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Comparative measurements of viscosity near the critical point
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The viscosity of the critical mixture isobutyric acid-water was measured by three different methods
used simultaneously. The comparison of the results obtained in this way allows better insight into the
anomalous behavior of the viscosity, and also into the question of the "ideal viscosity. " One of the
most important results consists in the experimental observation of the relaxation of the coupling be-
tween viscous and diffusive modes, as predicted by Kadanoff. Also, measurements of the Rayleigh
linewidth were performed so that the question of the "high-frequency" viscosity could be discussed. It
is shown that each kind of measurement involves a characteristic frequency and wave number, which

should be compared with the frequencies characteristic of the critical system. In such a way, as the
critical point is approached and consequently all the frequencies changed, a number of modifications
can occur in the behavior of the viscosity. In particular there is a decrease in the viscosity, measured

at nonzero frequency and a relaxation at the Kadanoff cutoff frequency. Very close to the critical point
the viscosity rounds off revealing a cusplike behavior, unless a dependence on the shear gradient is

allowed.

I. INTRODUCTION

Theoretical predictions for the shear viscosity
in critical systems show that a weak anomaly is to
be expected, consisting at most of a logarithmic
divergence or, perhaps, of a cusplike behavior. '

However, from an experimental point of view it
is to be noted that experimental. results obtained
by various authors with different techniques in

many cases do not agree with each other. Actually,
while an asymptotic logarithmic behavior was gen-
erally found, the relative amount of singularity,
the distance from the critical point at which the
anomalous behavior begins, and the behavior of
the singularity not too close to the critical point
are often very different from author to author.

In addition, a systematic deviation is found in
the analysis of light-scattering experiments. In
fact, when the Hayleigh linewidth I' is analyzed in
terms of the Kawasaki theory, the asymptotic
value of the coefficient ksT/16@ gives always for
p a value lower than that directly measured. ' '

In discussing the critical behavior of the viscos-
ity, some questions are to be taken into account.
Mainly, (i) the way in which the nonsingular part
of the viscosity is subtracted can sensibly alter
the results. This is seen, for example, in the
work of Gulari et ai. ,

4 and also in the present mea-
surements. (ii} The way in which the data are
analyzed can also affect the result. For example,
as pointed out in Ref. 5 a strong cusp in the excess
viscosity centered about the critical temperature,
can generate data suggesting a "classical region. "
For similar remarks, see also Ref. 6.

Apart from this consideration, however, the in-
trinsic behavior of the anomalous viscosity can

depend in a crucial way on the type of viscometer
used. There are some theoretical considerations
that give support to this idea.

First of all a dependence of viscosity on the
shear rate can take place. ' Also, nonlocality can
sensibly affect the measureMents. ' ' Finally, the
mode-mode coupling theory foresees a relaxation
of the coupling between viscous and diffusive
modes zo

Because the parameters determining the mag-
nitude of such effects depend on the method used
to measure the viscosity, one can expect that,
while different viscometers give the same results
far from the critical point, their indication could
become different as the critical point is approached.
On the other hand a direct comparison between re-
sults obtained by various authors by using different
methods in different systems, although indicative,
is rather questionable.

In order to give some clarifying insight on the
various questions sketched above, we planned an
experiment in which the viscosity is measured on
the same critical system by various methods,
simultaneously. In such a way the role played by
the particular viscometer used can be unambigu-
ously shown.

II. EXPERIMENTAL SETUP AND PROCEDURE

We measure the viscosity, in a critical mixture
of isobutyric acid in water, by three entirely
different methods, namely: By means of (i) a
vibrating-wire viscometer; (ii) a falling ball of
0.4-mm radius; and (iii) the observation of
Brownian motion of microspheres (-1-p.m radius}
by means of light scattering.
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netie ring R. In such a way a standard concentra-
tion of microspheres is restored. After stirring,
a waiting time of about 2 h is allowed.

(iii) The first measurement concerns Brownian
motion, because such a method does not disturb
the sample.

