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Existing experimental data on the compressibility, chemical potential, specific heat, and critical op-
alescence of CO, are analyzed to determine a parametric, scaling-law representation for the critical

region. A representation of the form of the linear model of Schofield is found to be consistent with

these data for scaling-law amplitudes a = 22, b' = g = 1.30, exponents P = 0.347, y = 1.22,
= 0.09, and for a slowly varying (nondivergent) background. This representation corresponds ap-
proximately to the use of the mean range of local density correlations and of the macroscopic order

as fundamental (parametric) variables to locate positions in thermodynamic space. The representation

thus obtained is used to predict effects of gravity and the shape of contours of equal wave scattering

close to the critical point. The predictions are investigated experimentally by studying the dependence

of the scattering of laser light on chemical potential (height) and temperature. Satisfactory agreement
is found to within the precision of the measurements. In addition, it is verified experimentally that
contours of equal opalescence have the same shape as contours of equal mean relaxation time of local

density fluctuations. This demonstrates that the relaxation time and the correlation length obey equiv-

alent scaling-law homogeneity relationships close to the critical point. Some discrepancies among exist-

ing experiments and between experiment and theory are noted and discussed briefly. In particular,
there remain unexplained discrepancies between the values of the critical-point exponents found here
and those predicted by the Ising model.

I. INTRODUCTION

A. Background

As the temperature of a simple fluid is in-
creased, the crisp distinctions of macroscopic
phase thai separate gas from liquid at low tem-
peratures fade until, at the critical point and at
higher temperatures, the fluid no longer exhibits
a discontinuous change of phase with change of
pressure. It can then no longer be characterized
unambiguously as either liquid or gas.

In the vicinity of the critical point, new features
become prominent. On a macroscopic level, these
include critical opalescence and anomalies (di-
vergences) of the compressibility, specific heat,
thermal conductivity, and diffusivity. Micro-
scopically, fluctuations become an increasingly
dominant feature. Local deviations from average
density (fluctuations) are always present, fleet-
ingly, within each phase, as a result of thermal
agitation. However, as a critical point is ap-
proached the correlations among local deviations
at different points in a fluid increase appreciably
both in spatial extent and temporal duration. In
effect, each phase develops bubbles of above and
below average density. These "bubbles, " of ir-
regular shape and diffuse boundaries, increase
substantially in size and decrease markedly in
mobility as the critical point is approached. The
growth of these locally correlated deviations is re-
sponsible for anomalous static and transport prop-
erties in the vicinity of critical points.

To best represent the thermodynamic properties
of a fluid in the vicinity of its critical point, an
equation of state should be based upon, or at least
compatible with, the anomalous properties which
arise from the growth in spatial extent of the local-
ly correlated deviations. Such an equation of state
could be one in which the macroscopic thermo-
dynamic variables (density, temperature, chemi-
cal potential, etc. ) are expressed in terms of one
parameter which characterizes the locally corre-
lated deviations from average order and another
which characterizes the average order for a given
value of the first parameter. It is known that im-
portant quantitative features of the thermodynamic
anomalies (the strengths of the divergences) are
related to a single quantity that characterizes the
localized deviations from average density (a spe-
cific type of order). This quantity is the mean
range of cooperation (correlation length) of these
deviations, or the mean "bubble" radius. The
magnitude of the compressibility anomaly and the
strength and anisotropy of scattering responsible
for critical opalescence' have been related to this
range, "as has also the strength of the divergence
of the thermal diffusivity. ' If a thermodynamic
variable that is closely related to the correlation
length of density deviations is chosen as one of
the above parameters, then the other parameter
should be closely related to the average density.

To incorporate these parameters into an equa-
tion of state for the fluid, it is necessary to make
use of a transformation from conventionally mea-
sured parameters, such as temperature, pres-
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sure, and density, to new variables which are
related to the correlation range and the average
density. It will be conven. ient for this purpose to
employ a parametric representation. '6 A pair
of parametric variables, r and 8, will be defined
as functions of temperature T and density p. They
will be chosen so that r (the "remoteness" from
the critical point) is closely related to the correla-
tion range of the fluctuations (increasing as that
range decreases) and 8 ("order parameter") is an
increasing function of the average density at con-
stant r that defines the macroscopic phase of the
fluid. Together 6I and r suffice in place of p and T
to specify any equilibrium thermodynamic state.

Several parametric models have been proposed, ' '
the simplest of which is known as the (unrestricted)
linear model. ' In this work we have compared the
predictions of this model with CO, thermodynamic
and light-scattering data. However, in doing so,
we have imposed a new requirement on the model.
%'e have required that the parameter r be as nearly
as possible a simple (exponential) function of the
susceptibility, Z = (p Kr), because this suscepti-
bility is closely related to the density-fluctuation
correlation range'3in the immediate vicinity of the
critical point where the linear model is expected
to be applicable. The consequences of this require-
ment are as follows: (i) The constant known as b'
in the model is smaller than the value proposed by
Schofield, Litster, and Ho (SLH)'; (ii) as a result
of (i) the model ha. s a "true" spinodal behavior in
that the compressibility diverges along a curve
that lies inside the coexistence curve; (iii) sus-
ceptibility and chemical-potential data in the vicin-
ity of the critical point are well represented by the
model; and (iv) the available specific-heat data
can also be well represented by the model. Thus,
by using PVT data, specific-heat data, light-scat-
tering data that are found in the literature, and
light-scattering data that are presented here for
the first time, we have been able to adjust the con-
stants in the linear-model equation so that it rep-
resents the available data to within about a 5%
accuracy. We believe that this is the first time
such good over-all agreement with critical-point
data has been achieved.

A detailed plan of this paper and summary of
our principal new results is presented in the fol-
lowing synopsis.

B. Synopsis

In the first of the sections to follow (Sec. II)
bulk measurements of pressure, volume, and
temperature' are analyzed to determine contours
of constant susceptibility. " These contours, to-
gether with the coexistence curve" and the re-,

quirement we impose —that contours of constant
susceptibility approximate contours of constant
r—suffice to determine three of Schofield's linear-
model parameters, ' b', g, and P, to two significant
figures. Agreement for this choice of parameters
with some of the experimental data is exhibited in
Table I. Reasons are stated for the small dis-
crepancies apparent in this table. In Appendix C
it is shown in detail how the data discussed thus
far (susceptibility contours and coexistence curve)
lead naturally to the particular linear-model pa-
rametric equations of state (summarized in Ap-
pendix B) that are used in the rest of this investi-
gation.

Next, in Sec. III, the temperature dependence
of the compressibility at critical density, as de-
rived from PVT xo and light-splattering data ""i
used to determine independently of 5' and P accu-
rate numerical values of the remaining two model
parameters, a and y. Reasons are presented to
explain differences between previously proposed
values for y. The value of a, which is the least
precisely determined of the model parameters, is
found to be constrained by the compressibility data
to be a certain (empirical) function of two of the
other parameters, g and y. The linear-model
parameters determined thus far give a predicted
ratio of susceptibilities above and below ~~ that
agrees with experiment. "

Numerical values for the linear-model param-
eters found in other recent investigations"'" are
noted. They differ considerably among themselves
and some of them differ considerably from those
obtained here. Some reasons for the discrepancies
are stated.

The work to this point, described in Secs. II and
III, leads to a complete specification of the thermo-
dynamics of CO, in a linear-model approximation.
The adequacy of this model is tested in the follow-
ing sections by comparing in detail predictions of
the model (Appendix B) with several different types
of experimental data.

First, in Sec. IV, a more detailed comparison
is made with the PVT data. ' The model permits
susceptibilities' and chemical potentials" derived
from pressure measurements to be normalized to
two universal curves (Figs. 4 and 5). Agreement
with model predictions is to within the experi-
mental uncertainty of -5' for T&0.03 and

~
8~&0.8.

