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We propose a variational scheme for calculating the energy eigenvalues and eigenfunctions of the
hydrogen atom in the presence of a strong magnetic field. Numerical calculations were performed for
several of the lowest states, and for the wavelengths of some allowed transitions. We discuss briefly the
equivalence of the problems related with solid-state physics and astrophysics, and compare our results
with previous calculations. Because the suggested scheme converges very fast for fields up to approxi-
mately 10' G this is a convenient manner in which to treat problems where the interest is concentrat-
ed in the range of variation of the magnetic field from zero up to approximately 10 G.

I. INTRODUCTION

In the past few years there has been a great deal
of interest in the study of atoms and particularly
the hydrogen Atom in the presence of strong mag-
netic fields. As many aspects of atomic structure
are affected by these fields, a detailed understand-
ing of the behavior of the hydrogen atom in the
presence of strong magnetic fields can provide a
deeper insight into several problems in the fields
of astrophysics, plasma physics, and solid-state
physics. Much work concentrated on astrophysics-
related problems' ' and also on problems concern-
ing excitons, as well as donor and acceptor im-
purities in semiconductors. ' " Unfortunately,
there seems to exist a certain communication gap
between researchers working in both fields; very
few works in astrophysics mention the solid-state
papers and vice versa. We will present here a
brief review of some of the work which has been
done in the past in both fields, and will propose a
variational calculation which we will discuss later.

Concerned basically with astrophysics problems,
Cohen, Lodenquai, and Ruderman' discussed the
implications of magnetic fields as strong as 10' G
(characteristic fields in neutron-star models for
pulsars) for the ionization energy of atoms. Smith
et al. ' studied the behavior of hydrogen atoms in
the presence of fields in the range from about 10'
to 10" G, using a multiparameter trial wave func-
tion and a variational procedure. Also using a
variational procedure but a four-parameter trial
wave function, Rajagopal et al. ' determined the
ionization energy of a hydrogen atom in its ground
state in the presence of fields of the order of those
found in magnetic white dwarfs and some neutron
stars. Concerned with astrophysically interesting
effects such as opacities in white dwarfs and pul-
sars, Smith et al. 4 calculated bound-bound transi-
tion probabilities for a hydrogen atom in magnetic
fields from 10' to 10' G.

Canuto and Kelly' solved the Schrodinger equation
employing a combination of the variational method
and perturbation theory, obtaining analytic expres-
sions for the approximate wave functions and ener-
gy eigenvalues for fields in the range from 10" to
10" Q. Their results were not reliable for fields
below 10io G

A great amount of work has been motivated by
shallow electronic states associated with impurity
levels in semiconductors. ' " Yafet, Keyes, and
Adams' studied the energy levels and wave func-
tions for a hydrogen atom in a very strong mag-
netic field. They calculated the ionization energy
for fields up to approximately 10" G.

This same problem was studied by Wallis and
Bowlden, ' and some binding energies were calcu-
lated for fields ranging from approximately 10" to
10' Q. It is interesting to note that these results
for the ionization energy are in good agreement
with those of Ref. 2, and are better than those pre-
sented in Ref. 1. Larsen' also considered in the
effective-mass approximation the problem of a hy-
drogenic atom in a strong static magnetic field,
and gave a more accurate treatment of the ground
state and the lowest-lying excited states with m =1
and ~ =-1 for donor levels in a magnetic field.

Praddaude' calculated the 14 lowest-energy lev-
els of the hydrogen atom in a semiconductor, as-
suming an appropriate expansion of the wave func-
tions in terms of Laguerre polynomials, and solv-
ing the Schrodinger equation in cylindrical coordi-
nates. His results were in very good agreement
with those of Cabib, Fabri, and Fiorio, "who
solved exactly numerically the Schrodinger equa-
tion for the ground state and for the first excited
state with ~ =0 and even parity. The results of
Praddaude' and Cabib et al."are in good agree-
ment with those of Ref. 2, once we define properly
the ionization energy for the ground state.

Yafet et al. ' and Kemp" have discussed the im-
portance in analyzing the problem of a hydrogen
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atom in the presence of magnetic fields of strength
in the range 10'—10' Q. In the present work we
will propose a variational calculation assuming
that the trial function is written as a linear com-
bination of the eigenfunctions of the Hamiltonian
for the hydrogen atom in the absence of the mag-
netic field. Such expansion is reliable for fields
up to approximately 10' G. %e also suggest an
extension of this method for fields B+10" Q.