(iv) The viscosity is then measured by the
vibrating wire. A single short pulse of current
is sent into the wire and the subsequent damped
oseillations are photographically detected by an

osc illosc ope.
(v) The viscosity is then measured by means of

the falling sphere and after the temperature of
the thermostat is changed for the successive mea-
surements.

The over-all precision of our viscosity measure-
ments can be estimated to be of the order of 0.5%.

III. EXPERIMENTAL RESULTS AND DATA HANDLING

Before starting with measurements in the criti-
cal mixture, a careful standardization of the
three methods was performed by using a water-
ethyl-alcohol mixture (40% by weight of alcohol)
whose viscosity changes from 2.9 to 1.5 cP as the
temperature changes from 20 to 40 'C. However,
as it is known, the results obtained by the pro-
cedures described above do not depend in the
same way on the density p and on the viscosity

In fact the damping + of the oscillations of
the vibrating wire is related to the kinematic
viscosity q/p. The linewidth A of the light scat-
tered by the Brownian particles depends on the
viscosity g, through the well-known Einstein-
Stokes equation

A ' = (6mqr/k~T) k '

and the time ~ expended by the falling ball to cross
the two levels h„h, depends both on the viscosity
q and on the difference between the density p' of
the sphere and that of the liquid as

9 h, —h~
2 gv p -p

In the range of interest, from the standardization
measurements, it was found, in fact, that &, A

and t are linearly related to q/p, q, and q/(p' —p);
then we normalize our data by putting

n'=np~ri, A '~q, t' =(p' —p)t ~7i.
Such a procedure requires the knowledge of the

density of the critical mixture in the range of
temperature of interest. We performed this mea-
surement in a separate experiment up to 0.05 'C
from the critical temperature, and extrapolated
the results up to the critical point. It is clear,
however, that if the density had an anomalous

T =A/q~+ C +Bq~ . (5)

Equation (5) was tested over 87 substances, giving
a difference of less than 0.17%. The parameters
entering the Eqs. (4) and (5) have been evaluated

by using the data taken at temperatures far (& 11 'C)
from the critical point. For the critical tempera-
ture, by observing visually the formation of the
meniscus, we found a value of 26.246 +0.002 'C
which agrees with the values obtained by other
authors.

In Fig. 2 the data points are plotted. The inset
shows an enlarged part of the curves near the
critical point. It can be seen that while the results
given by the falling ball and by the Brownian motion
are in quantitative agreement the results given by
the vibrating-wire viscometer become completely
different as the critical point is approached. We

behavior close to the critical point, an asymptotic
difference in the results obtained by means of the
three viscometers would arise. '

As it is well known, a crucial step in the data
handling is the evaluation of the "ideal" part of
the viscosity. In our opinion, however, the entire
argument of the "ideal" viscosity is questionable.
The singular part of the viscosity due to the criti-
cal behavior is calculated by the various authors
on the ground of specified processes. However,
their calcu/3tions do oot exclude that other pro-
cesses, more or less related to the critical phe-
nomena, might take place: As a matter of fact
we can mention the anomalous behavior of the
noncritical water-alcohol mixture. In order to
compare experimental data with a theory, the
"ideal" viscosity would be determined as the
viscosity in the absence of the processes involved
in the theory: Such a quantity is clearly unob-
servable. One can believe, at most, that the
"ideal" viscosity will be an analytic function of the
temperature, so that in a range of a temperature
sufficiently small very near the critical point its
contribution could be considered as a constant. It
is, in fact, true that the asymptotic behavior of
the viscosity is quite unaffected by the choice of
the "ideal" viscosity, while over an extended range
of temperature the results crucially depend on
that choice. ' Our present measurements confirm
this point of view. In addition, as we shall see
in the following, the comparison between the data
given by the different methods allows a calculation
in which the "ideal" viscosity does not enter at all.

