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Perturbation theory for the Stark effect in the hyperfine structure of alkali-metal atoms*~
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We have studied the quadratic Stark effect on the hyperfine structure in the ground states of the
alkali-metal atoms, lithium through cesium. In evaluating the leading perturbation terms, we have

utilized two sets of first-order wave functions, corresponding respectively to perturbations of the atomic
wave functions by the electric field and by the nuclear moment. The perturbed wave-functions were
obtained by solving the appropriate differential equations in first-order perturbation theory. The theo-
retical results agree very well with the recent experimental data for the entire series of alkali-metal

atoms. A discussion of the relation of our theoretical results to earlier ones in some of the alkali-

metal atoms is also presented.

I. INTRODUCTION

The shift in the hyperfine transition frequency
in the ground states of hydrogen and the alkali-
metal atoms due to the presence of a uniform
electric field has been studied by various inves-
tigators. This hyperfine Stark shift (HSS) has
been measured in hydrogen by Fortson et al. ,

'
in potassium by Snider, ' and in cesium by Haun
and Zacharias, and recently in all the alkali-
metal atoms by Mowat. 4

A theoretical investigation of the HSS in the
alkali-metal atoms is of great interest, since it
requires an accurate knowledge of the change in
the electronic wave function near the nucleus due
to the presence of the electric field. It would also
be interesting to see whether the good agreement
between theory and experiment that was found for
hydrogen" holds for other alkali atoms. A num-
ber of theoretical calculations have been carried
out in some of the alkali atoms with varying de-
grees of success. ' "

In the recent diagrammatic many-body perturba-
tion analysis for the HSS in the ground state of
lithium by Rodgers et al. ,

' it was found that the
major contribution to the HSS of lithium is from
the two diagrams shown in Fig. 1, one represent-
ing the effect of renormalization of the wave func-
tion and the other the effect of s admixture through
the second-order perturbation due to the electric
field. This feature has also been observed in the
subsequent study on sodium and potassium by
Kelly et al. '

Besides the major diagrams shown in Fig. 1,
higher-order diagrams involving up to two orders
in electron-electron interaction have also been
studied in the literature. ' These diagrams incor-
porate consistency and correlation effects on the
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FIG. 1. Two leading diagrams for the HSS of alkali
atoms. E represents the Fermi-contact interaction and
X the electric field vertex. ns denotes the valence s or-
bital involved.

hyperfine Stark shift. It was found that the major
consistency and correlation effects were associ-
ated with the hyperfine vertex in Fig. 1(a), and
that they could be included by using the experimen-
tal hyperfine constant for this vertex.

In view of the above finding, we felt that it would
be interesting to calculate the diagrams l(a.) and

1(b) for the HSS in the entire series of alkali
atoms for which data are available. ' 4 Since
diagrams 1(a) and 1(b) basically involve per-
turbations in the wave functions due to the elec-
tric field and nuclear magnetic moment through
the hyperfine interaction, one can calculate these
diagrams using perturbed functions obtained from
solutions of appropriate differential equations" '
in first-order perturbation theory instead of sum-
mations over excited states. Such perturbed func-
tions from solutions of appropriate differential
equations are used in work on electronic polariza-
bilities"'" and exchange core polarization contri-
butions to hyperfine constants. "

In Sec. II, this perturbation procedure that we
have utilized for calculating the hyperfine transi-
tion frequency in the presence of the electric field
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is described together with a brief description of
the perturbation procedure used for obtaining the
perturbed wave functions due to perturbations by
the uniform electric field and the nuclear moment.
The results are presented at the end of Sec. II.
Section III contains discussion of the results and

a comparison with experiment and earlier theoret-
ical calcul. ations.

II. THEORY AND PROCEDURE

The method that we utilize here is very similar
to one that has been adopted for studying el.ectron-
electron interaction effects" on the shielding of
the field gradient due to external charges at the
site of the nucleus in ions. In effect, what is done
is to evaluate the important diagrams of many-
body perturbation theory using the perturbed
wave functions obtained out of differential equa-
tions, rather than summation over excited states.
Thus contributions from the diagrams l(a) and

1(b) to the HSS can be written as

where F and X are given by

F = I' S6(r
16' p, s p, ~~

(2)

ns s ~ E E 4p
ns OP

X = - & cos6),

and represent the Fermi-contact interaction and
the perturbation due to the uniform external elec-
tric field h, respectively. In Eqs. (1) and (2), we
have used Q„, for the unperturbed va. lence s-state
wave function, 6Q„, ~ for the first-order perturbed
wave function due to the electric field, and b P„,
for the first-order wave function perturbed by the
nuclear moment. In Eq. (3), p.a is the Bohr mag-
neton, p,„the nuclear magnetic moment, and I
and S denote nuclear and electronic spin angular
momentum, respectively. In many-body perturba-
tion theory, ' '" the first-order perturbed wave
functions 6Q„, ~ and b Q„, , are given in terms
of excited states, namely,

wave functions. These equations are given by"'"

(H, E„—,)6 y„, , = f (—r)Xy„, ,

(Ho —E„,)rs p„, , = (E, —E)p„,
where

(8)

6v=[(«), „„,—(«), „,]/h
= —ah2 ~10-' Hz/(V/cm)', (10)

8 denoting the electric field. Tabl. e I contains the
theoretical results for k from the two diagrams
1(a) a.nd 1(b).

and f(r) is the factor introduced by Sandars's to
include the shielding effect of the external elec-
tric field by the ion core.