II. THEORY

First we will write the Hamiltonians of interest
in astrophysics and solid-state semiconductor
physics in terms of a dimensionless parameter
y. Then we discuss the variation of the energy
spectrum as a function of y, which is undoubtedly
the most convenient way to look at the problem be-
cause it unifies both theoretical approaches. Fi-
nally, we will discuss the variational procedure.

Choosing the Landau gauge, the Hamiltonian for
a hydrogen atom in the presence of a constant
magnetic field is

H = (1/2m) [-i@V + (e/2c)B x r]' —e'/r . (l, )

In atomic units and spherical coordinates Eq. (1)
becomes

H= -V' —2/r+yL, + ,y'r'sin'g-.

as a function of y*. We note that in Eq. (4), ener-
gy is measured in units of the "effective rydberg"
8„*= m ~e'/2k', and length in terms of an "effec-
tive Bohr radius" (a,"=k'/m*e'). The dimension-
less parameter y* can be written as y*= p. gB*/H, „*

= (~)'y.
It is interesting to note that because of this

equivalence certain semiconducting materials
naturally suggest themselves as specially suitable
for simulating strong magnetic fields. For in-
stance, ' in InSb the value of I3 is 16 and the value
of n approximately 77. Thus the product eK is
about 1200 and for a field of 10' G, y*-100. To
achieve this value for y a field of approximately
10" Q would be necessary. Therefore, even if the
highest magnetic fields currently available in the
laboratory are not much larger than 10' Q, it
would be possible to perform experiments simu-
lating superstrong magnetic fields.

%e will now present a possible variational solu-
tion for the problem of the hydrogen atom in a
magnetic field. The proposed solution is good for
values of y ranging from zero to approximately 1.

Let us assume that the eigenfunctions of H have
the form

])(r) = ga, y, (r),

where
Energy is now measured in rydbergs and length

in units of the Bohr radius. y= p, eB/Ry is dimen-
sionless, since p. ~ is the Bohr magneton. For a
hydrogenic atom inside a semiconductor the Hamil-
tonian is

H+=(1/2m)[ —ihV+(e/2c)Bxr]' —e'/Kr, (8)

Ho4' = (-&' - 2/r) 4; = &,'"0; =-(I/n']) y&,

where

0;(r) =&...,. (r) I,,'(i], 0)

=N„., F„., (X) I [!(6,[t]),
with

(8)

(7)

where the electron effective mass depends on the
nature of the crystal (m =m/n). This Hamiltonian
can be immediately rewritten in the same form as
Eq. (1) by defining an effective field B*=—8/K and

redefining an effective mass by m += m/(nK').
Therefore

H *= (1/2m ~)[-ih f + (e/2c) B*x r] ' —e '/r .

In "effective atomic units" and spherical coordi-
nates the equivalent of Eq. (2) is

2r 2 (n —I —1)!X=—N
n ' "' n' [(n+l]!]') (8)

+ (x) =x'e "i'L2]+' (x)

L„"", , (x) are the Laguerre polynomials. "
Now we will minimize the energy, imposing the

normalization condition (P~ g) =1.
Remembering that sin'0 is a linear combination

of F„'(6, [I]) and F,'(e, [t]), we rewrite Eq. (2) as
H*= -V' —(2/r) +y*L, + +y*'r'sin'8. (4)

Therefore, to obtain the spectra of energy eigen-
values of the Hamiltonian (2) as a function of y is
entirely equivalent to obtaining the spectra of H~

2 y2 4m—+yl + &2 1 yz

Using the fact that"

(10)

2 /, l,. 2
Y,* ~ Y', I ].] dQ = (-1) ~ [(2 I,. +1)(2 l, +1)]' '

(0 0 Oj ~-m, . m,. Oj

and defining the quantities
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R„, (r)R„., (r)r4dr,

which can be calculated exactly in terms of F functions, and

g =g«~+ym.i

we have

2
m(g!H!g) = g la;l'e;+ —pa, a, (r. '),

& 5, , 5 .„—(—1) i[(2l,. +1)(2l,. +1)]' '
(0

Therefore we can define a symmetric matrix C with elements

2 lj l; 2

0 0 -rn,. rn,. 0
(14)