For larger values of r and 0, the breakdown of
perfect sca1.ing-law symmetries becomes appre-
ciable. Reasons for the departures from perfect
symmetry are discussed. It is noted that no error
outside experimental uncertainties is made for
any 6 for our choice of linear-model parameters,
including especially our choice for b', for small r.
(A model equation of state that incorporates cor-
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rection terms" to describe the asymmetries at
larger r has been fitted to the CO, susceptibility
data and been found to work out to & =0.3 and 8

=+1.0 ")
Model predictions are compared with specific-

heat data' in Sec. V. The comparison leads to a
further refinement of the model parameters. To
make this refinement, it is necessary to assume
that the exponent & that describes the divergence
of the specific heat is smaller than the value 0.125
originally found' to fit the specific-heat data. It
is noted (Appendix D) that values as small as 0.08
can result in a fit to the measured specific heat
to within -1'%%. Using & =0.09, we find an excellent
fit to both branches of the specific-heat curve
(above and below T,) for choices of the other pa-
rameters of the model compatible with the PV1'
and light-scattering data, and compatible with our
restriction on the choice of b'. For our best fits,
the background contributions to the specific heat
are the same above and below T, . Our best fits,
however, leave a discrepancy -2% very close to
T, that cannot be removed by further small ad-
justments in the values of the parameters.

A final choice of model parameters is made and
exhibited in Sec. V (Table 111). The values for the
parameters stated there are compared with values
proposed for the same parameters in other recent
investigations. ""The parameter values found in
the present investigation give an order of magni-
tude improvement in the fit to the specific-heat
data, and in particular to the ratio of specific
heats measured above and below 1;. Agreement
over-all, with specific-heat, PVT, and light-
scattering data, is good enough ( 3% with much of
the most accurate data) to justify a confidence that
the model gives an essentially correct description
of all critical-point phenomena, at least when &

is sufficiently large to assure that the compres-
sion of the fluid under its own weight is of second-
ary importance. In the sections that follow, the
model thus specified is used closer to the critical
point (for «10 '}to interpret experiments per-
formed to study effects of this compression.

The variation of density with vertical position
in the fluid is considered in Sec. VI. Height pro-
files predicted by the model equations for iso-
thermal conditions are compared with profiles
determined by Schmidt and Straub '* 2 from mea-
surements of the refractive index of CO, as a
function of height. There is serious disagreement,
amounting to a factor-of-3 discrepancy in the
"best-fit" value to use for the model parameter a.
A detailed consideration (Appendix F) shows that
the discrepancy can be explained by the presence
of a thermal gradient in the experiments of -0.6
mdeg/cm (top of the cell warmer than the bottom).

A thermal gradient of this magnitude seems to
have been within the thermal tolerances of the
experiments.

In Secs. VII and VIII we turn to the analysis of
some light-scattering measurements performed
very close to the critical point and reported here
for the first time. These measurements have been
performed in a region («10 ') where effects of
the compression of a fluid under its own weight
are prominent.

In Sec. VII we consider the variation of the sus-
ceptibility of the fluid at equilibrium with tem-
perature and vertical position. The variation of
the susceptibility predicted by the model equations
is compared with the results of light-scattering
measurements. " The intensity of scattering is
expected to be proportional to the susceptibility"
for infinitely thin samples. However, for the 0.5-
cm-thick samples used in the experiments, ex-
tinction is large, "with the result that measured
intensity-height profiles uncorrected for extinction
differ appreciably from predicted susceptibility
profiles (Fig. 6).

In Sec. VIII, a novel method" for making light-
scattering measurements close to the critical
point is described. In this method the temperature
and vertical position within the Quid are both
changed to map a contour of constant scattered in-
tensity. The shape of this contour is largely in-
sensitive to effects of extinction and tests directly
the shape of the underlying thermodynamic surface
without the need to make corrections for extinc-
tion. The shapes of predicted and observed con-
tours are compared (Fig. 8), and agreement is
found to be good, to within the -10% accuracy of
existing measurements. ' Thus, no evidence is
found to this accuracy for a breakdown of the mod-
el or of a need to use different parameter values
very close to the critical point.

Additional data are presented in Sec. VIII on
the sPecA um of the scattered light. The inverse
of the width of the spectrum is proportional to the
mean time for growth and decay of the spontaneous
fluctuations of density within the fluid, and hence
is a. measure of a transport property (diffusivity)
of the fluid. Contours of constant spectrum (con-
stant relaxation time) have been mapped and found
to be of the same shape as contours of constant
scattered intensity. Thus, to within the accuracy
of the measurements reported here, contours of
constant transport phenomena (diffusivity) coincide
with contours of constant static properties (sus-
ceptibility}. These measurements, performed
close to the critical point (r~ 10 '), contribute to
confidence that a single critical-point scaling-law
theory, approximated for CO, by the model equa-
tions and choice of & employed in this in~estiga-
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tion, correctly describes the cooperative phenom-
ena responsible for all anomalies, dynamic and
static, present in the vicinity of a critical point.

A summary of the principal general conclusions
of this investigation is presented in Sec. 1X.

II. COEXISTENCE CURUE AND SUSCEPTIBILITY

CONTOURS

Extensive and accurate I'VT measurements
made several decades ago" establish that the
thermodynamic surface of CO, has the general
shape shown in Fig. 1. Of particular interest are
the isoclines of that surface, which define contours
of constant susceptibility (see the summary of
definitions given in Appendix A). These contours
when viewed in the T, p plane [Fig. 1(b)] have the
form of a family of inverted parabolas. Experi-
mentally determined contours are shown in Fig.
2." The data in that figure cover a rather wide
range of temperature (10-140'C) and density
(60—460 amagat} in the single-phase region around
the critical point (T, =31'C, p, =23V amagat). The
data cover a large enough range to show depar-
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tures from perfect symmetry at substantial dis-
tances from the critical point.

Significant features of the susceptibility data of
Fig. 2 close to the critical point are described
most simply in terms of parametric variables,
illustrated in Fig. 3. An approximate representa-
tion of these features is given by contours of con-
stant r and constant 8 in the linear-model para-
metric representation of Schofield, ' illustrated
in Fig. 3(b) for particular choices of the param-
eters of the model. The equations of the contours
shown in Fig. 3(b) are

Sp =gp,

rsvp,

aT = T,~(1 b'6')-
(1a}

(lb)

~p = +gp, [(1 —b') 'n. T/T, ]

and the relation at constant r,

(2)

(3)

which connects the densities at the critical tem-
perature with the temperature at the critical den-
sity for the same r.

The dimensionless constants may be adjusted so
that (i) the 8= +1 curves [Eq. (2)J approximate the
two branches of the experimental coexistence
curve and (ii) the T = T, and p = p, intercepts of
contours of constant r [Eq. (3)] occur at approxi-

Here p, and T, are, respectively, the density and
temperature at the critical point, &p =p -p„
&T = T —T„and g, P, and b' are three dimension-
less constants, with b'&1. The dimensionless con-
stants determine the shape of the coexistence
curve (6=+1),

COp

(a)

T/Tc

04.-

li

&p (-) (c)

AGAT

FIG. 1. Thermodynamic surface in the vicinity of the
critical point. (a) The real (physical) surface is bounded

by the heavy line. This line consists of contours of con-
stant 4T and contours of constant Ap, = p, (p, 1') —p, (p„T).
The coexistence curve lies in the T-p plane. The cross-
hatched regions lie "below" the surface. The lines which
lie in and illustrate the curvature of the surface are iso-
therms. The short-long dashed line is an. "isocline"—
a line of constant slope, (Bp/Bp)z. (b) The constant
(&p/Bp)~ line projected onto the T-p plane. (c) The
same isocline viewed along the temperature axis. (d)
The isocline viewed along the density axis. The critical
point is at the origin of each figure; the figures are not
drawn to scale.
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FIG. 2. Contours of constant susceptibility in CQ2.
Data are from Ref. 10. The solid lines are empirically
determined fits to the data (Refs.: 11, 19). Note the ex-
panded scales used in Fig. 2(b).
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compared with susceptibilities measured over a
wide range of temperature and pressure in Table
I. Agreement over-all tends to be within -3/p when

experimental intercepts at &p &0 are averaged,
with somewhat better agreement for the 4p & 0
branch than for the ~p & 0 branch.

The discrepancy between real and calculated
quantities in Table I results partly from errors in

choosing the constants (4) and partly from the fact
that contours of constant r in the linear model (see Fig.
3) and contours of constant susceptibility that have

been constructed from the experimental data""""
(see Fig. 2) do not exactly coincide at the critical
isotherm, 0=1/b, as well as at the critical iso-
chore, 0 =0. However, the major discrepancy
between the real and calculated values in Table I
results from the fact that the fluid is inherently
asymmetric about the critical density, "'"with the
asymmetry increasing as

~
&&~ increases (see Fig.

