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Hydrogen-antihydrogen interactions
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Accurate quantum-mechanical calculations on the system hydrogen-antihydrogen (HH) are presented.

The energy is calculated using the Ritz variational principle, and is obtained as a function of the

proton-antiproton distance in the Born-Oppenheimer approximation. It is everywhere lower and therefore

more accurate than that recently calculated by Junker and Bardsley. In particular, the maximum in the

interatomic interaction reported by these authors is not seen in this calculation. The cross section for

rearrangement annihilation is calculated and found to be uniformly larger than that reported by Junker

and Bardsley.

I. INTRODUCTION

Submicroscopic interactions between matter and
antimatter have recently attracted some atten-
tion" because of the implications such interac-
tions might have for various cosmological theo-
ries as well as speculations about antimatter
meteorites and ball lightning. ' An ambitious quan-
tum-mechanical. calculation on the simplest atom-
antiatom pair (namely, hydrogen-antihydrogen,
HH) recently reported by Junker and Bardsley' was
extremely interesting because these authors found
a small maximum in the interatomic interaction
energy at a certain proton-antiproton distance,
and they speculated that such a maximum would be
found for all atom-antiatom pairs.

Junker and Bardsley calculated a very extensive
configuration-interaction (CI) wave function (75
configurations) over a range of interbaryonic dis-
tances using the variational principle, the Born-
Oppenheimer approximation, and the spinless non-
relativistic Hamiltonian4
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Here, 1 denotes the electron, 2 the positron, a
the proton, and b the antiproton.

In view of the need to represent accurately the
correlation of the motions of electrons with posi-
trons in energy calculations on mixed electron-

positron systems' and the well-known inability of
CI wave functions to give a good account of purely
electronic correlation, e we undertook a new calcu-
lation on HH with a wave function which depends
explicitly on the interleptonic distance &». CI
wave functions do not depend explicitly on such
coordinates and hence reproduce the correct be-
havior at short interleptonic distances (i.e., cusps)
only in the limit of infinite expansions in a con-
figuration basis. Suitably accurate cusps depend
upon very large expansions, and in practice high
accuracy in the cusps is almost always beyond
reach because of realities of available computa-
tional resources. This limitation of the CI method
does not disqualify it as a means of calculating
accurate energies and other. properties for koino-
atoms and molecules, because the interleptonic
cusps occur where the wave function is small and
relatively unimportant. But in systems containing
both electrons and positrons, cusps at electron-
positron coalescense occur where the wave func-
tion is large; hence the CI method is inappropri-
ate. ' For systems with many leptons and only
one antilepton, the important interleptonic corre-
lation effects can be accounted for satisfactorily
using well-understood techniques. " But for sys-
tems containing many leptons and many antilep-
tons, accurate calculations are much more diffi-
cult.

II. HH CALCULATION

The Hamiltonian commutes with the operators
C@ and Q = o„P»,where C& rotates the leptons
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through an angle Q about the interbaryonic axis,
o'~ reflects the leptonic coordinates in a plane which
is the perpendicular bisector of the interbaryonic
axis, and P» exchanges leptons. Hence the wave
function is either even or odd under Q, and has a
rotational symmetry indicated by ~, II, 4, . . . .
Assuming the ground state is even (thus allowing
a nonzero wave function where the electron and
positron coalesce} and &, and suppressing all spin
coordinates (which are inconsequential here), we
expand the wave function in a basis

4 =Q c»4»(1;2}, (2)

In the above, g and r» denote the elliptic coordi-
nates, '

p =2r»/r, ~, and r», r, , s, , s, , and»»» are
integers. The coefficients c,. and exponents o', , p„
(k =1, 2) are variational parameters.

The matrix elements and integrals needed to
solve the eigenvalue problem,

(H —ES)c =0,

are computed using a method described previous-
ly. ' All matrix elements as well as the energy E
and eigenvector c are functions of &„.The com-
putations were carried out on an IBM 360/91 com-
puter at the Max Planck Institute for Physics and
Astrophysics in Munich.

To select the most important terms in the expan-

where +»(1; 2) is the symmetry-adapted function,

@»=(1/4»»}[exp( n, )-, —n, $,+P,»I, +P,q, )g"» ("»q, »q» p"»

+ (-I)'» "» exp(-~, h, —~, 5, p.n-, p, n-. )

&&( '
h ''»i ''»i 'P j.

sion (2} the exponents were first optimized in an
18-term expansion for &„=1,3.1, and 6 a.u. , and
for these internuclear distances test runs were
made using the basis functions (3) with r;, r;, s, ,
&, - 5, and p, , - 2. Next, a 35-term wave function
was constructed which included terms that were the
most important ones for all three internuclear
distances. In this wave function the exponents were
optimized for ~,b=0.95, 1, 3, and 6 a.u. Since
the exponents were approximately linear functions
of the internuclear distance, for intermediate
separations their values were obtained by linear
interpolation. For r„&6they were also interpo-
lated assuming for ~,b =12 the asymptotic values
c», = o.', = p, = —p, =6. In the case of p„two addi-
tional optimizations were made for r, b

= 5 and 8
a.u. In the final runs, the 35-term expansion was
augmented with 42 additional basis functions, dif-
ferent for different regions of r,b: One set of 42
additional functions was used for &,b~ 3 a.u. , and
another for r,b&3 a.u. A total of 77 basis func-
tions were thus used for all interbaryonic dis-
tances except r„=10,where the final run was
made with a 50-term expansion due to an almost
linear dependence of some of the basis functions.

