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Scaling theory of hydrodynamic turbulence
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A phenomenological scaling theory for incompressible fluid turbulence in the limit of infinite Reynolds
number is proposed. The local vorticity and local dissipation are taken as scaling variables with scaling
dimensions 2/3 —f/2 and p,/2, respectively. The 1941 Kolmogorov theory corresponds to p, = g = 0.
Experimentally, f is small and p. —1/2. This choice of scaling variables gives immediate and simple
predictions about measured or readily measurable scaling exponents. An additional dimensionality-

dependent scaling relation, p, = d —8/3 + 2g, is proposed and supported by a physically plausible
argument. This relation, which is consistent with experiment, suggests that the 1941 Kolmogorov
theory is exact for 2 & d & 8/3 and has small corrections for d = 3. Dynamical reasons for this

behavior are suggested. The relation. of scaling behavior to intermittency of the dissipation is

briefly discussed.

I. INTRODUCTION

Incompressible fluid turbulence in the limit of
very small viscosity (very large Reynolds num-
ber) exhibits scaling properties reminiscent of
critical-point fluctuations. ' The behavior at small
scales is universal and isotropic, and independent
of the details of the large-scale motions. Fluctua-
tions over a very large range of scales are im-
portant, and it is the insulation of the small scales
from the direct influence of the large scales
which is the essential physical feature of the prob-
lem. Important qualitative aspects of the problem
were already recognized in 1941 by Kolmogorov, '
who proposed his famous 4 ' ' energy spectrum
using dimensional arguments. We begin by a re-
statement of the 1941 Kolmogorov idea in a lan-
guage appropriate to the generalization we propose.

We work in r space, and take as our basic ran-
dom variable

q(x) = su/sx,

where u is one Cartesian component of the velocity
field and x is one Cartesian component of the posi-
tion. For isotropic turbulence the statistical prop-
erties of f(x) will be essentially the same as those
of the local vorticity. The basic correlation func-
tion of interest is

good enough that the energy input E is independent
of the viscosity ~.

For convenience assume that the Reynolds num-
ber is varied by keeping & and L fixed and varying

There are two natural scaling assumptions.
The first concerns the inertial subrange

(&&y «i.
In this range correlation functions are assumed to
have their zero-viscosity form, and this is taken
as a power law

(4)

The second scaling assumption is that the dissipa-
tion length

(5)

varies as a power of the viscosity. The scaling
exponents g and v are to be determined from ex-
periment or dynamical theory. The reader famil-
iar with critical phenomena will be aided in forming
an analogy by the choice of notation.

The exponents q and v are not, however, inde-
pendent. From the mechanism of energy dissipa-
tion, we have'

e =15&(g'(0)) .
We define the dissipation length $ through

~(r, )() = (4(x)(Cl(x+r)) (2) Q(0 )() Q($ 0) g- (2- Tl )

where ~ is the kinematic viscosity. An essential
assumption is that the effects of viscosity are felt
only at small scales. Energy is put into the fluid
at an average rate & per unit volume at scales of
order L, cascaded to small scales, and eventually
dissipated on scales of order g. Characteristic
times decrease with decreasing scale size; so
the small scales are in a steady state. The insula-
tion of large from small scales is assumed to be

which implies that (2 —)})v =1. The power-law
divergence of G(r, 0) at small r is rounded off at
r of the order of $ in order to give the dynamically
constrained value of mean square vorticity. Equa-
tions (4), (5), and (I) are all satisfied in the 1941
Kolmogorov theory with g = 3 and v =4. We will
assume that they remain satisfied when deviations
from the 1941 theory are included. Suppose that
g —3 + f where f is a small correction. The cor-
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The essential difficulty with the 1941 Kolmogorov
theory is not, however, directly associated with
the "order-parameter" correlation function G(&, &).
The dimensional arguments of the 1941 theory are
extremely restrictive for correlations involving
other dynamical variables. Consider for example
the variable

e (x) = A.g'(x),

which is a one-dimensional counterpart of the local
dissipation rate. The correlation function

E(r, A) = &e(x)e(x+r)& (10)

responding exponent for the energy spectrum will
be -', +&, and the dissipation-length exponent will
be

(8)

question of intermittency as reflected in more
complicated statistical properties of e(x) and g(x).