2

C,, = —(r'), , 5... 5, . —(-1) ~[(2l; +1)(2l, +1)]' '
lj 2 l,. ),. 2

!™o-) (15)

(16)

The last term expresses the normalization con-
straint and the X, 's are Lagrange multipliers.
Using the fact that the matrix C is symmetric,
we obtain the secular equation

(17)

and in principle the whole spectrum of eigenvalues
and eigenvectors can be obtained by evaluating the
infinite dete rminant

III. RESULTS AND DISCUSSION

An interesting result is that the Zeeman effect
is trivially obtained from Eq. (17) if we neglect
terms in y' in Eq. (10), in this case C,&=0, and

X =e"+yj j m

The Paschen-Back limit is also immediately ob-
tained, including the term 2yS, in Eq. (10), and,
assuming the basis functions Q,. to be spin depen-
dent, P,. =Q, (r)y „y,(S) are the usual spin func-
tions, eigenfunctions of S, and S'.

In this case

(19)

Aq ——eo+y(mq +2m, q) . (20)

The symmetries of the Hamiltonian are explicit in
the form of the matrix elements of C. From the
properties of the 3-j symbols we obtain, as ex-
pected, that the non-null elements are only those
connecting states of the same parity and with the
same value of ~.

Regarding the coefficients a,. 's as parameters to
be varied, and using Eqs. (14) and (15), the varia-
tional condition is expressed as

la, I'e;+ ga, a,.c,, —g x; la; I'8

In the present work we are primarily concerned
with understanding the possible convenience of ap-
plying this scheme for a variation of the parameter
y ranging from 0 to 1.

We have restricted our basis of Eq. (5) to a fi-
nite number of functions, and diagonalized the ma-
trix C for different sets of basis functions. The
diagonalization of this matrix is simple because of
the symmetries already discussed; the C matrix
breaks in blocks along the diagonal. These involve
only elements connecting functions of the same
parity and same m. This scheme is then similar
to a perturbation theory, but the results from the
variational method are expected to be better than
those of perturbation theory.

We checked the convergence of the calculations
for the eigenvalues of C by increasing the number
of basis functions and comparing the obtained ei-
genvalues with those from a more restricted basis.

For this range of variation of y, we have shown
that only s and d functions are important to as-
sure convergence for the ground-state energy and
also for the energy of the 2s state.

We have included in our basis es and n'd func-
tions (1 (n (10; 3 ~n' (10), and we have shown
that to assure convergence at least to five digits
(largest value of y) for the ground-state energy we

must include in our basis only functions with 1
(n &6 and 3 (n'(6. As expected for the 2s level,
convergence is poorer for large values of y, when
these same bases are assumed.

For the 2P levels we have shown that the inclu-
sion in the basis of functions np, 2 (n (9, is
enough to assure convergence at least to four digits
(largest value of y).

For a given value of y we require approximately
5 msec of central-processor-unit time of an IBM
370/165 to obtain all the eigenvalues and eigenvec-
tors for the largest basis considered here.

We would like to comment that this scheme is
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TABLE II. Comparison between the present results
(.P), the resul. ts of Ref. 6 (YKA), and the exact results
of Ref. 10 (CFF) for the ground-state energy (units of
rydbergs or effective rydbergs).

CFF

-2.

21 I

'O

Op

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-0.84443
-0.839 56
-0.81097
-0.783 64
-0.750 54
-0.712 52
-0.670 32
-0.62449
-0.575 54
—0.523 86

-0.995 08
-0.980 76
—0.958 41
-0.923 23
-0.89447
-0.854 94
—0.81142
—0.764 57
-0.714 73
-0.662 41

-0.995 04
-0.980 51
-0.956 99
-0.924 82
-0.884 06
-0.834 66
-0.786 64
-0.709 88
-0.634 39
—0.551 01

IOg gjB

FIG. 1. Energy spectrum of the hydrogen atom in a
magnetic field for some of the lowest excited states.
Present calculation: crosses; Smith et al. (Ref. 2):
solid line.

particularly convenient for fields up to -5 ~10' 0
because convergence is quite fast. To obtain all
energy eigenvalues for the 14 lowest states in this
region it mas enough to include in our basis only
ns, n'd, n "P functions with 1 &n & 6, 2 &n" &7, 3
&n' &8, to assure convergence up to four digits.

