos 8(1 —1/g'R)

By combining Eqs. (4), (5), (9), and (11) we now

have approximations to the molecular orbitals g,(r)
which are accurate except when the valence elec-
tron is close to either of the nuclei. Let us now

examine more closely the energies, E, (R) and
8 (R), associated with these orbitals. I et us ap-
ply Green's theorem to the region of space Z in
which ~, &rb. Denoting the median plane by X&, and
the associated normal derivative by S/Sn, we ob-
tain

2[E (R) -E,(R)] Jl 4, (r)4-(r) d~

Note that we have dropped the subscript on 0 since
0, = 6b.

In order to perform the surface integral in Eq.
(14), we introduce the variable

y = —,'&R(sece —1)= r(r, ——,'R). (16)

The infinitesimal element of surface area becomes

ds = (~R/()(1+2y/fR) dy. (17)

S, = (I/g)( —', —ln2),

S, = -3/4$'R.

(18b)

(18c)

Kith these approximations the surface integral be-
comes

u(r, ) —u(r, ) ds = —R — u','an ' 2 e ' 2

v2
1+——,v —1

R
(19)

The denominator in Eq. (14) involves the integral
of u'(r, ) over all space. It is straightforward to
show that

J '(r, ) di, = J (r)rI +0(d/ ')' =,)())()20,)

Hence our final expression for the energy differ-
ence is

4 ', R v' 1~(R) = )TR — u' — 1+—(-,'v —1) +0
e ' 2 R R2

Since u(r, ) decreases rapidly as ~, is increased,
the major contribution to the integral comes from
the region around y =0. Retaining only those terms
necessary for our desired level of accuracy, we

can write

u, (r, ) =u, (R/2)[1+(2/)R)(v —1)y] exp( —y), (18a)

—(2/R) (v —1) cos'e] . (15) (21)
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q = q, =- (2&)'/u"I'(u) . (22)

(c) Seaton" has shown that an estimate of the
normalization constant can be obtained from quan-
tum defect theory. The quantum defect p, is the
difference between the principal quantum number
of an orbital, n, and the effective quantum number
u derived from the energy through Eq. (3). The
normalization constant q can then be obtained from
the Coulomb approximation value q, using

-~/s
q= q, 1 —(2e)'~'— (23)

This equation was derived in 1955 by Holstein'
for the special case of v=1. The first term has
been given by Holstein' for v= 1, and by Smirnov"
for a general value of v. We have calculated the
second term in order to obtain one indication of the
rate of convergence of this series development.
For the alkali ions the coefficient of 1/R in this
second term is between 3.5 and 6.3. Thus even for
8=20, this term is not negligible.

In applying Eq. (21) the constant u can easily be
obtained from the ionization energy of atom X. The
only uncertainty is in the constant q, that is in the
magnitude of the asymptotic wave function for the
atom. Several methods are available for estimat-
ing this constant. We list here four possible tech-
niques.

(a) The Hartree-Fock approximation gives a
reasonable estimate of the valence-electron wave
function at small and intermediate values of r. The
constant q could therefore be estimated by fitting
u, (r) to the Hartree-Fock solution at a suitable
distance from the origin. This technique was re-
commended by Smirnov'; however, the result de-
pends on the point at which the fit is made, and we
do not know of a proper procedure for choosing
this matching point. In most cases one should not
use the Hartree-Fock wave function directly in the
asymptotic region, since the incorrect energy as-
sociated with that approximation will lead to a con-
siderable error in the wave function at large dis-
tances from the atom.

(b) At integral values of n, u, (r) has the same
asymptotic form as the orbitals of the hydrogen
atom. The normalization constant of those orbitals
is known analytically, and can therefore be inter-
polated for nonintegral values of n. The resulting
value, which we will call the Coulomb approxima-
tion, is

with which one can obtain this derivative is un-
certain.

(d) The behavior of a valence electron outside
the core can be simulated very well through the
use of a model potential" or pseudopotential. "
By integrating the Schrodinger equation with such
a potential and normalizing the resulting eigenfunc-
tion, the appropriate value of q can be derived.
Unlike the previous techniques, this method re-
quires the use of a computer, but it is the method
which we recommend when suitable potentials are
available.

III. COMPARISON WITH VARIATIONAL CALCULATIONS

The simplest test of the theory of Sec. II is by
application to the interaction of H' with H. Here
the atomic wave function M, (r) is known exactly,
and very accurate calculations of the interaction
are available. A comparison of the predictions of
Eq. (21) with the exact calculations" " is given in
Table I. It can be seen that the error decreases
from about 20/0 at a separation of 4 bohrs to 2/o at
14 bohrs. The region with greatest influence upon
thermal collisions is around 12-15 bohrs, and at
such separations Eq. (21) gives very good results.