II. LOCAL DISSIPATION AS A SCALING VARIABLE

In 1962 Kolmogorov proposed a modification of
his 1941 theory to take into account the fluctuations
in dissipation. ' This 1962 proposal emphasized
the intermittency of the dissipation as reflected in
the probability distribution of the average dissipa-
tion

e(x)dx .

In Sec. V we will consider briefly the higher mo-
ments of &„, but for now we restrict our attention
to &e'„&, noting that

has the property that , (r'&e2
& ) =E(r, A.).

1 d'
(14)

The variation of E(0, &} with Reynolds number is
the same as that of the kurtosis of the local velocity
derivative. It is natural to assume that this has
the power-law form

(12}

The dimensional arguments of the 1941 theory
require o.'=0. To see this note that E(0, A)e ' is a
dimensionless quantity. The only dimensionless
parameter on which it can depend is the Reynolds
number

~ a/3 L4/3p„-t

In the 1941 theory, the basic assumption is that
there is no dependence on the external length scale

Without such dependence, however, there can
be no dependence on Reynolds number of dimen-
sionless quantities defined at a single spatial point.

The assumption that & =0 does not seem rea-
sonable, and does not work experimentally. In
Sec. II we consider & 4 0, but make the assumption
that e(x) is a scaling variable. This assumption is
remarkably restrictive and leads to several im-
mediate and simple predictions concerning the
properties of readily measurable correlation func-
tions. In Sec. III we consider how scaling exponents
might depend on spatial dimensionality. The 1941
theory plays the role of a mean-field theory with
dimensionality-independent exponent:s. We propose
a d-dependent hyperscaling relation which is con-
sistent with experiment for d =3. A slightly modi-
fied analogy with critical phenomena suggests that
the hyperscaling is valid for d &-,', and that the
1941 theory is valid for d&-', . In Sec. IV we discuss
briefly some possible reasons for the conclusions
of Secs. II and III. Finally, in Sec. V we turn to the

with p, independent of Reynolds number. The most
accurate published value' is p. =0.51 +0.02. The
dissipation spectrum also appears to cut off at
high wave number in essentially the same way as
the energy spectrum. ' This suggests the scaling
relation

E(0, X) E($, 0)- A. "-' . (16)

The exponent relation

(17)

has, in fact, been previously suggested. ' Taking
p, = —, and v = &, Eqs. (12) and (17) state that the
kurtosis of the local velocity derivative should in-
crease as the —,

' power of the Reynolds number.
This is consistent with but not sensitively tested
by experiment. Note that the 1941 theory requires
a= p, =P.

The essential physical statement in Eq. (16) is
that the same characteristic length governs the
dissipation fluctuations and the vorticity fluctua-
tions. In analogy to critical phenomena this im-
mediately suggests that we take g(x) and e(x) to
be scaling variables with scaling dimensions'

[Equation (14) is directly analogous to the familiar
relation between mean-square displacement and
the velocity correlation function in Brow'nian-mo-
tion theory. ]

It is far from obvious that &e'„& or E(r, A) should
have an inertial-range power-law behavior, but
this part of the 1962 Kolmogorov prediction appears
to have considerable experimental support. Mea-
surements of the spectrum of dissipation fluctua-
tions' ' indicate that
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(Is)

C(~, ~) = &y(~)e(~+~)& . (19)

respectively. We then consider the cross correla-
tion function

enological context. ' For turbulence we do not yet
have a renormalization-group argument, but we
can give a physically plausible fluctuation argument
with an interesting if not totally convincing result.

Consider the quantity

This should have the inertial-range form

C(r, 0}-r- (20)
&e'(~)& == d" ~l(P)&l ' (25)

with

(21)

in a d-dimensional fluid. The volume of k-space
contributing to the integral is $ . In the integrand,

C (0, A) -C ($, 0) - A. ' " .