It is only for the sake of comparison that we
calculate an "ideal" viscosity by using both an
Arrhenius-type law,

w/r (4)

and an equation due to Bingham, "
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FIG. 2. Viscosity as a function of the temperature.
Dashed line: ideal Arrhenius viscosity; dotted line:
ideal Bingham viscosity. In the inset the data close to
the critical point.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

In Fig. 3 we report, as a function of the loga-
rithm of the reduced temperature e = (T —T, )/T„
the excess viscosity obtained either by subtracting
an Arrhenius ideal viscosity or a Bingham one.
As far as the falling ball and the Brownian motion
measurements are concerned, the behavior is the
same in the two cases. Generally speaking, there
is an initial sharp increase in the excess viscosity,
whose slope becomes smaller and smaller as the
critical point is approached. A straight line fits
the data, in the range 3&10 4 «&10 ', showing a
logarithmic divergence. The whole data set, how-
ever, cannot be fitted by a single power or loga-
rithmic law. Such a circumstance, elsewhere
mentioned' and shown by a number of similar

emphasize that the use of the three methods in

noncritical systems always gives the same results,
as we have carefully tested.

The following peculiar features can be stressed:
(i) The anomalous increase of the viscosity

begins relatively far from the critical point as
far as the falling ball and the Brownian motion
are concerned. The data obtained by such meth-
ods are in close agreement with data obtained by
other authors. ""On the contrary, the results
given by the vibrating wire show' an anomalous
behavior only near to the critical point. Such
peculiarity is more pronounced if the Bingham law
is assumed for the "ideal" viscosity, but holds
also in the hypothesis of an Arrhenius-type be-
havior. This circumstance seems to be charac-
teristic of the vibrating-wire viscometer, as pre-
viously reported. '

(ii) Near the critical point the viscosity, as mea-
sured by the vibrating-wire, shows a nonmonotonic
behavior, well above the experimental uncertainty.

[pg T~T

FIG. 3. Excess viscosity as a function of the reduced
temperature.

works, was recently stressed by Sengers, ' and

suggests a cusplike behavior for the excess vis-
cosity.

On the contrary the results obtained by the
vibrating-wire viscometer are quite different.
Apart from any detailed consideration we would
remark that different viscometers, while giving
the same results far from the critical point, behave
quite differently as the critical temperature is
approached.

This shows unambiguously, in our opinion, that
the concept of viscosity, in critical region, needs
a more careful operative definition from the ex-
perimental point of view. We will see in the fol-
lowing that the discrepancies observed between
the behavior of the vibrating-wire viscometer and
the other methods can be explained by taking into
account nonlocality and frequency dependence of
viscosity. Also the shear-rate dependence seems
to play a role, although a definite answer to such
a question is not at the present possible.

As a general rule, to each method used for the
viscosity measurements is associated a charac-
teristic length or, equivalently, wave vector q,
and a characteristic frequency . In the case of
the falling ball (and in the usual capillary-flow
measurements) & is zero, and q is very small
because of the macroscopic dimension of the probe.
In the case of Brownian motion, q is related to the
size of the particles, while for the frequency con-
cerned one deals with a distribution associated to
the Fourier transform of the velocities distribu-
tion.

In the case of vibrating wire (or oscillating disk
and similar devices) the wave vector q could be
associated with the spatial distribution of velocity
introduced by the device. As order of magnitude
the inverse penetration depth could be assumed,
by taking" q = (p&/q)'~'. The frequency ~, of
course, is the well-defined frequency at which
the probe operates.
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As far as the nonlocality is concerned, a treat-
ment given by Perl and Ferrell' gives the fol-
lowing equation:

[ n(r) —n(0)1/n(0) = (6/15&)o'(~), (6)

o(y) =0.169 —Iny —0.479y-2 . (6)

Thus it turns out that the frequency-dependent
viscosity would be about 15% less than its zero-
frequency value. Such a difference increases
when the critical point is approached. This is in

fair agreement with our data (see Fig. 2), and

justifies the "less sensitive" behavior of the
vibrating-mire viscometer.