Let us now examine the alkali atoms for which
the undistorted valence orbitals u, (r) are not known
exactly. The normalization constant q has been
calculated by the four techniques described in Sec.
II and the results are shown in Table II. The Har-
tree-Fock fit is taken directly from Smirnov. ' In
applying the quantum defect method we have made
a quadratic fit to p, (e). The model potential wave
functions were kindly supplied by Norcross. " The
pseudopotentials used to generate the results in
the final column will be described below.

The values of q derived from the model poten-
tial and pseudopotential eigenfunctions are sig-
nificantly higher than the Coulomb approximation.
The sense of this correction is predicted by the
quantum defect theory, but the magnitude of the
correction is underestimated for the heavier alka-
lis. The Hartree-Fock fits of Smirnov give re-

TABLE I. Comparison of exact and approximate ener-
gy splittings in H2+.

Approx.

where e is the binding energy of the valence or-
bitals. From the observed valence energy levels
one can deduce the value of p, at several values of
e and thus can estimate the derivative Su/Se. How-
ever, for atoms in which the ground state is well
separated from the excited states, the accuracy

4
6
8

10
12
14
16

1.213 x10
2.371 x]0
4.196 xlP '
7.015 x10
1.130 x10
1.774 xlp ~

2.732x10 6

1.005x10 &

2.132xlp 2

3.964 x lp 3

6.776 x10 4

1.104 x 10 4

1.745 x 10 &

2.698 x10 6
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TABLE II. Calculations of the normalization constant q for the alkali-atom ground states.

Atom Hartree-Pock Coulomb approx. Quantum defect Model potential Pseudopotential

Li
Na
K
Rb
Cs

0.765
0.75
0.535
0.49
0.41

0.807
0.752
0.570
0.532
0.467

0.813
0.764
0.589
0.555
0.491

0.814
0.768
0.600
0.572
0.514

0.814
0.767
0.598
0.568
0.509

suits which appear to be inferior to the Coulomb
approximation.

Having obtained q, we can substitute u, (r) into
Eq. (21) and evaluate the energy splittings in the
interaction between the positive ions and neutral
alkali atoms. Unfortunately there are no exact re-
sults for comparison. However, we can compare
with the results of model potential and pseudopo-
tential calculations. For Li,', Na, ', Rb, ' and Cs, '
we have computed the lowest two potential-energy
curves by the pseudopotential approach. The va-
lence electron is considered to interact with both
atomic cores through a potential

(24a)

where

n~ a, 1
V, (r) =A, exp( $,r ) -— -(~ ~), — (,

(24b)

and 6', is the angula, r-momentum projection opera-
tor. A tabulation of the potential parameters to-
gether with a description of the pseudopotential
method can be found in the review by Bardsley. "
The valence energy of the molecular ion in each of
the two states was computed by a variational cal-
culation with a trial wave function made up a lin-
ear combination of twelve atomic orbitals, six upon
each atom. These orbitals were taken to be Slater
orbitals

y(r) ~r"e ~.
Following standard practice, integral values were

used for n, and the orbital exponents were varied
in order to minimize the energy.

In Table III, the energy splitting between the
lowest 'Z, and 'Z„states is presented as a function
of nuclear separation. We have applied Eq. (21)
using the values of q derived from the atomic wave
functions supplied by Norcross to obtain the results
shown in the column A. Column B contains the re-
sults of our variational calculations using the pseu-
dopotentia, l, and columns C and D give the results
of variational calculations using model potentials
by Dalgarno, Bottcher, and Victor, "and by Mc-
Mllan, "respectively. Distances and energies
are given in atomic units.

The results of our JWKB calculation are con-
siderably higher than the variational calculations
at R=6, but at larger separations the two methods
give compatible results. This behavior is consis-
tent with that found in H, '.

In Table IV the results for Na'-Na are shown and
the trends are similar to those seen in Ii'-Li.
Columns A and B contain the results of our JWKB
and pseudopotential calculations, and column C
gives the model potential results of Bottcher, Al-
lison and Dalgarno. " Column D shows the results
of ab initio calculations, using the Hartree-Fock
method, by Bertoncini and Wahl. "

In Table V the JWKB predictions for Bb,' and

Cs, ', again shown in the columns marked A, are
compared with the pseudopotential variational cal-
culations, which are in columns B. The compari-
son extends to larger values of the internuclear
distance. Once again the difference in the two re-
sults decreases as R is increased from 8 to 16 or
20 but at larger values of R the results diverge

TABLE III. Energy splittings between the lowest
Z~ and Z„states of Li2+.