Note, however, that

C(0, A) = A&p'(0)& =A. ' ' e ' 'S(A),

where

(22)

(23)

This inertial-range exponent has not been mea-
sured, but should not be difficult to obtain by re-
processing existing data tapes. We further expect
the scaling relation

It is reasonable to suppose that (P)-„ for 0& g
' is

dominated by vorticity fluctuations g ~ with q in the
inertial subrange. We thus suppose that the inte-
grand in Eq. (26) can be taken independent of vis-
cosity. This implies that

Recalling that

S(l ) = &&'(0)&/&t'(0)&"- -' (24) &"(~)& =~'&c'(~)&,

is the skewness of the velocity derivative. Com-
bining Eq. (8) with Eqs. (21)-(24), we have

we have

N=dv —2 . (2s)
(25}

Equation (25) states that the skewness varies as
the square root of the kurtosis of the velocity
derivative. This is again consistent with experi-
ment, ' but has not been. sensitively tested.

To summarize, the observation that E(&, &) has
a power-law inertial subrange suggests that the
local dissipation should be treated as a scaling
variable. This immediately predicts the variation
with Reynolds number of the skewness and kurtosis
of velocity derivatives, and the inertial range ex-
ponent for the correlation between vorticity and
local dissipation. These are readily measurable
quantities which do not involve the theoretical or
experimental difficulties associated with inter-
mittency and higher-order statistics. Their ac-
curate experimental determination w'ould be an
important contribution towards an improved basic
understanding of turbulence.

III. EFFECTS OF VARIABLE DIMENSIONALITY

To this point the exponents v and &, or equiva-
lently f and p, are independent. The analogy with
critical phenomena suggests that we look for a,

"hyperscaling" relation between them which depends
explicitly on the spatial dimensionality d. In criti-
cal phenomena such a relationship is most natural-
ly generated by the invariance of the partition func-
tion under a renormalization-group transforma-
tion, ' but it can also be obtained in a more phenom-

Using the various exponent relations obtained in
Sec. II this can be written in the more convenient
form

p =d —
3 +2/ (29)

which relates the inertial-range exponent of the
energy spectrum to the inertial-range exponent of
the dissipation fluctuations.

Equation (29) has several interesting features.
First, we note that a nonzero value of p. does not
require a nonzero value of &. This point has been
previously emphasized by Kraichnan' in a quite
different context. We then note that, for d =3, the
experimental value g =0.51 +0.02 implies that (
=0.09+0.01. A small positive value of f is fre-
quently stated to be suggested by experiment, but
no firm values have been published. Finally, we
note that the 1962 Kolmogorov and Obukhov ideas
when combined with Eq. (29) give an interesting if
somewhat mysterious prediction for p. and P.
Obukhov" suggested that f should be determined
by replacing (e)'~' in the 1941 theory by &e'„'& .
Using Kolmogorov's' suggestion that E„should be
a log-normal random variable, this implies g

When combined with Eq, (29) for d =3 this
gives p, = —,

' and f =, . These results are quite
reasonable, but the physical motivation for
Obukhov's suggestion remains unclear.

The dimensional analysis leading to the 1941
Kolmogorov theory leads to dimensionality-inde-
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pendent exponents

E' O~ ~K 0 ~ ~A 3 y ~EC Os ~E

In this sense (and so far in no other sense) the
1941 theory can be thought of as a mean field theory
for turbulence. The 1941 theory is compatible with
the d-dependent scaling relations (28) and (29) only
for d =a*= -', . In critical phenomena mean field
theory is valid for d &d*, and the hyperscaling re-
lation dv =2 —& holds for d&d*. For an ordinary
critical point d*=4. We would suggest that for
turbulence the situation is reversed, probably due
tothe universality of large 4 fluctuations in turbu-
lence as opposed to small k fluctuations in critical
phenomena. Thus me expect the 1941 theory to be
valid for d& -', , and the hyperscaling relations of
Eqs. (28) or (29) for d&-', . In Sec. IV we give some
qualitative dynamical arguments in support of this
suggest ion.