In Fig. 1 we compare the present results for the
energy spectrum of some lowest excited states as
a function of the magnetic field with those of Ref.
2. We have also omitted the ground-state 1s since
its value is essentially constant at -13.6 eV over
the range of variation of the magnetic field con-
sidered.

The agreement is excellent except for the 3s and
the 3d, levels, which we believe mere mistakenly
changed for each other in Ref. 2; when we inter-
change these two levels the agreement is again ex-
cellent. In our calculations me have good physical
arguments to distinguish between the 3s and the

TABLE I. Wavelengths for some allowed transitions
(in angstroms, except for the rows 2so, for which the
units are micrometers), comparing present cal.culations
and those of Ref. 4 for B = 10~ and 10 G.

3d, . Because of the form of the matrix C when we
include ng functions in our basis, we can expect
that the 3d, level will be more affected than the 3s
level.

In Table I we compare the wavelength for some
of the possible transitions with those of Ref. 4, for
fields of 10' and 10' G, and the agreement is also
very good. This is also a good indication of the ac-
curacy of the energy levels.

Table II compares the energies for the ground
state as a function of y with those obtained by Refs.
6 and 10. Our results agree very well with the
exact numerical calculation of Ref. 10 for small

IOO

SO

a (G)

A, (Present calc.) A, (Ref. 4)

2P„g 2Pp 2P( 2P ( 2Pp 2p 1

108

1222
2sp 21.35
3dp 6294
3sp 6316
1sp 1280
2sp 1.882
3dp 3979
3sp 4713

1213 1208
1281 22.08
6484 6681
6505 6706
1206 1145
14.17 2.563
4874 6283
6021 8332

1217
21.279
6318.6
6341.4
1267.0
2.060
4126.7
4870.5

1210
1258
6508.6
6532.8
1204
13.73
4973.4
6095.1

1203.9
21.46
6715.8
6741,5
1132.7
2.219
6723
8950

IO

log loB

FIG. 2. Ionization energy of the ground state of hydro-
gen as a function of the magnetic field. Smith et aI, . (Ref.
2): a; Cohen et al. (Ref. 1): b; Wallis and Bowlden (Ref.
7): c; present calculations: d; Larsen (Ref. 8): 0; Cabib
et al. (Ref. 10): x.



H YDROGEN ATOMS IN STRONG MAGNE TIC FIE LDS 1839

values of y, but get worse with increasing y. They
are always better in this region than those of Ref.
6.

We note that we are labeling the states as for
the hydrogen energy levels in the absence of a
magnetic field. This is only an extension of the
notation, because it is clear from the symmetries
of the Hamiltonian and from the matrix C that the
good quantum numbers are m and the parity.

Now we would like to comment briefly about the
ionization energy of a hydrogen atom in the ground
state. The ionization energy is defined as the dif-
ference between the energies of the lowest bound
state and the lowest free state. Therefore we
should subtract from the energy of the first "Lan-
dau level" the energy of the ground state of the hy-
drogen atom,

but are only a slight improvement over perturba-
tion theory for larger fields. In this region the
energy due to the magnetic field (p, sB) becomes
much larger than the rydberg, and the basis chosen
for our trial function is not appropriate.

We would also like to comment that the proposed
scheme can be applied to very strong fields y = 100
by changing our basis of Eq. (6) to harmonic oscil-
lator wave functions, rewriting H, in Eq. (6) as the
Hamiltonian of the harmonic oscillator, and re-
defining appropriately the matrix C. The ioniza-
tion energy in the intermediate region can be ob-
tained by interpolation.

We are presently using this scheme to calculate
oscillator strengths and transition probabilities, as
well applying this same idea to calculate the ener-
gy levels of the hydrogen atom in the presence of
an electric field.

For the sake of comparison we present in Fig. 2
the ionization energy of the ground state of a hy-
drogen atom as a function of the magnetic field,
obtained by several authors. We note that our re-
sults are in very good agreement up to B-10' G,
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