TABLE IV. Z~- Z„energy splittings in Na2+.

6
8

10
12
14
16

0.1340
0.0764
0.0365
0.0156
0.0063
0.0024

0.1090
0.0648
0.0336
0.0155
0.0065
0.0025

m(R)

0.1079
0.0641

0.0155

0.0024

D

0.1079
0.0642
0.0331
0.0153

6
8

10
12
14
15
16

0.1374
0.0843
0.0425
0.0191
0.0080
0.0051
0.0032

0.1018
0.0650
0.0359
0.0177
0.0079

0.0032

0.0976
0.0623

0.0171

0.0032

D

0.0994
0.0667
0.0381

0.0047
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TABLE V. Z~- Z„energy splittings in Hb2+ and Cs& .

Hb2 Cs, +

8
12
16
20
24
28

1.1x10 ~

4.0 x1(}
9.9 x10 3

2.0 x10
3.5x]p 4

5.8x10 5

7,2 x10
3.3 x10 2

9.6 x10
1.9 x10 3

3.0x10 4

4.5x10 '

1.1 x10 ~

5.0 x10
1.4x10 '
3,2 x10
6.2 x10
1.1x1(} 4

7.7
3.8
1.3
3.1
5.5
9.0

x]p 2

X] (}

x]p 2

x 1(}
x]p 4

x10 '

again. For R&20 we constrained the orbital ex-
ponents appearing in the trial wave functions in our
variational calculations, in order to minimize nu-
merical errors and to fit, as well as possible, the
proper asymptotic form for the atomic wave func-
tions.

The over-all pattern of these results is clear.
At moderate values of the nuclear separation the
JWKB result overestimates the energy splitting.
For such values the term of order 1/R in Eq. (21)
is significant and it is unreasonable to expect the
higher-order terms to be negligible. At values of
R such that ~(R) is between 10 ' and 10 ' the
JWKB and variational methods give results that
are in close agreement. For larger values of R
we believe that the JWKB results should be more
relia, ble.

in which 8 is the operator describing the cyclic
permutation of electron coordinates 1, 2, and 3.
The major effect of the distortion of the two par-
ticles will be seen in the more diffuse orbital of
the neutral atom Q, (r). The change in this orbital
can be studied by the method used in Sec. II. We
therefore replace Q, (r) by Q(r ) which can be ex-
panded in the manner used for u(r) earlier.

Again our aim is to compute the difference in
the energies of the two molecular states 4' and
4, and this can be accomplished using Green's
theorem. There are at least three ways in which
this theorem can be applied. For example in Eq.
(12) the region Z can be defined as that portion of
configuration space in which at least two of the
valence electrons are closer to nucleus A than to
nucleus B. The corresponding hypersurface ItI', is
such that one electron is on the median plane and
the remaining two valence electrons are on oppo-
site sides of that plane.

Let us now assume that the nuclear separation
is sufficiently large that the function y(r) is negli-
gible for x & R/2, and that only the diffuse orbital
P(r) extends up to and over the median plane. The
theory described in Sec. II can then be repeated;
the only major differences arise from the presence
of the spin functions and permutation operators. If
the wave function for the neutral atom is expressed
in the form (25), we obtain

IV. SYSTEMS WITH THREE VALENCE ELECTRONS ZE(R) = -N'vR(4/e) 'y', (R/2}f(v, R) (27)

We nom consider systems such as He'-He in
which the neutral atom has two valence electrons.
In this situation one must examine the effects of
the electron spin and the Pauli principle.

Let us assume that the single valence electron in
the ion can be represented by an orbital X(r) For.
the neutral atom we are mostly concerned with the
form of the wave function when one electron is far
removed from the nucleus. Let us suppose that
this electron is in an orbital Q, (r). The second va-
lence electron will behave very much as if it were
in a positive ion and can be described by the or-
bital X(r). Thus as r, - ~ the two valence electrons
can be described by a wave function

|),(r„r,) =Ny, {r,) X{~,)(c,P, —P, o', )/v2 (25)

in which o. and P denote the two spin states for the
electrons and N is a normalization constant. We
assume that the single-particle orbitals are nor-
malized.