One might hope that the 1941 theory would be
valid in two dimensions, but d =2 is a quite special
case because of the absence of vortex stretching,
which is the basic mechanism of turbulence for
d &2. A modified form of the 1943 ideas has been
developed for two-dimensional turbulence, " and
the subject is of considerable interest in its omn

right. There has been considerable discussion
about corrections to the scaling exponents of the
modif ied theory, Using the critical-phenomena
analogy the present author has suggested' that
these corrections should be large. The mork pre-
sented here makes this earlier suggestion inopera-
tive.

We should note that;the hyperscaling relation
dv =2 — is not above suspicion even in critical
phenomena. It works exactly for the tmo-dimen-
sional Ising model, and for renormalization-group
calculations close to four dimensions. For the
three-dimensional Ising model, however, the best
numerical evidence suggests a small deviation,
which ean be- encompassed by an additional ex-
ponent *, sometimes called the anomalous dimen-
sion of the vacuum. ." Ef such an exponent were to
exist for turbulence, the conclusions of See. EI

relating different experimental exponents would
be unchanged, but Eqs. (28) and (29) would no
longer hold. We would not be at all surprised if
Eq. (29) were not numerically accurate in three
dimensions, but we would expect the prediction of
-', as a crossover dimension to re~ain correct.
In order to understand better the significance of
this crossover we need a deeper physical under-
standing of why the 1941 theory gives the exponent

3
V =4.

Finally, we note that the idea of a fractional
dimension being related to dissipation fluctuations
in turbulence has b'een introduced elsemhere. '" The

connection to the present work is not clear, and
mould be of some interest to understand.

When & is an inertial range scale, the 1941 theory
predicts that P(Au) has the same shape for all &

if 4u is appropriately scaled. Experimentally
there are definite deviations from this condition
of statistical self-similarity, "but our earlier
claim that these deviations rule out fixed-point
behavior is incorrect.

Fixed-point scaling requires that correlation
functions like

&4(~)4(~+&)4(~+&+p)}, (30)

with & and p inertial range scales, have scaling
properties determined by the scaling dimes. sion

IV. DYNAMICAL ARGUMENTS

The scaling behavior proposed in Sec. II strongly
suggests an analysis in terms of a fixed point of an
appropriate probability functional under a renor-
malization-group transformation. En an earlier
paper' we made a crude attempt to analyze turbu-
lence from this point of view. Our formal starting
point was to look for steady-state solutions to the
Fokker-Planck equation first proposed by Ed-
wards. " This formal point of view still seems
appropriate since it eliminates the unwanted time
dependence and allows a simple parameterization
of the driving force at large scales. We are left
with a linear functional differential equation in
which the infinite number of degrees of freedom
plays an essential role. We showed hom the 1941
Kolmogorov theory could arise if the stirring
length L were taken to infinity from the beginning.
Our use of the term "renormalization group" in
this context mas, however, somewhat misleading.
If a renormalization-group transformation is
thought of as a refined scale transformation at
fixed cutoff, ' then taking the cutoff to infinity first
is a degenerate ease in which the dynamically
crucial distinction between a scale transformation
and a renormalization-group transformation is
lost. To carry out a renormalization-group trans-
formation for turbulence, we must find a procedure
for integrating out the low-wave-number degrees
of freedom while keeping the stirring length L
finite. To date me have had no success with this
problem.

We also suggested that the observed deviations
from the 1941 Kolmogorov theory were incom-
patible with a fixed-point description of turbulence
in the limit of vanishing viscosity. The experimen-
tal evidence that me used concerned the two-point
probability P (b,u), where

&u =u(x+&) -u(x) .
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of g(x). The scaling behavior of

(0 (x)4(x++))

need not, however, be simply related to that of
(g(x)g(x+&)), as we have already discussed in

See. II. The experimental evidence concerns cor-
relation functions like Eq. (31) rather than like
Eq. (30).

The analogy to critical phenomena suggests"
that one look for a scaling variable quadratic in
the velocity field whose correlation function di-
verges more weakly with Reynolds number than
does the "order-parameter" correlation function
G(r, &). This would be analogous to the energy
variable as a scaling variable in critical phenom-
ena with the associated specific-heat singularity.
As suggested in Sec. II, the local dissipation e(x)
is a reasonable candidate for this role. It remains
to be seen if the more detailed statistical proper-
ties of e(x) are compatible with fixed-point scaling.
%'e discuss this point briefly in Sec. V.