2), while the linear model is "everywhere" sym-
metric. A quantitative approach to the representa-
tion of this asymmetry is presented else-
where. "'"'~" For the purposes of this paper it
is sufficient to point out that as the critical point
is approached the asymmetry becomes less and
less evident, so that, within some empirical bound-

ary, the fluid data may be represented quite ac-
curately by a totally symmetric equation of state.
(For CO, this boundary is roughly a contour of
constant r with" r -0.01.)

FIG. 3. (a) Contours of constant 0 (solid lines) and

constant r (dashed line) in the T-p plane. The critical
point is at r=0. (b) The form of these contours given by

Eq. (1) when P=0.35 and g=b~=1.3.

mately the same locations as the corresponding
intercepts of constant susceptibility (or constant
correlation length). An analysis of the coexistence
curve of CO, (Ref. 12}and of contours of constant
susceptibility" "" indicates that requirements
(i) and (ii) lead to P =0.347 with T, = 31.00'C,
g(b' —1) =1.96, g/b =1.12„where in each case
the last significant figure is uncertain by = +3.
(The critical density is about 236.8 +0.1 amagat
=0.468 g/cm'. ) This results in the following set
of values for P, g, b':

III. COMPRESSIBILITY AS A FUNCTION OF
TEMPERATURE

The exponent z can be estimated independently
of g, b', and P by considering the dependence of
the susceptibility on temperature along the critical
isochore (p =p„6=0). Measurements made over
a wide range of 4T &0 have given results"'" which

(a) Experiment
Tp —T Ap(T=T )

( C) (amagat)
X

(10~ amagat atm )

(b) Theory
Ep(T=T, )

(amagat)

TABLE I. Maximum temperature, T~ —T„with T,
= 31.00 'C, and intercepts on the critical isotherm of con-
tours of constant susceptibility (Fig. 2): (a) experimen-
tal results, Ref. 10; (b) intercepts predicted by Eqs. (3)
and (4). The experimental values for Ap are uncertain
to -

1Wo of A p.

P =0.35,

g=b' =1.3.

(4a}

(4b)

The constants (4) have been rounded off to two
significant figures for use as a first approximation
consistent with and within the error bars of the
measurements of (2) and (3).

The prediction (3) for this choice of constants is

100
50
25
14
10

5 4
3.3
2.0

3.83
6.67

11.8
19.1
26.1
44.1
68.6

109

—56, +58
—67, +73
-83, +88
-97, +106

—107, +120
—126, + 144
—142, + 169
—161, +191

~ 58.5
+ 71.0
+ 86.6
+ 102.4
+ 114.3
+ 137.3
+ 160.3
+ 187.8
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are comprised in the statement

K ' =16(0.01)" ~P,(b T/T, )" (5)

with" y = 1.17 or" y = 1.219. The different values
of y reflect differences of interpretation of light-
scattering data, experimental uncertainties, and
a difference in weights attached to data obtained at
the extremes of the temperature range. In par-
ticular, the lower exponent gives better agreement
with data obtained far from T, (Table I) and the
higher exponent better agreement close to T, .
(The light-scattering data of Ref. 13 are compatible
with a value of the compressibility exponent that
varies from y& 1.20 for small AT to y& 1.17 for
large 4T.)

The approximations

data" on CO, using the "restricted" linear model.
There is substantial disagreement, however, with
their unrestricted linear-model results (P =0.3486,
b'=1.70, g=1.75, a=24.48, y=1.175) which they
found to give better agreement with the same pres-
sure data. It is to be noted that their result 6'
=1.70 for this latter model is incompatible with an
interpretation that contours of constant r should
closely approximate contours of constant sus-
ceptibility (or constant correlation length). For
this reason, and others mentioned in Appendix BD
and in Sec. V, we prefer to employ an unrestricted
linear model with a smaller value of b'. The
"restricted" model parameters P=0.347, b'=1.44,
g=1.49, a =28.37, y =1.24 obtained by Hohenberg
and Barmatz" differ more from our own than the
more recent restricted model set of parameters
found by Murphy et al."

y =1.2,

0 =21

(6a)

(6b)

IV. SUSCEPTIBILITY AND CHEMICAL POTENTIAL AS

FUNCTIONS OF DENSITY AND TEMPERATURE

are consistent with the choice (4) and the relations
(A7), (E1), (B6), and (5). (Equations whose num-
bers are preceded by a letter are found in the
Appendix of the same letter. } More generally,
for different choices of y, the constant a is con-
strained by (B6) and (5) to have the value

a =16@(0.01)" (7)

In the model critical state (B1), the susceptibility
(B6) is smaller than (5) for b 7 &0 and 6= +1 by a
factor y, /y =2(b' —1)' ~[1 —h'(1 —2p)] ' that be-
comes =4.17 for the choices (4), (6a). The experi-
mentally determined factor is" y, /y =4.0, with

an uncertainty -0.3. The experimental uncertainty
of (5) at b, T/T, =0.01, and hence the uncertainty of
the numerical coefficient in ('l), is approximately

A choice y = 1.2 and a = 20, to be employed in

some of the discussion to follow, is compatible
with (7) within its error bar. This choice of con-
stants provides a somewhat better average fit to
(5) than does (6) in the case that the empirical
relation (5) actually should be used with y varying
from y &1.2 for small ~~T ~

to y &1.2 for large
~
b, T ~. The choice y =1.20 is then an average value

and the choice a =20 is a best-fit value for use
when the value y = 1.20 is used over the whole tem-
perature range.

It may be noted that the choice y =1.2, a =20,
and the choice of constants given by (4) agrees to
within 6/o with the corresponding parameters
(P =0.3486, b' =1.35, g=1.37, a = 19.6, y =1.178)
found by Murphy, Sengers, and Sengers" in a fit
to Michel, s's pressure, density, and temperature

A detailed comparison of the predictions (Blc)
and (B6) with the choice of constants P =0.35,
g = b' = 1.3, a = 20, y = 1.20 and experimental data
derived from bulk measurements of pressure,
volume, and temperature" is presented in Figs.
4 and 5.

Agreement with the average observed chemical
potential" (Fig. 4) is to within =3%. (Individual
data points have an rms deviation =5%.) The data
correspond to values of & in the range 0.0007
&r &0.03, for which there is almost perfect anti-
symmetry about ~p=0 (8=0}. Scatter in the data
is greatest for r&0.003, where the experimental
uncertainties in ~T, ~p, 4p. are greatest.

The inverse susceptibilities plotted in Fig. 5

encompass a wider domain of ~p and ~ T (corre-

+

HALO ENT

FIG. 4. Dependence of the chemical potential on 8 (den-
sity) at constant ~. Data are from Ref. 17, plotted for
T~ =31.00'C. The solid curve corresponds to Eq. (Blc).
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the constraint (7) is satisfied, other choices of

y in the range y =1.20 +0.03 yield results similar
to those shown in Figs. 4 and 5.

V. SPECIFIC HEAT

The experimental dependence on temperature of

the specific heat of CO, is"

+B„ (8)

where R is the gas constant and A, = 5.583, A
= 10.473, B, = -3.457, B = -0.024, &, = & = 0.125.
(The subscripts plus and minus refer to tempera-
tures, respectively, above and below T, .)

The experimentally determined ratio

FIG. 5. Susceptibility as a function of 0 and r. Data
are from Ref. 10, plotted for T~=31.00 C. The solid
line is given by Eq. (B6).

sponding to r &0.17) and show convergence toward
linear-model behavior IEq. (B6)J, which is rep-
resented by the solid line, as ~ decreases. For
the restricted range «0.03 used in Fig. 4, the
susceptibility remains constant to approximately
5% along most of a contour of constant r The.
rather good agreement between the predictions of
the simple (linear) parametric model and the sus-
ceptibility data is not unexpected, because a care-
ful study of these data by themselves" has led us to
conclude that a parametric equation is a "natural"
equation for the representation of such data (see
Appendix C).

Appreciable deviations from constancy and from
(B6) are confined primarily to larger values of
r and the regions

~
8~ &0.8, for which

~
&p~ is large.