The accuracy of the energy, being very high for
large &,b, deteriorates with decreasing inter-
baryonic distance. In the vicinity of r„=3the
total energy has probably converged to six signifi-
cant figures. At smaller &„notmore than four
figures in the total energy are likely to be reliable.

III. RESULTS

The energy E is given in terms of the inter-
atomic potential V =E +1 in Fig. 1. The curve
labeled KMSW is the present results, which are to

-io-'- TABLE I. Interatomic interaction energy U ~ of HH.
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FIG. 1. Interatomic potential V from Ref. 1 (curve JB},
Ref. 2 (curve MH}, and the present work (curve KM8%)
as a function of the interbaryonic distance r, b. V is
related to E, the total energy of the system HH, by
V=E +1.

+ab

0.95
0.975
1,0
1,5
2.0
2.5
3.0
3.05
3.1
3.15
3.5
40
5.0
6.0
8.0

10.0

U Jg (H,ef. 2)

-0.277 201
-0.257 076
-0.055 216
-0.010 219
—0.001 244
-0.000 040
-0.000 033
-0.000 031
-0.000 039
-0.000 165
-0.000 301
-0.000 280
—0.000 154

—0.000 008

UKMsw (present work)

-0.314 522

—0.271 095
-0.060 540
-0.013221
—0.003 149
—0.001 280

-0.001 173

-0.000 967
-0.000 817
-0.000463
-0.000 208
-0.000 037
—0.000 008

U=E+1, where E is the total energy of HH.
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be compared with the results of Junker and Bard-
sley' (curve JB) and Morgan and Hughes' (curve
MH). The latter potential was deduced from sec-
ond-order perturbation theory and known limiting
forms for large and small ~,b. Unlike VKM&~ and

Vjg VMH is not bounded by the true potential ~ The
most salient feature of our results is the absence
of a maximum. Table I lists our results for V.

The cross section for the rearrangement from
HH to protonium (Pn) and positronium (Ps), which
is sensibly also the cross section for annihilation,
was calculated using our interatomic potential
curve and the classical method of Purcell and
Field. It is displayed in Fig. 2 along with the
results of Morgan and Hughes, and the extended
results of Junker and Bardsley (both groups used
the method of Purcell and Field also). The present
results are similar to those of Junker and Bardsley
for collision energies larger than about 1 eV, and
nearly coincide with the results of Morgan and
Hughes at energies lower than 0.0086 eV. The
present cross section, as well as that of Junker
and Bardsley (extended by the present authors),
is not a smooth function of the collision energy.
This point is discussed in Sec. IV.

IV. DISCUSSION

The semiclassical method of calculation of the
cross section involves the concept of a critical
interbaryonic distance R, : If the interbaryonic

distance &,b falls below R, during a collision, then
the dipole is too weak to bind Ps and the rearrange-
ment takes place. An accurate determination of
A, is therefore of some interest.

The electronic energy of the one-electron sys-
tem HP (hydrogen atom-antiproton) as a function
of &,b is shown as curve W on Fig. 3, after the
work of Wightman. " Obviously the same curve
results if the electron is replaced by a positron.
A significant feature of the system shown by curve
% is the small binding energy of the lepton as &„
approaches the critical binding distance" '" from
above. The arrow pointing up is at the critical
binding distance. The approximations of the lep-
tonic energy of HH, E+ (1/&,,), are also shown
in Fig. 3 as curves JB,' MH, ' and KMSW (present
work). Clearly, one should not attempt to esti-
mate 8, for HH by extrapolation. I.ow-order per-
turbation theory is not of much help either; the
energy of HP correct to second order (with the
electron-antiproton interaction taken to be the
perturbation) gives 1.25 as the critical binding
distance for HP."

Why did Junker and Bardsley get a maximum in
V~ We should first note that their barrier is very
small. The difference in the Junker-Bardsley
interatomic potential V between its maximum at
r„=3.1 a.u. and its minimum at r„-4.4 a.u. is
only 0.0088 eV. Indeed, the barrier height is less
than the width of the line in Fig. 4, which is a
linear plot of 8=V —1 versus &,b. Junker and
Bardsley's maximum is at the arrow pointing up
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FIG. 2. Rearrangement/annihilation cross section o
as a function of E~, the collision energy of H and H
in the center-of-mass system. The curves are from
Ref. 1 (curve MH), Ref. 2 (curve JB), and the present
results (curve KMSW).