At large va, lues of the internuclear distance the
wave function for the three valence electrons in the
ion-atom pair can be approximated by

4 '(r„r„r,) =(1/W3)(1+ 6+ 6') [q,(r„,~„)X(r„)u,' &o(~» &m)X(~,.) o', ]
(26)

with

f(v, R) =1+(v'/R)( —,'v —1), (28)

in which v is defined by Eq. (3} in terms of the ion-
ization potential of the neutral atom. Equation (27)
can be rewritten in terms of the electron density
p(r) in the neutral atom

b,Z(R) = -(&R/2)(4/e) "p(R/2}f(v, R) . (29)

p(~) = 2N'P', (r) = 2N'(q'/4w)x" 'e '~" . (30)

The only remaining problem is to determine the
product Nq. In the early work of Smirnov'' there

Expressed in this way it appears that the effect
of the spin and the Pauli principle is to change the
sign of the energy splitting and reduce its magni-
tude by a factor of 2. This has been pointed out
by Smirnov and collaborators. ' ' This factor aris-
es because in order to transfer from one atom to
the other the electron which is close to the median
plane must have the appropriate spin direction to
be accepted by the ion. The probability for this is
1

We must now examine the asymptotic form of the
electron density in the He atom. We can expand
Q, (r) as in Eq. (2) and obtain
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TABLE VI. Energy splittings between the Z„and 2Z~

states of He2+.

This work
SEg)

Matsen et al,. Moiseiwitsch

5
6
7
8
9

10

3.8 x10
10.9 x10"
3.1 x10-3
8.5 x10 4

2.4 x10 4

6.5x10 '
1.8x10 5

3.4 x10
9.9x10 '
2.8x10 '

3.4x10 '
10.4x10 3

3.1 x10
8.9 x10 4

2.5x10 4

6.6 x10
1.6x10 5

seems to be the implication that the asymptotic
electron density is equal to that of a single-valence
atom of the same ionization potential. On the other
hand the Hartree-Fock approximation would sug-
gest that the electron density in He is twice that
amount since each electron can be found in the as-
ymptotic region and the electrons move indepen-
dently. We would expect that this latter result is
more nearly correct, but that the effects of radial
correlation should cause the factor of comparison
to be slightly less than 2. The later papers by
Smirnov and his colleagues" "support this view.
Unfortunately the earlier version of Smirnov's
work seems to have been followed by Johnson" in
his work on Ar'-Ar interactions.

We have examined the wave functions computed
for the He atom by Kinoshita, '4 by Hart and Herz-
berg, "and by Winkler and Porter. " Although these
are extensive variational calculations, the trial
wave functions do not have the appropriate asymp-
totic form. Nevertheless, by examining the wave
functions for ~, =0 and ~, =5 we are able to esti-
mate that the appropriate value of Nq lies between
2.7 and 2.9, which is slightly smaller than the
Hartree -Fock value.

In Table VI we present the splittings calculated
with the value of Nq equal to 2.84, and compare the
results with the variational calculations of Matsen
and colleagues"'" using a large trial wave function
and those of Moiseiwitsch with a very simple trial
function. " All three results are in fair agreement,
and this again gives us confidence that we can ex-
trapolate our results to higher values of x.

Duman" has studied many systems which have
the same valence structure as He, ', namely Be,',

obtained estimates of the product Nq by fitting to
Hartree-Fock wave functions. His expressions for
AE(R) have the correct asymptotic form but may
be in error by up to 50%, due to the uncertainty in
the value of Nq and the inclusion of only a single
term in the expansion of ~(R). The correspond-
ing error in the computed cross sections should
only be about 10%.

V. TRANSFER OF ELECTRONS WITH NONZERO
ANGULAR MOMENTUM

(i+m+1)(l —m) 8'

2(m +1) 2 (31)

This expression can be obtained using the generat-
ing functions for the Gegenbauer polynomials. "

The first effect of the angular dependence of u, (r)
occurs in Eq. (7), since Vuo now has a component
perpendicular to r, . In the evaluation of S„ this
component may be neglected, even though (1/u, )
x (su, /8 8,) becomes infinite as 8,-0 when m+ 0,
since sv/88, is very small. The angular deriva-
tives do contribute to S, and Eq. (10) becomes

8 1 1 8' sS, ' (v —1) 8'~ '=2 ~ 8. '"- s,
' ' s. '

a a a a — a a

1 1 8u08S,
x, u 86), 86)

(32)

in which S, is given by Eq. (9). Using Eq. (31) in
the evaluation of Su, /88. we obtain an additional
contribution to S, of v'm/2R.