The possibility of a quadratic scaling variable
is also suggested by the structure of the Navier-
Stokes equations. These equations couple the
velocity field at a point to terms quadratic in the
velocity field at a point. The equation of motion
for G(r, &} contains correlation functions like Eq.
(31), but does not contain correlation functions
like Eq. (30).

To understand the dependence of scaling expo-
nents on dimensionality we must consider the
dynamical mechanisms whose interplay determines
the small-scale fluctuations. The (v ' V)v con-
vective nonlinearity in the Navier-Stokes equations
is responsible for the cascade of energy to small
scales. The VP pressure term, when combined
with the incompressibility condition, is strongly
nonlocal in ordinary space, and does not contribute
to the transfer of energy in k space. ' In the 1941
Kolmogorov theory the external length scale L
does not appear in the final results. As we have
seen this requires a strong suppression of dissipa-
tion fluctuations. This can only come about if the
nonlocal pressure term couples separate regions
of space strongly enough to prevent any tendency
towards independent cascades in different regions
with different turbulent intensities. Spatial inter-
mittency and a build up of dissipation fluctuations
would indicate that the pressure term is no longer
able to compete equally with the local cascade due
to the inertial terms. To illustrate this effect in
an extreme cas consider the Burgers equation in
one dimension. " Here the pressure term is absent,
and the convective terms lead to well defined shock
fronts, an extreme case of spatial intermittency.

As has been emphasized by Kraichnan' a turbulent
steady state is very far from equilibrium with the

V. INTERMITTENCY

Much of the recent literature on very high-
Reynolds-number turbulence has focused on the
problem of spatial intermittency. The observed
random variables have a tendency towards "spot-
tiness" which becomes more pronounced on small
scales and at higher Reynolds numbers. A proper
statistical measure of this effect is not easily con-
structed. The most popular choice is the probabil-
ity distribution of the random variable &„ defined
by Eq. (13}. It was originally postulated by
Kolmogorov' that the logarithm of &„ should have
a normal distribution. This suggests that &„
should be a product of independently distributed
random variables. This idea was developed by
Yaglom, "and put on a more satisfactory math-
ematical basis by Novikov. " Novikov introduced
the ratio variables

(32)

which he proved to have some very interesting
properties. In particular, if the scale similarity
conditions

(e,', , ) =(I/&)" (33)

are satisfied for all integer P and for ~& l, then

q„p is statistically independent of Qp, for «p & l,
and the probability distribution of q„, is asymp-

high-wave-number modes very weakly populated.
An essentially one-way cascade in k space is set
up in which energy flows from the originally popu-
lated small-k' region to the much larger unpopulated
large-0 region. As the dimensionality increases
the volume of k space into which energy ean cas-
cade grows. Perhaps the local cascade via the
convective terms can no longer be completely
balanced by the averaging effect of the pressure
terms when the dimensionality is sufficiently high.
Intermittency as reflected in deviations from the
1941 theory would be expected at high enough
dimensionality. The qualitative ideas leading to
Eq. (27) would be expected to be valid only in this
high-dimens ionality s ituation.

We then note that the scaling argument leading
to Eq. (27) is compatible with the 1941 theory only
for d = -', . We have a plausible argument, rein-
forced by the reasonable numerical results for
d =3, that the scaling argument should be valid for
d & -', . The 1941 theory is assumed valid for d & -',

by analogy to the crossover at d =4 in critical
phenomena. These arguments must be considered
as speculative at the present time, but they do
indicate that the results of Secs. II and III are not
unreasonable as possible consequences of the
Navier-Stokes equations.
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E(k)-k '"" f(u() (34)

with the shape of the cutoff function f (x) indepen-
dent of Reynolds number. Physically we think of
intermittency as associated with cascades in dif-
ferent regions of space going on to some extent
independently. Regions of stronger turbulence will
cascade more efficiently than regions of weaker

totically log-normal for «& I. The approach to
log-normality is sufficiently slow, however, that
the scaling exponents p~ are not equal to the ex-
ponents p, ~ for the asymptotic distribution. In the
Yaglom-Novikov picture intermittency is thus a
natural consequence of scale similarity, and is
not a separate phenomenon of intrinsic interest.