The largest deviations, for 0& -0.8, reflect the
presence of the absolute boundary at ~p„„„=-p,
(rarified gas) at which y

' -~. The behavior of the
susceptibility near this boundary is expressed
most naturally in terms of p, T rather than r, J9

coordinates; the divergence of X
' in this region

of dilute gas corresponds to a component of (y '),
in (E1) proportional to p '. The deviations from
the prediction (B6) for large r and 8&+0.8 may
correspond to a background (y '), that continues to
be dependent on p when p is large.

Additional deviations for small r and
~
8~=1 ean

be expected if the anomalous behavior near
~ 8~

= ~8~~ and its extreme sensitivity to the choice of
value for b' (cf. the discussion in Appendix BD)
are indicative of a defect of the model equation of
state or choice of b' that we have used. Any such
additional deviations for small & seem at present,
however, to fall within the limits of accuracy of
existing data.

For the same choices of b', P, and g, provided

A. /A, =1.876 (9)

may be compared with that predicted for the model
critical state [Eqs. (B5) for 8=0 and (B9)j:

A f, +f, +f,
(b'-1)'"'f.

For b' =1.30, P =0.35, the theoretical ratio is

(10)

A /A, =2.07 for y=1.20,

A /A. , =1.76 for y=1.22.

(11a)

(11b)

The predictions (11)are sensitive to P (rather in-
sensitive to b'). The choice

y =1.217, P =0.347, g=6' =1.30, (12)

which gives A /A. , =1.86, is compatible with the
experimental ratio (9) and also with the shape of
the coexistence curve (Sec. II). Significantly
poorer agreement with the experimental ratio of
specific heats is obtained using either the param-
eters of the restricted linear model or those of the
unrestricted linear model employed by Murphy
et al. ' Using the parameters quoted by Murphy
et al. , the theoretical ratio (10) becomes A /A,
=2.54 (restricted model) or 2.98 (unrestricted
model). The theoretical value for the ratio ob-
tained by using the restricted-linear-model pa-
rameters of Hohenberg and Barmatz" is A /A„
='1.53. Use of our parameter values y=1.217 and

P =0.347 in the Ho-Litster' (cubic) model (cf. end
of Appendix C) leads to values of b' =b,', „=3/(3 —2P)
and of the specific-heat ratio" almost identical to
the values (12) and (9), as found above using our
version of the unrestricted linear model.

Above T, along the critical isochore (8 =0) the
specific heat (B5) is

-ag, c,T 4T
(c~)~= T,

'
T

C C

This expression cannot exactly reproduce the
temperature dependence stated in (8) when 2 —y
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—2P =a 40.125. However, as discussed in Ap-
pendix D, for values of & not too far different
from 0.125 there is good numerical agreement
for suitable choices of a and g. For example, for
g=1.30 and P =0.35, agreement of (13) with the
temperature-dependent part of (8) above T, is to
within -1% over most of the range of temperatures
for which reliable data are available for the choices

y=i.20, & =0.10, a =23.4, {14a)

or

y =1.22, & =0.08, a =23.9.

Agreement with Eqs. (B9) and (B8) below T, to
-1% is obtained for the same choices of y and o.'

for somewhat different values of a. Table II sum-
marizes values of a, and added background B,
that, used with Eqs. (13) and (B9), fit the specific-
heat data (8) above (+) and below (-) T, to -1% for
the choices of exponents discussed above. In the
same table are listed the values of a required to
fit the susceptibility [{B6a), {7)]for the same
choices of exponents.

When the scaling-law requirement that B+ and
B be equal" is applied for P=0.35, g=b'=1. 3,
y=1.20, a=20, and B, =B = —7 there is over-all
agreement with bo~h branches of the specific heat
and with the compressibility (7) to better than 10/o.
Over-all agreement improves for each of the fol-
lowing modifications: (a) slightly smaller P, (b)
somewhat larger y compatible with (7). As an

example, the choices g = 5' = 1.30, P = 0.347,
y=1.217, a=22 [Eqs. (7), (12)] used with equal
background contributions B+ ——B = —8.9 lead to
agreement with all of the specific-heat data' and
the compressibility to &3%.

Agreement with the specific heat in the range
10 '& ~(T —T,)/T, ~&10 ' measured both above and

below T, can be improved to -1% without noticeably
changing the agreement with the compressibility
with further small modifications of the values of
the parameters used in the equations. Examples
of such modifications that lead to improved agree-
ment with (8) for the same choice of background
(B, = -8.9) include use of P =0.346, & =0.087,
b' =1.31; use of p =0.344, u =0.089, and either
g=1.28 or b' =1.31; or use of P =0.342, =0.090,

g=1.28, b'=1.31, a=22.2. There remains a small
possibly significant discrepancy with (8), especial-
ly for small ~&T~. The discrepancy grows to &2%

for (T —T,)/T, =H&&10 ', the smallest bT studied
experimentally. This discrepancy cannot be re-
moved by making additional small changes in the
values of the parameters. Further consideration
of this point, which will not be undertaken here,
as well as efforts to improve significantly on the
values of the parameters cited in the previous
paragraph, should take into consideration effects
of compression of fluids under their own weight

and the lengthening of thermal equilibration times
that occurs close to the critical point. Considera-
tion might also have to be given to the possible
effect on the numerical values of these param-
eters caused by contamination or whatever other
factor accounts for the difference between the
values of T, found in most of the experiments dis-
cussed (31.0'C) and that obtained in the calorimet-
ric measurements (30.8'C)."

This completes our analysis of experimental
data to obtain a set of constants to use in the un-
restricted-linear-model equations of the critical
state. The more refined of the two sets of parameters
with g=b' =1.30 discussed above (that accurate to
-3/0) is listed in Table III together with values for
these parameters obtained in other recent investi-
gations.

The constants used in the model equation of state
have been determined above from experiments
performed sufficiently far from the critical point
that the compression of a fluid under its own
weight is of secondary importance. In the follow-
ing sections the model thus specified will be used
to interpret experiments performed to study ef-
fects of this compression. The results of these
experiments will be examined to see if they verify
the theory for regions of thermodynamic space
that are too close to the critical point to be
studied effectively by the types of investigations
considered to this point.

VI. DENSITY AS A FUNCTION OF HEIGHT

According to (F2), (E2), and (B1), the density
of a linear model fluid at constant temperature

TABLE II. Values of a and B required to fit the measured compressibility [ Eq. (7)] and

specific heat [Eqs. (8), (B9), and (13)] for g =b'=1.30 and different choices of critical expon-
ents. Subscripts plus and minus refer to temperatures, respectively, above and below T~.

Exponents
P

Compressibility
Q+

Specific heat
Q B

0.10
0.08
0.089

0.35
0.35
0.347

1.20
1.22
1.217

21
23
22.7

23.4
23.9
22.9

21.2
25.5
23.2

7.1
-11.8

9 4

-7.0
—15.6
—11.4
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TABLE III. Parameters for use with the "linear-mod-
el" representation of the critical region of CO2. Columns
marked with an asterisk correspond to the "restricted"
model, for which b2 is constrained to satisfy Eq. (B10).

Hohenberg Murphy Murphy Present
Source and Barmatz* et al .*" et al ." investigation

ideal critical fluid on height at constant tempera-
ture. For 4T &0, the prediction to first approxi-
mation in (4z)' is (ignoring the small dependence
of y on 8' at constant r)

-2( l'+8)

P
'y

a
b 2

0.065
0.347
1.241

28.4
1.44
1.49

0 ~ 13
0.3486
l.178

19.6
1.35
1.37

0.13
0.3486
1.175

24.5

1.70
1.75

0.089
0,347
1.217

22.0
1.30
1.30

~Reference 15. Reference 16.

z,asap AT ~

(17a)

and for T =T„Apc0,
z ab~ '(b' 1)gp ~p

Pc ~c
(17b)

varies with height in accordance with the para-
metric relation

b,z =az r~' (0 —0'), (i5}
with

-z, =P,(mp, g, ) '. (16)
Here &z is the distance above that elevation z(p, )
in the fluid at which p =p, . It follows from (Bl)
and (15) that for I'& T, and small ~p

(i8)

Since the intensity of light scattered from each
element of a fluid is proportional to the suscepti-
bility, ' ' this leads to the prediction of scattered
light profiles of approximately the form (18).

The prediction (18) for the choice of constants
(4), (6) is compared with the authors' light-scat-
tering measurements" in Fig. 6. The solid curves
are experimental. Each dashed curve corresponds
to Eq. (18) multiplied by a constant scale factor to
bring the top of the curve into coincidence with
the peak scattered intensity at the same tempera-
ture. A smaller scale factor is required for the
upper curve (smaller b T) than for the lower curve.