If one used for the unperturbed wave functions
Q„, , the appropriate Hartree-Fock wave functions
and replaced f(r) in Eq. (7) by unity, one would
really be evaluating the diagrams 1(a.) and l(b).
However, the wave functions Q„, used in the
present work have been determined" in empirical
potentials, which reproduce the observed ioniza-
tion potentials of the valence electrons of alkali
atoms. The factor f(r) was introduced, " in polar-
izability calculations, to incorporate in an approx-
imate way, the shielding effect of the core elec-
trons on the electric field acting on the valence
electrons. In view of these last two features, the
present calculation perhaps can be considered to
incorporate some of the consistency and correla-
tion effects in other diagrams" besides those in
Figs. 1(a) a,nd 1(b), although the exact contribu-
tions from such effects by this procedure is not
precisely known. As stated in the Introduction,
we have used the experimental hyperfine constant
at the hyperfine vertex in Fig. 1(a), which incor-
porates exchange core polarization, correlation
and relativistic effects associated with this ver-
tex. The perturbed functions 6P„, s used in our
calculations" have been found" to be in good agree-
ment with recent experimental results for polar-
izabili ties."

Our theoretical results are expressed in terms
of the parameter k, which is related to the HSS
(in frequency units) as

ns s ~ @ F ss
ns ks

(6) III. DISCUSSION

where E„, denotes single-particle energies. The
summations in Eqs. (6) and (6) are to be replaced
by integrations for continuum states.

In the differential-equation approach, however,
they are obtained directly by integrating the dif-
ferential equations for the first-order perturbed

The relative contributions to k from the dia-
grams 1(a) and 1(b) are found to be 60%%uo and 40%%uo,

respectively, of the total calculated results for
the entire series of atoms, and these total theo-
retical results are now in very good agreement
with experiment.

For Li, Na, and K, we can compare our results
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TABLE I. Contributions of the diagrams in Fig. 1 to
k in Eq. (10) for alkali atoms.

System 1(a) Total a
&expt

Li
"Na
39K

85Rb

87Rb
$33Cs

0.0376
0 ~ 0622
0 ~ 0433
0 ~ 3024
0 ~ 6808
1.4437

0.0219
0 ~ 0575
0 ~ 0250
0 2339
0.5286
0 ~ 7865

0.0595
0 ~ 1197
0 ~ 0683
0.5363
1 ~ 2094
2.2302

0.061(2)
0 124(4)
0.071(2)
0.546(12)
1.23(3)
2.25(5)

~See Ref. 4.

with those of earlier many-body diagrammatic cal-
culations. "'" The contributions from the diagram
1(a), both in the present and earlier calcula-
tionsio, » compare very wel. I. with each other for
lithium and sodium and somewhat less closely
for potassium, where the present value is about
15% larger than the earlier value from Ref. 11.
In the case of the diagram l(b), the present re-
sults are larger than the corresponding earlier
results"'" for all three systems, the ratio of the
former to the latter being 1.39, 1.25, and 1.16
for lithium, sodium, and potassium, respectively.
One of the reasons for this difference is due to the
fact that the amplitudes at the nucleus obtained
from the unperturbed valence orbital wave func-
tions" used here are 15% to 2O% larger than those
from the corresponding Hartree-Fock wave func-

tions utilized in earlier many-body calculations.
However, there is another contributing factor to
this difference between the two results which we

would like to point out. In order to evaluate the
diagram 1(b) by the many-body perturbation pro-
cedure, one has to calculate the matrix elements
of X for the compl. ete set of basis functions.
Among these matrix elements, those which con-
nect continuum wave functions to continuum wave
functions are difficult ones to handle in many-
body perturbation procedures and are usually
either estimated approximately' or neglected. "
In the present investigation, this difficulty does
not exist, since the perturbed wave functions are
obtained by directly solving the requisite differen-
tial equations. "'"

As mentioned earlier in Sec. II, owing to the
choice of unperturbed functions Q„, utilized in
this calculation and the use of the factor f(x) in
Eq. (7), some consistency and correlation effects
beyond those associated with the diagrams in Fig.
1 are included in our results for k. We cannot
therefore obtain quantitative estimates, from the
difference between the theoretical and experimen-
tal values of k in Table I, of the consistency and
correlation effects on k. However, the over-al. l.

very good agreement between theoretical and ex-
perimental k in Table I indicates that consistency
and correlation effects beyond those associated
with the hyperfine vertex are not of crucial im-
portance for the alkali-metal atoms.
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