The second effect is that the normal derivative
on the medium plane contains a term involving the
angular derivative

8 1 . 8—u(r ) = cos8 ——sing u(r )
Bn ' ' &r r '80

a a a

1=-cos8 u(r ) g 1—a a gap

2
+ —(m —v+1) cos 88 a. (33)

Finally the spherical harmonics must be included
in Eq. (18a). For m&0 the function u, (r,) will van-
ish at the midpoint between the nuclei, and hence

In our previous discussions we assumed that the
valence electron which is transferred was in an
s orbital. Let us now relax that assumption, and
replace the factor 1/v'4w in the undistorted wave
function u, (r), as in Eq. (2), by a general spheri-
cal harmonic F,"(0). Note that coefficients in the
series expansion of u, (r) are changed; for example
we find

P = —,'v[l(l+1) —v(v -1)].
Examination of our previous analysis shows that

we need to know the wave function for the valence
electron only on the median plane close to the mid-
point between the nuclei. This is also true in the
general case, and so we can assume that the polar
angles 6, and 8, are small. We can therefore ap-
proximate the spherical harmonic 1, (8, P) by

(2 l +1) (l + m )! '~' sin 8
4r (l —m)! 2 m!
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we expect the energy splitting to be reduced signi-
ficantly.

Retaining the first two terms in powers of 1/R,
we obtain

42())) (2l+2) (l+ ) l( v

) )),(R) (4j"

vx 1+—v 3v —2 + 2v —3m-3
2R

—2(l+m+l)(l —m)])

in which u, (r) is the radial part of u, (r), i.e. ,

u, (r) = u, (r) 1
2 (Q) .

(34)

TABLE VII. Gerade-ungerade energy splittings in
Ne2+.

The leading term in this expression was first de-
rived by Smirnov. ' For H,

' the asymptotic expan-
sion can be obtained by alternative means, ""and
our results agree with the first two terms in that
expansion for those states with m= l = v —1. For the
other states of H,

' the additional degeneracies
which occur among the excited states of H lead to
different expressions for the molecular splittings,
which are not applicable to other ions.

For states with odd values of ~ the symmetry
operations of reflection in the median plane and in-
version do not give the same result. The molec-
ular state g, is ungerade, and g is gerade, and

thus in molecules such as B,' and Al, ' the 'II, state
lies a,bove the 'II„state.

Let us next examine the rare-gas systems Ne, ',
Ar, ', Kr, ', and Xe,' in which the atomic ion has
a single vacancy in the outer P shell. Just as in
the case of He we find that the levels are reversed
relative to systems with a single valence electron.
Thus the 'Z, and 'II„states lie above the Q„and 'Q

states, respectively. Once again, if the electrons
are considered to move independently, the magni-
tude of the g-u splittings would be equal to that of
a system with a single valence electron with the
same ionization potential, but correlation effects
should reduce the splittings slightly.

Cohen and Schneider" have recently reported
variational calculations of the lowest four states of
Ne, '. In Table VII their results for the g-u split-
tings between the Z states and the two II states

are compared to the predictions of Eq. (34). We

have used Hartree-Fock functions for u, (r), taken
from the tabulation by Froese-Fischer. " There
should be two errors associated with the use of
such functions. Firstly the Hartree-Fock approxi-
mation overestimates the electron binding energy
and thus u, (r) will fall off too rapidly as r is in-
creased. Secondly correlation effects should lead
to a slight reduction in the magnitude of the wave
function in the asymptotic region. In these cir-
cumstances the good agreement that is found in
Table VII may be a little misleading, and the cor-
rect values of the splittings may be slightly small-
er. In order to extrapolate to much larger values
of R, one should use the proper asymptotic form.
Unfortunately we do not have an accurate estimate
of the appropriate constants Nq to use for this
system.

Johnson" has applied the JWKB approach to
Ar, ', following the work of Smirnov, keeping only
the leading term in the expansion in 1/R. His re-
sult is consistent with Eq. (34) except for the pre-
sence of the factor —,

' which was introduced by
Smirnov to allow for spin effects and which we be-
lieve to be spurious. Johnson used the Hartree-
Fock orbitals in estimating the asymptotic con-
stants Nq, and the values so obtained may be
slightly too high. Overall we estimate that the en-
ergy differences obtained by Johnson may be too
small at large distances, although at smaller dis-
tances the neglect of the second term in Eq. (34)
may partially compensate for the spurious factor
of —,'.