FIG. 3. Leptonic energy & +1/t', b for the systems
HH (curves MH, JB, and KMSW from Refs. 1 and 2 and
the present work, respectively), and HP (or HP, curve
W from Refs. 9 and 10) as a function of the interbaryonic
distance r, b. The arrow pointing down shows where
Junker and Bardsley found a maximum in V = F. +1, and
the arrow pointing up is at the critical binding inter-
baryonic distance for HP. The horizontal lines show
the energies of the two systems with the leptons unbound
from the baryons and at rest at a large distance from
them.
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on the curve HH, and the minimum is at the arrow
pointing down. Moreover, the leptonic binding
energy (curve JB, Fig. 3) has no barrier at all
because the curve is monotonic. Second, we note
that the difference between Junker and Bardsley's
interatomic interaction energy and our more ac-
curate results at their maximum is not large
either —0.031 eV. The energy calculated by Junker
and Bardsley is distinguishable from ours in Fig.
3 only close to R„andnot at all in Fig. 4. The
difference between Junker and Bardsley's energy
and ours is shown in Fig. 5.

Figure 5 suggests an answer to our question.
Junker and Bardsley's results are accurate for
large interbaryonic distances, where even a com-
pact CI function would be quite accurate. But as
&„gets smaller than 3.1, the error in their energy
begins to grow rapidly. For large &„(-10)the
system is two atoms interacting via weak long-
range polarization forces, but for ~„approaching
R, from above, the system becomes positronium
weakly bound by a dipole; i.e., the interleptonic
interaction becomes predominantly short-range
correlation. Everywhere on the &,~ axis for &„
=R„the wave function may be regarded as a
mixture of these two "configurations, " HH and
PnPs, and the contribution of the PnPs-like "con-
figuration" changes from zero to one as &„de-
creases from infinity to R,. It is easy to show that

0.0-

-0.2-

-0.4-

a trial wave function corresponding to noninter-
acting atoms, namely, e "~i "~2, gives a very pro-
nounced maximum in the interatomic interaction
energy of about 0.02 a.u. at &,~=2 a.u. Junker and
Bardsley's wave function is simply not accurate
enough to suppress this spurious maximum, pre-
sumably because of the inefficacy of the CI method
in dealing with short-range correlation.

Another simple CI-type trial wave function,
(1+ n z„z»)e "~~ "», contains the main part of the
long-range polarization effect (the z axis coincides
with the interbaryonic axis). It is found that the
optimum value of the parameter 0.'passes through
zero very close to the Junker-Bardsley maximum,
which illustrates the inadvisability of using the CI
method on systems for which short-range corre-
lation is important. In order to represent the PnPs
contribution to the wave function, one needs a basis
function to reflect virtual positronium, namely,
e "» '. Our wave function does this by virtue of
having powers of &» in the basis set. The varia-
tional principle presumably arranges these powers
to approximate e "» '.

In the method of Purcell and Field for deter-
mining the cross section, one calculates, for a
given collision energy E„the largest impact
parameter R, which generates an interbaryonic
trajectory such that the classical turning point
Ro is less than the critical distance R,. The cross
section is then nR', . The method, which has been
described in detail by Morgan and Hughes, depends
upon finding the value of r„(other than zero}
which maximizes the function &'„(V—8,}. The
method is very straightforward for moderate values
of E, because Ro varies discontinuously with the
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FIG. 4. Total energy E for the four systems HH

(present work), Pn+Ps (i.e. , HH with the leptons free
and at rest;E =1/-r, ~-4), Hp (Hefs. 9 and 10), Pn
+ e+ + e (E = —1/-r, ~). x marks the critical binding
interbaryonic distance for HP.
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FIG. 5. Difference between the total energy obtained
by Junker and Bardsley and that obtained in the present
work.
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impact parameter such that it jumps over a seg-
ment of interbaryonic distance which surely con-
tains R,. The value of the impact parameter where
Ro has this fortuitous discontinuity may therefore
unambiguously be taken to be the critical value R„
and the cross section may be calculated without
benefit of an accurate determination of 8, . How-
ever, as E, increases, the "jump" taken by 8,
decreases in size, and one begins to lose confi-
dence that R, lies on the jumped segment. Some
uncertainty in the ealeulated value of the cross
section results. In Fig. 2 the dotted portions of
the Junker-Bardsley and present cross sections
are in this high-energy region and should there-
fore be regarded as tentative until R, can be ac-
curately determined.

The dotted part of the Morgan-Hughes cross
section represents a part of the curve for which

the potential presented by these authors is probably
not very accurate, according to their estimate. '

The function &'„(V E,—}may have more than one
local maximum and the correct choice is the larg-
est of these. The interatomic potentials of Junker
and Bardsley and of the present authors give rise
to two local maxima for certain ranges of colli-
sion energy, and the correct choice of these
switches from one to the other as E, varies. As
a consequence, the cross sections are not a smooth
function of I',

The dashed portions of the curves in Fig. 2 cor-
respond to collision energies so low that no more
than two partial waves would contribute signifi-
cantly to a quantum-mechanical calculation of the
baryonic scattering system; the classical theory
used for the dashed portions is thus of questionable
val. idity.
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