The need for different scale factors and other
discrepancies between the susceptibilities given by
(18) and the measured scattered intensities are
qualitatively those to be expected to result from
the partial extinction of incident and scattered
light which occurs in a finite thickness of fluid
near the critical point. The extinction causes a
reduction of observed scattered intensity. The
fraction of the incident and scattered light re-

where & =(y/P)+1.
The predictions (17) are in qualitative agree-

ment with density profiles measured in CO, by
Schmidt and Straub. "'" Quantitatively, however,
the value of a required to fit Schmidt and Straub's
data is much smaller (by about a factor of 8) than
the value (6).

The prediction (15) [more generally, the exact
proportionality (F1) between increments of eleva-
tion and chemical potential] depends crucially on
the absence of thermal gradients. When thermal
gradients are present, it is necessary to use (F5)
in place of (Fl). In CO„ for which at the critical
point"" (BP/s T)& ——6.99P, T, ' = 1.7 x106 erg/cm'
deg, a gradient T, =+0.6 mdeg/cm (top of the cell
warmer than the bottom) could account for the dis-
crepancy between the observed density profile and
that predicted by (15). A thermal gradient of this
magnitude appears to have been within the limits
of accuracy of the temperature measurements in
the experiments. ~'

0.5

0

lLT=5 4 mde

I I

0
EZ(lnm)

I

2

ET= I l.5mdeg

VII, SUSCEPTIBILITY AND SCATTERING PROFILES

Expressions (B1b), (B6), (15) can be solved to
find the dependence of the susceptibility of the

FIG. 6. Scattered intensity I and susceptibility g as
functions of height. The solid curves give intensities
observed at 13.5' scattering angle; each dashed curve
corresponds to Eq. (18), multiplied by an arbitrary con-
stant. See text.
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moved by extinction increases as the critical point
is approached more closely. Consequently, within
an isothermal sample the extinction increases to a
maximum value that is characteristic of the par-
ticular temperature as the "critical height" (z =z„
p = p, ) is approached either from above or below.
The effect of the height-dependent extinction on the
scattering profiles observed in a sample of fluid
of finite thickness is therefore a decrease in the
amplitude of the top of each profile relative to the
amplitude of the wings, combined with an over-all
reduction of height which is dependent on tempera-
ture. These features are apparent in Fig. 6 which,
in effect, compares profiles measured for a sam-
ple of finite thickness (solid lines) to profiles that
would be predicted for an ideally thin sample of
the same fluid (dashed lines) if the amplitudes of
the latter profiles are "corrected" by temperature-
dependent factors to bring the peak intensities into
coincidence with those of the observed profiles.
The need for the temperature-dependent correc-
tion factors is also apparent in the figure, which
shows that the ratio of observed peak intensities
(solid curves) differs by a factor less than 2 [and
considerably less than predicted by Eq. (18)] for a
larger-than-2 ratio in the temperature distances
from the critical point.

Quantitatively, the magnitude of the corrections
for extinction, as also those for (a) angular ani-
sotropy of the scattering and (b) multiple scatter-
ing, depends nonlinearly on the magnitude of the
susceptibility and on the correlation range. A

fuller discussion of these corrections may be found
in Ref. 13, where an attempt was made to calculate
them on the basis of estimates for the magnitude
of the susceptibility and the correlation length
close to the critical point.

VIII. CONTOURS OF CONSTANT WAVE SCATTERING

Equations (B1b) and (15) define temperature and
height coordinates of contours of constant sus-
ceptibility (B6). Typical contours are shown in
Figs. 1(d) and 7(a). These contours are approxi-
mated rather closely by contours of constant &

[Fig. 7(b)]. They can be expected also to approxi-
mate contours of constant correlation length (.
Wave scattering from each element of the fluid and
corrections for finite sample thickness depend
principally on the range of correlation and the sus-
ceptibility at each element. Therefore it can be
expected that to a good approximation contours of
constant scattering from elements of the fluid are
simultaneously contours of constant corrections
to scattering, and hence should coincide with con-
tours of constant observed scattering, obtained
from samples of finite thickness. Conversely, it

b, Z (a)

MENISCUS

8=Q

I= CONSTANT

r = 0.000I
r= 0.0000
r= 0.0000
r= 0.0000

2 0
e=-l.Or ~

e=+I.O", 0.0

-I
-0.0 I O.OI 0.03

T-Tc (Co)

FIG. 7. (a) Contour of constant susceptibility (r = const)
as a function of temperature DT and height chz. (b) Con-
tours of constant r (dashed lines) and constant 0 (solid
lines) for T~=304'K, b =1.3, a =21, @0=1.61x10 cm,
and y+P=1.55 [Eqs. (Blb) and (15)].

0.0 0.02

can be predicted that contours of constant observed
scattering should be contours of constant correc-
tions to scattering, and hence contours of constant
susceptibility and constant correlation range.

This prediction is compared with recent experi-
mental results" in Figs. 8(a,) and 8(b). The con-
tours shown are the contours of constant & pre-
dicted by Eqs. (Blb) and (15) for the choice of
constants (4), y=1.20, a =20, and T, =31.0 027'C.
The data have been taken from individual isother-
mal profiles and refer [Fig. 8(a)] to the inten-
sity" I of light scattered through an angle of 13.5',
and [Fig. 8(b)] to the inverse of the Rayleigh line-
width" (fluctuation decay rate) of this scattered
light. It will be noticed" that to within the preci-
sion of these measurements, the intensity contours
and contours of constant fluctuation decay times
are of the same form. This confirms by light-
scattering measurements a similarity of scaling-
law behavior for equilibrium and nonequilibrium
properties demonstrated by Sengers and Keyes in
their analysis of thermal-conductivity data for
CO 27



JOHN A. WHITE AND BRUCE S. MACCABEE
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FIG. 8. Contours of constant wave scattering: (a) in-
tensity; (b) inverse Rayleigh linewidth. Solid curves are
contours of constant r, plotted for T, =31.0027'C. Val-
ues of r have been assigned arbitrarily in (a) and have
been set equal to (7/7p) ' in (4) with Tp=& ~ &5 &sec,
~ = 0.63.

The contours of constant & shown in Figs. 7(b),
8(a), and 8(b) have an aspect ratio

i/2
1118X f + 8 j.=ar~Till'tX ''3 3

(19)

Here 4z„„x is the maximum value of z -z, and

4T„,.„x is the maximum value of T —T, for each
contour. [Equation (19) follows immediately from
Eqs. (Blb) and (15).j The choice of parameters
(7) and (12) leads to slightly smaller aspect ratios
than those shown in Figs. 8(a) and 8(b). Suscepti-
bility contours, derived from Eq. (B6), have a
slightly different shape (longer and narrower) and

slightly smaller aspect ratio than contours of con-
stant r. The combined effect of the two corrections
[use of Eq. (B6) and parameters (7) and (12)]
amounts to -10~/g deviations from the contours ex-
hibited in Figs. 8. Existing data, shown in Fig. 8,
confirm the general correctness of the theory and
of the estimates of parameters arrived at from a
consideration of other data, mostly obta, ined far-
ther from the critical point, but are insufficiently
precise to lead to a definitive test or refinements
of those results. An order-of-magnitude improve-
ment of experiments of this type appears readily
attainable, however, and could lead to significant
new tests of the behavior of a fluid close to its
critical point. Experiments directed to this end
are currently in progress, and will be reported
elsewhere.