Let us now discuss the nonmonotonic behavior
shown by the viscosity as measured by the vi-
brating wire viscometer. Within the framework
of the mode-mode coupling theory as developed
by Kadanoff and Swift, ' ' ' three regions of in-
creasing frequency can be distinguished. Each
of them is characterized by a cutoff frequency
such that at higher frequencies one mode relaxes
and its contribution to the anomalous behavior of
the transport coefficients becomes vanishing. As
far as the shear viscosity in critical mixtures is
concerned, there are two contributions to be con-
sidered. The first one is due to the coupling
among viscous and acoustic modes" and it is
present in the three regions and relaxes at a
characteristic frequency

where q(0) is the zero-frequency viscosity and

~ = (~/&~')" (7)

measures the frequency in units of the critical
diffusive linewidth evaluated at wave number q.
The function o(y) is given in Ref. 9. It is zero for
z =0 and, becomes increasingly negative for y&0.
Any correction for nonlocality is therefore to be
expected for the falling-ball measurements. In
the case of Brownian motion, + can be evaluated
by means of the measurements of the linewidth

A, and a value of a few hertz arises. Taking also
into account the values of D given in the litera-
ture" and the size of the particles, one obtains
a value of y which is lower than 10 ', so that the
corresponding correction for nonlocality is prac-
tically undetectable.

On the contrary, in the case of the vibrating
wire, & is about Sx10' sec ', and q (the inverse
penetration depth) is of the order of 10' cm ', so
that one gets a value of y =30. Then o'(y) can be
evaluated from the asymptotic formula given in
Ref. 9, as

parable with the acoustic wavelength associated
with the frequency involved in the measurement.
This characteristic frequency 0 is rather high,
also very near the critical point (e &10 '), being
of the order of 108 sec

The second contribution arises from the coupling
between viscous and mass diffusive modes, and
relaxes at a frequency

Q~=D( ' (10)

10

10—

10—2

D being the mass-diffusion coefficient. A numeri-
cal evaluation of such an inverse relaxation time
can be made, for the isobutyric acid-water sys-
tern, by using the data of Chu et a/. " The results
are shown in Fig. 4. As foreseen by the theory,
AD behaves roughly like &'. In the case of our
vibrating-wire viscometer the angular frequency
is 8168 sec, so that the diffusive mode contribu-
tion would relax for a reduced temperature & less
than 1.112x10 '. In Fig. 5 we report the experi-
mental data in the region of interest on an en-
larged scale. It can be noted that the nonmonotonic
behavior of the viscosity measured by the vibrating
wire takes place, actually, at the above-mentioned

temperature. We therefore suggest with confidence
that such behavior is explained as experimental
evidence for the relaxation of the coupling between
viscous and diffusive modes.

In order to test such a hypothesis, we write
the viscosity as the sum of a term p*, that con-
tains both the "ideal" viscosity and the contribu-
tion due to the coupling with acoustic modes, plus
a contribution of magnitude A that relaxes just at

(9) 10" 1g T —Tc 10
Tc

where V is the sound velocity; i.e., the relaxation
occurs when the correlation length becomes com-

FIG. 4. Inverse relaxation times for the coupling be-
tween viscous and diffusive modes.
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FIG. 5. Viscosity experimental data in the neighbor-
hood of the relaxation temperature.

the frequency OD:

q =q*+A [1+(&/0 )'] '

(q —q+)/A =[1+(~/Qn)'] (12)

and compare the obtained values with the right-
hand side as calculated from the D and $ data of
Chu et al." (circles and dashed lines in Fig. 6).
The agreement is surprisingly good, so that we
believe that we actually observe the relaxation of
the contribution due to the coupling with diffusive

The unrelaxed value q*+A can be evaluated by the
extrapolation of the experimental data obtained
for c &1.112&10 ' towards small & values; anal-
ogously the relaxed value p* can be obtained ex-
trapolating the data obtained for «1.112&&10 '
towards large e value (dashed lines in Fig. 5).
Then one can evaluate the left-hand side of the
equation

modes, predicted by Kadanoff, and that in the
relaxation region the viscosity can be adequately
described in Eq. (11). To our knowledge such
experimental evidence has not been observed until
now. In addition, in the preceding procedure the
magnitude of the "ideal" viscosity does not enter
explicitly.