In studying the long-range interactions of sys-
tems in which the neutral atom or ion has nonzero
angular momentum and nonzero spin, one should
consider the effects of the spin-orbit interaction.
At the large values of 8 which are of critical im-
portance in low-energy collisions, it is reasonable
to assume that this interaction is independent of
R. The effect of the spin-orbit interaction at R= ~
is known empirically, and the complete Hamilto-
nian can then be diagonalized at all large values
of R. This method has been followed by Duman
and Smirnov, " Johnson, "and by Cohen and Schnei-
der.

VI. SUMMARY AND CONCLUSIONS

7.1 xlp-'
2.1 xlp 2

6.2 xlp 3

1.8xlp 3

5.2 xlp "4

1.4xlp '
3.4 xlp 3

8.7 xlp 4

2.4 xlp 4

5.p xlp

Cohen and Schneider
Z rr

7.]. xlp '
2.2 xlp 2

6.5xlp '
1.9 xlp
5.5 xlp

1.4 xlP 2

3.4x]p 3

8.4 xlp 4

2.1xlp 4

5.3xlp ~

This work We have followed through the JWKB method for
computing the gerade-ungerade energy splittings
in homonuclear molecular ions, retaining two
terms in the expansion in inverse powers of the
nuclear separation, and have performed variation-
al calculations in order to check the JWKB meth-
od. At those separations for which the splittings
are between 10 ' and 10 ' a.u. , the two methods
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give compatible results. At smaller separations
the second term in the expansion gives a signifi-
cant contribution, and the comparison with the
variational calculations suggests that the higher-
order terms are not negligible. At larger separa-
tions the variational method involves difficult nu-
merical problems, and the JWKB method may lead
to better results.

Several authors have used different forms for
KP(R) in studies of symmetric charge exchange.
Rapp and Francis' performed a simple LCAO cal-
culation with scaled hydrogenic 1s orbitals and ob-
tained

~E(R) = (1/v')R exp(-R/v),

again with v equal to (2e) 'i'. This expression has
the proper exponential factor but the power of R
multiplying that factor is correct only if 2p=m+2.
The variational calculation by Moiseiwitsch" on

He, ' and by McConnell and Moiseiwitsch" on Hg,
'

lead to the same form but with a different pre-ex-
ponential constant. For these systems the result-
ing error in ~(R) does not lead to serious errors
in the computed cross sections for charge ex-
change. However, for the alkali-metal atoms the
error is more serious. For example in Cs'-Cs
collisions at thermal energy the critical region is
R=35a, . At such separations the value of AE(R)
given by Eq. (36) is approximately 70 times small-
er than the prediction of our analysis. This would
lead to a significant underestimation of the charge-
exchange cross section.

Dewangan" has recently suggested that within
the two-state impact-parameter approximation
there is an exact scaling law by which the cross
sections for all symmetric charge transf er reac-
tions can be related to the corresponding cross
sections in H -H collisions. The scaling law is
based upon a calculation of the molecular energy
splittings by the simple LCAO method using hy-
drogenic 1s orbitals. As we have seen above, this
method gives an incorrect asymptotic form, and
the scaling law cannot be derived using the proper
expression for AE(R)

The one-electron model upon which we have
based our calculation is directly applicable to those
systems in which either the neutral atom or ion
has a ground state with '8 symmetry. Most of the
systems of major physical interest are in this ca-
tegory. For other cases, such as O'-O and Fe'-
Fe, one must examine more carefully the coupling
of the outermost electron with the remaining elec-
trons. +though these problems have been dis-
cussed briefly by Duman and Smirnov, ' "we be-
lieve that further work is necessary.

According to this theory the long-range behavior
of the energy splitting can be expressed in the
form

B 1
b,Z(R) =BR" ' exp —— l + —+0

v R R'

The parameters v and B are determined from the
atomic ionization potential, and rn is the compo-
nent of the orbital angular momentum along the
internuclear axis. In order to calculate the con-
stant A, one needs to know the magnitude of the
electron density of the neutral atom in the asymp-
totic region. Unfortunately, most of the published
atomic wave functions do not have the proper as-
ymptotic form, and so accurate values cannot yet
be given for this constant. Although the asymptot-
ic region contributes little to the energy of an
atom, it is clearly of great interest in regard to
the interaction of the atom with neighboring par-
ticles, and it is to be hoped that more attention
will be given to this region in future calculations
of wave functions.

In future papers we plan to apply this theory in
the calculation of charge transfer cross sections
for both positive and negative ions.
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