IX. CONCLUSIONS

We have argued that in carbon dioxide an ex-
pression for the free energy of the form (E3),
(B3) can be found which predicts correctly the
magnitude of the critical components of all bulk
thermodynamic properties (compressibility, spe-
cific heat, chemical potential) and which is com-
patible with existing light-scattering measure-
ments. In particular, no evidence is found to with-
in the precision of available experimental data and
the accuracy of this analysis for any departure
from the fundamentally nonanalytic behavior of the
thermodynamic functions close to the critical point
and the simplicities of their behavior that are
expressed in the recently discussed general laws
of scaling, homogeneity, and universality. " '

Quantitative comparisons of the simple formu-
lation (Bl), (B3) that incorporates these laws with
experimental data have shown that for the (first-
approximation) choice of the five dimensionless
constants that appear in the model expression (BS)
for the free energy, namely, b'=g=1. 3, a=21,
P =0.35, y =1.20, and for a constant background
contribution to the specific heat, agreement with
most of the measurements in the range 3 &10 '
&x& 3&&10 ' is within -10%. Improved agreement
(-5/o) is obtained for the choice P =0.347, @=1.217,
a = 22, and a constant background for the specific
heat. Agreement is to better than 5% with both
branches of the specific-heat curve and with some
of the most accurate PV T data close to the critical
point. Disagreement tends to be greatest at the
largest temperature and density distances from
the critical point, where perfect scaling sym-
metries begin to break down. Further improve-
ment can be obtained by employing background
contributions that change gradually with tempera-
ture and density or by making small changes in the
form of the model equations of state, "'"'""
possibilities that have not been analyzed in detail
here. For the model (Bl), (BS) and either of the
above choices of constants, the susceptibility and
the correlation length vary by only a few percent
over the full range of -1 & 0-+1 for constant &;
hence this r, the "distance" from the critical
point, is in the model used here a measure to a
first approximation of the mean range of local
correlations and, via the equivalence of contours
shown in Figs. 8(a) and 8(b), also a measure to a
first approximation of the mean time for growth
and decay of fluctuations of localized ordering.

The numerical values of the exponents considered
here differ significantly from the values P =0.3125,
@=1.25 predicted by the Ising model of the critical
region. It may be noted that a value of @&1.20
is found when experimental data obtained close t"
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the critical point are ignored or assigned a re-
duced weight. A possible increase of y to y&1.22
and simultaneous decrease of P to appreciably
less than 0.35 very close to the critical point may
have been missed in the experimental investiga-
tions analyzed in this paper; questions of this
kind may be resolved through refinements of the
technique and analysis of measurements of the
type described by Eqs. (18) and (19) of this paper.

from the Gibbs-Duhem relation (A3), which re-
quires

dP = p djtj, + dT. (A6)

The Helmholtz energy can be used to generate all
thermodynamic functions of interest.

First derivatives of the Helmholtz free energy
yield expressions for the chemical potential,
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dE =T dS -P dU.

As a consequence, its Gibbs free energy,

(A1)

(A2)

(N is the number of particles, p, the chemical po-
tential per particle), is a function of the intensive
va.riables 'I' and P,

dG =avdp. = —S dT+V dP, (A3)

and its Helmholtz free energy per unit volume,

f =E/V =e —Ts = pp P- (A4)

(e =F/V, & =&/V, p=N/V), is a function of density
and temperature,

df =avdp —sdT. (A5)

Expression (A5) for the Helmholtz energy follows

APPENDIX A: GENERAL THERMODYNAMIC

RELATIONS AND DEFINITIONS

For convenience of reference we summarize
here the definitions and derivations of the thermo-
dynamic quantities required for the present in-
vestigation.

At thermodynamic equilibrium, the energy E of

a fixed quantity of fluid at temperature T, entropy

S, pressure P, volume V, obeys the second law

of thermodynamics in the form

and entropy,

(A7b)

as functions of temperature and density. Higher
derivatives give the isothermal compressibility,

or susceptibility,

x =p' Bp
(Avd)

and the specific heat at constant density,

APPENDIX B: THERMODYNAMICS OF LINEAR MODEL

The general parametric equations of state of
the linear model of Schofield' written in a form
applicable to fluids are

hp =gp, x 8,

n. T =T,~(1 -O'8)

&~ =a&.p. 'r '"(~- ~'),

(Bla)

(Blb)

(Blc)

where p„7;, P, are, respectively, the density,
temperature, and pressure at the critical point.
Here b p = p —p„b,T =T —T„and 4p = p, (p, T)
—p, (p„T) is the anomalous part of the chemical
potential. The quantities g, P, 5', a, and y are
dimensionless constants, with b' & 1.

In the restricted linear model, ' b' is related to
the exponents P and y (Appendix BC). In the un-
restricted linear model, b' is an adjustable con-
stant. The exponents P, y, and & =(y/P)+1 are
particularly significant in that they characterize
the shape of the coexistence curve (P), the degree
of the critical isotherm (&), and the divergence
of the isothermal compressibility, K~, along the

The latter two quantities are of particular interest
because they both diverge at the critical point
(p =p„T =T,)—the specific heat weakly, the sus-
ceptibility (compressibility) strongly.
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A. Single-phase region

It is readily verified from Eq. (A7a) (Appendix
A) that Eq. (Blc) corresponds to a contribution to
the free energy of the form"

f.=agp, r&'»f(e)

where

(Bsa)

critical isochore (y). Certain characteristics of
the linear model are illustrated pictorially in
Figs. 1 and 3. Of particular interest are contours
of constant inverse susceptibility, x [Eq. (A7d)J,
which, for special choices of b', are approxi-
mately coincident with contours of constant & in
the immediate vicinity of the critical point [see
Sec. II and Eq. (B6)]. A typical constant X

' con-
tour as seen when viewed along the three axes in

p, -p-T space is illustrated in Fig. 1. Figure 3
illustrates contours of constant & and constant 0

projected onto the T-p plane for a particular choice
of g and &' as well as the particular values of 19

that yield the critical isochore (8=0), the critical
isotherm (8=1/b), and the coexistence curve
(8=1). In particular, the coexistence curve (8=+1)
is of the form [from (Bla), (Blb)]

coexistence boundary: Ap = +gp, [(1 —b') 'AT/T, J .

(B2)

Equations (Bla), (Blb), and (B2) are identical to
Eqs. (la), (lb), and (2) of the text.

be derived from (B3) using Eqs. (A7) (Appendix A).
The results are as follows:

s, = ag-P, T, 'r~ "s 's(6),

T '(c ), = agP-, T 'r~ "s 'c(8)

(X ').=aP.g 'p. 'r'X '(6),

(B4a.)

(B5a)

(Bsa)

where

s(6) =s, +s,e',

c(8) = (1 —d'8') '(co+ c,e'),
(B4b)

(B5b)

(B6b)X '(8) =(I —d'8') '(1+X, '6'+X '64)

Here d =b (1 —2P) and the coefficients s„, c„,
X„' depend on O', P, Z (Table IV).

From (E5) (Appendix E), (Blc), and (B3) it fol-
lows that the pressure contains a nonanalytic part
of the form

P. =(p.+&p) p. f. -
=aP, r~' (6 —8') —agP, r&"s[f +(f —1)6'

+ (f.+1)8'].

(B7)

The single-phase region is bounded by a two-
branched contour 6= -1 (gas) and 8=+1 (liquid).
On this contour, at constant temperature, it is
evident that (p. ,),,, = (p, ,)),„„,, and (P,),„=(P,) ),„„,„.
Hence this contour is the boundary of coexisting
gas and liquid phases.

f(e) =gf„e"=f,+f,e'+f, e'. (Bsb) B. Two-phase region

TABLE IV. Coefficients for use in Eqs, (B3)—(B6).
Here o. = 2 —y - 2P B,nd d =b (1 —2P ) .

b2ya. —p+2p
2 b 40. (1 —e ) (2 —e) sp = (2 —o.')f p

(A complete expression for the free energy con-
tains in addition background terms, discussed in
Appendix E). The dimensionless constants f„ in
(B3b) are functions of O', P, y (Table IV)." It is
to be noted that the free energy (B3) is analytic
everywhere in the single-phase region except at
the critical point (r =0), where there is an essen-
tial singularity.

Other thermodynamic quantities of interest can

Inside this boundary, in the region of coexisting
liquid and gas phases, expressions (Bl) apply to
each phase separately, with t9 =+1 for the liquid
and 0= -1 for the gas. In this region the chemical
potential (A2) is a function only of temperature
and is equal to its value at the coexistence curve.
In the linear model, &p. =0 at 9= ~1. Hence &p =0
everywhere in the two-phase region [in agreement
with Eq. (E2) of Appendix E if x~' =0 for this
region], and f, in this region is, from (B3) and
(Blb),

~Z' 7+28
(f.)„„„,... =ox'J'. ()) b, )~ (f, +f, +f)

C

(BS)

y —2P-de2
2b 2n (1-e)
-d 2

f4 2mb'

y —2P
2o.b

cp'= (1 G)sp

Successive differentiations of (BS) lead to ex-
pressions for the entropy and specific heat in the
two-phase region. Of particular interest is the
specific heat,

c
&

——(j/ —1)s
&

X2 =-3+b (—1+2y+2P) X4~ ——b (3 —2y —2P)

(c),), (Z+2P)(p+2P —1)
T ++2 a tv, o phase

two phase

(Bs)
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The specific heat is greater in the two-phase re-
gion than in the single-phase region at the same
temperature close to the phase boundary. (By
contrast, the entropy does not change discon-
tinuously at the boundary of the region of coexisting
phases; it has the same value in the two-phase
region as in a single phase at the same tempera-
ture at 8 = +1.)