Another indirect comparison can be obtained by
plotting the relative excess viscosity &q/q as a
function of log„&. On the ground of current theories
one expects a straight line with a negative slope of
0.033.' In Fig. 7 we report such a plot. The re-
sults obtained by the falling ball (and by the
Brownian motion) give a, good agreement as far
as the Bingham equation is used to subtract the
"ideal" viscosity.

This could be an indication that such an equation
describes the viscosity of our system better than
the Arrhenius law. As far as the vibrating-wire
viscometer is concerned, according to the above
considerations, one can plot the quantity A/(A +q*),
i.e., the relative anomalous contribution given
by the coupling with diffusive modes. Again there
is a good agreement, the slope being -0.0337.

Some remark should be made about the "rounding
off" of the viscosity very near to the critical point.
Also this feature appears to be relevant in connec-
tion with the vibrating-wire viscometer, although
in the literature other examples are available. '
As mentioned above such a peculiarity could indi-
cate a cusplike behavior in the anomalous viscos-
ity. On the other hand, also a shear-rate depen-
dence of the viscosity' could explain the rounding
off, especially taking into account both the rather
high values of the velocity gradient introduced by
the vibrating wire and the closeness to the critical
point at which the rounding off becomes evident
At the present, however, we cannot decide between
these two possibilities.
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with diffusive modes.
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FIG. 8. Hayleigh linewidth measurement (dots) and
Kawasaki plot (full line). On the right-hand side the
arrows indicate the asymptotic I'/k3 values obtained with
different viscosities (see text).

V. HIGH-FREQUENCY VISCOSITY

As mentioned in Secs. II and III we use the light
scattering experimental setup to detect the Ray-
leigh linewidth for temperatures close to the
critical point, enough that the critical scattering
dominates. The obtained data are analyzed in
terms of the Kawasaki prediction and are plotted
in Fig. 8. There is good agreement between our
data and that obtained by Chu et al." In particular,
our figure for the asymptotic constant value

1/k3 =1.00x10 "cm'/sec

favorably compares with the value 1.06&10 "cm'/
sec obtained by Chu. On the right-hand side of
Fig. 8 we have indicated the quantity ksT/16&,
i.e., the expected asymptotic value of I'/k', cal-
culated by using the Arrhenius viscosity q ",
the Bingham viscosity q~, the relaxed value of
the viscosity p* given by the vibrating-wire vis-
cometer, and the "hydrodynamic" value g given
by the falling ball measurements. We can also
compare our data with the data obtained by Chang
et al. on a 3-methylpentane nitroethane mixture. '
Their asymptotic value of I /O' corresponds to a
viscosity of 0.49 cP. The "ideal" viscosity in
their system is 0.38 cP, while the measured vis-
cosity increases up to about 0.540 cP. It follows
that the "hydrodynamic" viscosity is about 10%
larger than the "high-frequency" viscosity cal-
culated from the 1"/k' value, while "ideal" vis-
cosity is about 22% lower.

In our case a similar situation arises. Our
"hydrodynamic" viscosity, even if taken relatively
far from the critical point, is about 13% larger,
and the "ideal" Bingham viscosity is about 15'%

lower than the value q =2.47 calculated from the
asymptotic I'/k' value. Also, the relaxed value
is still 10% lower

On the other hand, according to the considera-
tion mentioned in Sec. IV, the viscosity implied in

the light-scattering experiment has to be con-
sidered as measured with a probe fixed by
the dynamics of the concentration fluctuations.