It is reasonable to expect that for r«l the fluc-
tuations in &, are negligible compared to the fluc-
tuations in &„. Thus the probability distribution of
&„ should define the same scaling exponents as
defined by Eq. (33). This ergodic hypothesis
[Novikov's Eq. (1.6)] is at the heart of Yaglom's
original argument for the intermittency of e„.
Recent experiments" strongly suggest, however,
that this ergodic hypothesis is not valid. Perhaps
this is because the random variables &„and &,

remain strongly correlated even when «&l. This
is not too surprising in light of the slow decay of
the correlation function E(x, 0) associated with the
small value of p, . Experimentally p, =0.22, which
is much smaller than the value JLt. =0.51 determined
from {e'„) and discussed extensively in Secs. II
and III. The inequality p,, & p, is consistent with

long-range positive correlations between &„and
c, suppressing the fluctuations in q„, . In fact,
it is just this possibility which makes q„, a
bounded random variable and allows Novikov to
give proofs relating intermittency and scale sim-
ilarity.

We thus find that the entire basis for understand-
ing the intermittency of the dissipation in terms of
the properties of ratio variables is put into ques-
tion by experiment. Ironically, these same ex-
periments strongly support the elegant work of
Novikov on the properties of the ratio variables.
The question of the intermittency of the dissipation
field requires a thorough reexamination without
the use of ratio variables. Perhaps we will again
find that the 1962 Kolmogorov idea is essentially
correct and is essentially equivalent to the scaling
hypothesis of Sec. II. Perhaps we will find that
the intermittency of c(x) requires an intrinsically
weaker form of scaling than that associated with

a fixed point. The question is open and of con-
siderable interest.

Finally, we consider the effects of intermittency
on the energy spectrum E(k). In the 1941 theory
E(&) has the form

turbulence. This should lead to a cutoff function
f (x) whose shape depends on Reynolds number,
particularly in the asymptotic large-0 region.
The simplest way to examine this question is to
study the various moments

(35)

For n =2, Eq. (35) defines the dissipation length
and the scaling exponent v. To study n =4 consider
the skewness of the velocity derivative as a func-
tion of Reynolds number. This is given by"

S(~) =-', (»0)'" ~M. (~) [~ (~) ] " (36)

If the cutoff function had a universal shape, Eq.
(36) would imply that

(37)

where 6 is defined by Eq. (24). This is to be com-
pared with the result 8=-,'p. )) of Eq. (25) obtained
from the scaling hypothesis of Sec. II. Theoretical-
ly we can not exclude the possibility that p =3),
which would make Eqs. (25) and (37) agree, but
experimentally it is unlikely that 3$ could be as
large as g. If we accept Eq. (25) we conclude
that the skewness grows with Reynolds number
faster than predicted by Eq. (34). This is con-
sistent with our qualitative picture of intermittency
enhancing the large-& regions of the spectrum.
Similar arguments can be given for the intermit-
tency parameter

w =M, (~)~,(~) [M, (~)]-'

introduced by Wyngaard and Pao.4 This parameter
would be constant if Eq. (34) were correct. Ex-
perimentally, it appears to increase weakly with
Reynolds number.

Note that we have to be careful in making analo-
gies with the scaling properties expected near a
critical point. The basic scaling property is the
existence of a single correlation length applicable
to both the vorticity and dissipation. correlation
functions. This is a reasonable and appealing
simplifying assumption. The stronger scaling
property of Eq. (34) seems, however, not to hold.

The phenomenological theory presented in the
present paper allows the possibility for significant-
ly more effective use of existing experimental data
and suggests feasible new experiments. Future
progress will depend, however, on more refined
experiments and on genuine dynamical theory
starting from the Navier-Stokes equations.
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