C. Restricted linear model

Some special choices of the constants b', P, y
merit comment. For P+y = —,

' and yb' = 2, the de-
pendence on 8 of the susceptibility (B6b) dis-
appears, as does that of the specific heat (B5).
[For P+y= 2, the isothermal integration of Eq.
(C2), Appendix C, yields Eq. (C4) exactly, with
yb' =-,'."'] The specific heat continues to be in-
dependent of 8 for P+yW 2 for the "restricted"
linear model, in which b = b*, where'

(Bio)

with 6 = (y/P)+1.
The discussion elsewhere in this paper does not

assume either P+y = —,
' or b =b~; these relation-

ships are satisfied approximately but not exactly.

D. Topography of parametric models;

metastable states and spinodal

For T & T„Eqs. (1) lead to values of Ib, p I

that are never smaller than those which corre-
spond to

I
8I= I

8 I=d '= [b'(1 —2p)] ~'. It is seen
from Eqs. (B5) and (B6) that on the boundary 8= 8,
for particular choices of O', P, and y, both the in-
verse susceptibility and the specific heat diverge
and change sign. Divergence of the inverse of the
susceptibility (infinite rigidity) is not an observed
behavior of accessible states of real fluids. For
other choices of b', P, and y compatible with ex-
periment, the susceptibility diverges before I8I

reaches l8 I, at a boundary I8I=I8.1, with I8„I&I8 I.
The boundary at I8I = I8„I resembles a classical
spinodal line. This leaves open the possibility of
a region 1& 6'& 6I'„of metastable g3s or liquid
which behaves as an ideal single-phase fluid, and

whose thermodynamic properties in this region
continue to obey Eqs. (BS)-(B6)rather than Eqs.
(B8), (B9), etc.

In the limit b- b* (Appendix BC), the boundaries
and O„merge into a single boundary of meta-

stable behavior along which both the specific heat
and the susceptibility remain finite, with an in-
finite derivative in the susceptibility' and a cusp
in the chemical potential at this boundary. For
b &b* (as is the case for the values of b, P, and y
found in this investigation) the boundary I8„I is

reached before I8 I. For b&b*, as suggested in
some previous investigations, "the boundary
I8I=I8„I is not reached before I8~I, and there is no
accessible spinodal line or boundary of meta-
stable behavior in the above sense; rather, the
susceptibility then remains finite for all I8I. I8 I,
and decreases to zero at I8I =I8„I, a situation that
seems unphysical. It is to be noted, finally, that
for the Ho-Litster' "cubic-model" modification
(end of Appendix C) that leads to X~r 3 as an exact
result, "the susceptibility has an infinite derivative
and the chemical potential has a cusp just as in the
restricted linear model in the limit 6

APPENDIX C: DERIVATION OF PARAMETRIC

REPRESENTATION FROM SUSCEPTIBILITY

DATA

A. Natural variables for use close to critical point

x "(T,-T.) ',
I bpI ~ ( AT) coexis-tence boundary,

I
b.pI ~ (T~ —T )'(T~ —T,) ' susceptibility contour.

(Cla)

(C lb)

(Clc)

Here &p =p —p„&T= T —T, ; &~ is the maximum
temperature on a susceptibility contour; and"
y=1.2, q=0.5, /=0. 35.

For q = 2, and with the substitution of parametric
variables & and 8 defined through the relations
(&~ —T)(&& —T,) ' =b'8' and T~ —T, =T,r, expres-
sions (C1a) and (Clc) become

and

x=x(r)=x,r '

b,p(r, 8) =p, ra 8,

(C2a)

(C2b)

with

aT(r 8) =T r(1 b'8')— (C2c)

Here b' is a dimensionless constant and y„p„
and T, are constants with dimensions of suscepti-
bility, density, and temperature, respectively.
The latter two equations [(C2b) and (C2c)] are
equivalent to Eqs. (1) of the text.

The particular parametric representation postu-
lated for use in the analysis presented in this paper
can also be derived from experiment. Key fea-
tures of the experimental data are shown in Fig. 2.
The coexistence curve and contours of constant
susceptibility shown in Fig. 2 are not perfectly
symmetric about the critical density. However,
to the extent that the contours are symmetric (the
smaller susceptibility contours in particular are
quite symmetric) they can be characterized ap-
proximately by the following empirical relation-
ships":
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Macroscopic: & = (y/y, ,)
'l ~,

Microscopic: r = ($/g, ) 'l ".
(C3a)

(c3b)

The empirical statements (C1) and the assign-
ment p = 2 are approximations. Consequently,
not all of Eqs. (C2) and the deductions based on
them should be expected to exactly characterize
a real fluid, such as carbon dioxide. Equations
(Cl) and their consequences, (C2) et seq. , serve,
rather, as simple approximately correct charac-
terizations of the critical region that can be per-
fected through comparisons with more exact ex-
perimental data and refinements of theory.

By using the linear model to fit the data we have
effectively retained equations (C2b) and (C2c) as
exactly correct equations of transformation from
conventional p, T to parametric r, 0 variables.
However, we have chosen the constants in those
transformation equations to meet our requirement
that the susceptibility be mainly a function of &

and thus maintain the approximate validity of
(C2a) and of the interpretations based on Eq. (C2a)
that have been discussed above.

It is evident that in this representation, illus-
trated in Fig. 3, the parameter & is constant on
each contour of the type (Clc). The magnitude of
& grows in proportion to T& —T„. that is, r grows
in proportion to the remoteness" of the contour
from the critical point. The parameter 8 is pro-
portional to the macroscopic order parameter ~p
at constant &; the average "order, " 8, increases
from left to right along each contour of given &.
A constant value of ~8~ with b'8' & 1 corresponds
to the boundary, (C1b), of the region of coexisting
phases.

The parameter r as specifically defined above
is closely related to both the susceptibility at
equilibrium of the macroscopic thermodynamic
state and the microscopic range $ of transient
spontaneous ordering. According to the approxi-
mate representations (C1c) and (C2) of the experi-
mental data for CO„contours of constant & as
defined above are contours of almost constant sus-
ceptibility. In accordance with the expected de-
pendence of the susceptibility on $,2'3 it may be
conjectured that these contours are also contours
of nearly constant (.

It is known that along the critical isochore
(&p =0) the dependence of $ on temperature is of
the form""" (~ (T —T,) ". [The exponent v is
found both theoretically and experimentally to
satisfy the relation y=2v or, more exactly, '
y = (2 —q)v, with q -0.1""""].Consequently, the

parameter r as defined above can be given the
following alternative interpretations:

B. Equation of state close to critical point

Isothermal integration of (C2a), using (C2b)
and (C2c), leads to a nonanalytic component of
the chemical potential (E2) (Appendix E) which
includes as a factor an infinite series in H.

" A
good approximate representation of the result of
this integration, for a choice of constants that
leads to 0.„, =-1, 0~;„„;d=+1, is

t' p(p, T) = p(p, T) —p(p, , T) = p, r ,

'
(6 —6 '),

(c4)

with p, , =const. (Higher-order terms in the infinite
series in 0 vanish identically for y+P=1.5, and
they are still quite small for 1.5&&+p&1.61 an
inequality that is almost certainly satisfied for
co,.)

The simple expression (C4) is equivalent to the
"linear-model" expression (Blc). A second in-
tegration of (C2a) will be found to give an expres-
sion for the free energy (E3) that, with an ap-
propriate choice for f (p„T), reduces to a sum of
just three terms equivalent to Eq. (B3) in the
approximation (C4).