The wave vector q associated to such a probe
is given by the scattering wave vector k, and the
frequency ~ can be measured by the Rayleigh
linewidth 1"=Dk'. It follows that (i) the parameter
y associated with nonlocality correction remains
constant throughout the measurement and equal
to 1. (From Ref. 9 this implies a decrease of
about 5% in the viscosity with respect to the zero-
frequency value). (ii) The ratio &/Qo becomes
equal to (k$)', so that in the asymptotic region
k(&1 one is concerned with a viscosity in which
the contribution due to the coupling with diffusive
modes is relaxed.

As a consequence the "hydrodynamic" viscosity
is larger than the "high-frequency" viscosity com-
puted from the asymptotic &/k' value, because
the former is a nonrelaxed one. On the contrary,
the relaxed viscosity, as measured by the vi-
brating wire (apart from considerations of a hypo-
thetical shear rate dependence), is lower because
of the larger nonlocality effects. Such considera-
tions are quite consistent with our experimental
data, as shown in Fig. 8.

VI. CONCLUDING REMARKS

From the discussion developed so far it appears
that the mechanisms appealed to in order to ex-
plain the critical behavior of the viscosity at least
lead to a comparison between two characteristic
frequencies. The magnitude of these frequencies
can be very different although they show a common
or igin.

Having in mind the coupling between viscous
and diffusive modes, the diffusion coefficient D
gives rise to two frequencies characteristic of
the critical system one examines. The first one
is the cutoff frequency OD, as given by Kadanoff"
[see Eq. (10)], which measures the time for mass
diffusion to cross a correlation length. The second
one, 0, =Dq', measures the time for mass diffu-
sion to cross the characteristic length q '.

As the temperature changes, and the critical
point is approached, the following behavior occurs:
(i) ~ remains practically constant, or changes
slowly (as in the case of Brownian motion, as a
result of the increase in viscosity); (ii) Qo changes
quickly as e~; (iii) 0, changes roughly, as e"',
because the diffusion coefficient changes. Also,
p can change slowly, as is the case if p

' rep-
resents the inverse penetration depth that depends
on the kinematic viscosity.
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The following comments are pertinent:
(a) The ratio between ~ and Q, enters the cor

rection for the frequency dependence of the vis-
cosity, as shown by Perl and Ferrell. ' In the
case of the vibrating-wire viscometer such a cor-
rection is as high as 15% and increases up to 20
to 25% as the critical point is approached, because
of the decrease in 0, . As far as the Brownian
motion is concerned, 0, is 10' times larger
because of the small dimensions of Brownian
particles. An estimate of , on the basis of the
linewidth A measurements, obtains an order of
magnitude of only a few hertz. As a consequence,
in such a case the correction would be less than
l%%uo and cannot be detected in our measurements.
Finally, the zero frequency connected with the
falling ball prevents any effect.

(b) The ratio between & and Q~ enters the
relaxation of the coupling between viscous and
d'iffusive modes, as shown by Kadanoff. In the
case of the vibrating-wire viscometer such a
relaxation takes'place at & =1.112X10 ' and it
has been experimentally observed. In the case
of the Brownian motion its low frequency prevents
the effect, unless & is lowered to about 10 '. The
zero frequency connected with the falling ball ex™
eludes this phenomenon.

When we consider the "high-frequency" viscosity

in connection with Rayleigh-linewidth I' measure-
ments, a rather peculiar situation takes place.
Actually, in such a case, both the frequency +
(to which the viscosity measurements are con-
cerned) and Q, become equal to Dk', k being the
wave number involved in the light-scattering mea-
surements. The ratio &/Q~ becomes the ratio
Q /Q~ = (k$)', so that the condition k$ =1 marks
the temperature at which the relaxation of the
coupling with diffusive modes takes place.

In conclusion we have shown that the results
obtained in the viscosity measurements depend
on the method used. The vibrating-wire vis-
cometer allows the experimental observation of
the relaxation of the coupling with diffusive modes.
The behavior of the viscosity very near the criti-
cal point rounds off, revealing a cusplike be-
havior, unless a dependence of the viscosity on
the shear gradient is allowed. Further work is
in progress in order to extend the measurements
to a larger range of frequencies and substances.
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