The simplified expression on the right-hand side
in (C4) is of the form introduced a priori by Scho-
field in his theory of the critical region of magnets
and fluids' (Appendix B). Equation (C2c) with a
general choice of b' was also postulated by Scho-
field, and Eq. (C2b) is equivalent to the "linear-
model" specialization of his general parametric
expression for the density of a fluid. The above
discussion shows that for a special choice of b',
(C4) [or equivalently (B1c)] can be derived for
fluids from empirical data, summarized by the
approximate expressions (C1), in a manner com-
patible with retention of all of expressions (C2) and
(C3) as aPP~oximately correct statements.

The use of (C4) as an exact model equation re-
quires a modification of at least one of the three
expressions (C2). However, since the required
modification is small for appropriate choices of
the constants of the transformation, we have used
the simple "linear model" of Schofield with con-
stants chosen to preserve (C2a) as an approxi-
mate, but not exact, equality, in the expectation
that any further modification of Eqs. (C2)-(C4)
for use close to the critical point of CO, will be
small.

An example of a small modification to the para-
metric equations we have presented is the "cubic-
model" parametrization of Ho and Litster' in which
a factor (I +c8') is included on the right-hand side
of (C2b) [or equivalently (1a)]. With this inclu-
sion, and with the temperature and chemical po-
tential given by (C2c) and (C4), respectively, Eq.
(C2a) can be retained as an exact result compati-
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ble with the parametrization of 4p. , &T, and 4p,
provided that" &'=5,'« =3/(3 —2P) and c = [2(y+P)- 3]/
(3 —2P). For the values of y and ti used in this
paper, b,'„=1.30, which is also the value of b' that
has been used in this paper because it provides the
best over-all fit to the coexistence curve and to
the susceptibility contours (see Sec. II), and
c = 0.05.

Bo, = -12.6,

~, = 0.125.

= -0.08'7, (D2)

The following modified form of Eq. (Dl) has been
used to represent the experimental data approxi-
mately, in a form more readily compared with
theory when & = &' & &0:C, „,P, Tv (At- +8 ) (D3)

where

t- o-t- o
1 2A.' =A.o
1 2

Bl A t-cfp Alt-cc
0 2 2 + 0'

(D4a}

It is to be noted that expression (D3) is equiva-
lent to (Dl) at all temperatures for o."= o,', and that
it is also equal numerically to (Dl) for any o."0 o.',
at the two temperatures t=t, and t=t, . Because
of these features, (D3) can provide nearly as good
a representation of the data as expressions (Dl) or
(8) for appreciable ranges of o." and t. In particu-
lar, for the choices t, =7&&10 ' and t, =2.5&&10 ',
the agreement between (D1) and (D3) is -1% for
values of &' as small as 0.08 and for temperatures
in the range 4x10 5( t& 5&10 '. This range of
temperatures includes most of the specific-heat

APPENDIX D: ALTERNATIVE REPRESENTATIONS OF
MEASURED SPECIFIC HEAT

The result of measurements" of the specific
heat of CO, over the range of temperatures
4 && 10 ' &

i
n T/T J & 10 ' is summarized in Eq. (8)

in the text. Apart from a factor T/T, =1, that ex-
pression is of the form

CV - cf Pc
y o o
"=(A t "0+a-)——

C C

where t = in T/T, i. Equation (Dl) closely resembles
the theoretical expressions Eqs. (13) and (B9) of
the text, with the addition of background contribu-
tions. A comparison with the experimental results
(8) (using R =8.314 JK ' mol ', T, =304 K, P,
=72.9 atm =7.38 J/cm', mp, =0.468 g/cm', and a
molar mass equal to 44 g) leads to the following
values for the constants Ap, Bp, and 0'p.

20 3 Ao 38 1

data reliable to -lucio. ' Values of A' and B' cal-
culated from experiment for this choice of values
for t, and t, and representative choices of &' are
tabulated in Table V.

The corresponding values of A, and B, for use
in Eq. (8) are smaller than the A' and B' values
listed in the table by a factor VP, /RT, =0.275.

=X,+X
T

(E1)

Here (X ), contains the essential singularity
characteristic of the anomalous behavior of the
compressibility in the vicinity of the critical point,
and (y '), is a background term that is negligibly
small at the critical point and expresses all de-
partures from ideal critical behavior that appear
at appreciable distances from the critical point.
Using this decomposition, it is possible to discuss
anomalies that occur close to the critical point
without reference to thermodynamic behavior
farther from the critical point. In this representa-
tion the latter behavior appears explicitly as a
small perturbation to be added to "ideal" critical-
point anomalies; the "background" terms con-
tribute only secondarily to the critical-point phe-
nomena treated in the present investigation, but

are required to assure a smooth and orderly tran-
sition from the universal laws of behavior charac-

TABLE V. Values of A' and B' calculated from exper-
iment for t&=7x 10 and t2 ——2.5x10, and for represen-
tative choices of 0.'.

A' B'+

0.08
0.10
0.125

45.3
31.0
20.3

84.9
58.1
38.1

-42.8
-26.0
-12.6

-56.6
-25.3
-0.087

APPENDIX E: SEPARATION OF ANOMALIES FROM

BACKGROUND

A rigorous discussion of critical-point anomalies
requires consideration of nondivergent and analytic
contributions to thermodynamic properties, in
addition to the divergent and nonanalytic ones
represented by the equations of the parametric
models. Detailed discussions of extensions of
the model equations have been presented else-
where. "'"'" For present purposes, it is suffi-
cient to imagine each thermodynamic function
divided into two parts: (a) a portion that contains
the anomalous rapidly varying behavior typical
of the critical point; and (b) background terms
that are small and/or slowly varying near the
critical point.

It is convenient to begin this discussion by ex-
pressing the inverse of the susceptibility (A71) as
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teristic of all substances close to their critical
points to the less easily characterized and sub-
stance-specific laws of behavior that apply to
liquids and gases far from their critical points.

Successive integrations of y
' at constant tem-

perature lead to expressions for the critical and
background components of the chemical potential
and free energy:

dp

P P

dp+ g gdp+ p, T
Pc Pc

=~a+~V~ (E2)

f = tbdp=

=f.+fb

P

p, ,dp+ pb dp + f(p„T)
PC

(E3)

The decomposition into f, , f, , and p, , p. b is made

in accordance with the requirements that f, f„
and p., be analytic except at the critical point
and p, , and f, correspond to (lt '),.

Since tb(p, T) must be analytic for all px p, (ex-
cept along the boundary of the region of coexisting
phases) it follows that p(p, I T) is analytic for the
choice t), tb(p, T) given in (C4). Consequently, the
model expression for b, p, given in (C4) can be
equated to p, , in (E2). The term p, b in (E2) then
includes the (analytic) portion of g(p, T) close to
the critical point that is not dependent on density,
namely, p(p„T), in addition to all corrections to
expression (C4) that are required at temperature
and density distances remote from the critical
point.

Successive differentiations of (E3) with respect
to temperature give expressions for the entropy
(A7b) and specific heat (A7a). It is to be noticed
that the nonanalyticity in y

' leads, via (E2) and

(E3), to the appearance of a nonanalytic component
of the specific heat; the specific heat has an
anomaly as a consequence of (and calculable from)
the anomaly in the equation of state.

Other thermodynamic quantities can be divided
similarly into singular and background components.
As an example, we cite the pressure, given by

and

fb. (E5b)

APPENDIX F: HEIGHT PROFILES

whence

Az =z —z C
mgo

p(z)

where z, is the "critical height" in the fluid, i.e. ,
the height at which p =p,. If p(p, , T) does not con-
tribute to p, , then, from (E2), the integral on the
right-hand side of (F2a) is equal to

p(z) p(z)
dp = ptI+ X gdp.

Pc

(F2b)

If (b) the temperature is not constant, it follows
from the Gibbs-Duhem relation (A6) and the iden-
tity

dP = — dp+ — dT (F3)

that

dP = -mpg dz = p - dp+ — dT
Bp OP

Bp & dT

and hence

(F4)

In a fluid at thermodynamic equilibrium in the
presence of an external field of force (e.g. , gravi-
ty) many of the thermodynamic properties vary
with location in the fluid. For example, in the
absence of forces other than gravity the pressure
varies with height z in accordance with the rela-
tion dP = -mpg, dz. Here go is the acceleration of
gravity and mp the mass density of the fluid. As
a consequence, the density, free energy, chemical
potential, compressibilities, etc. , are also func-
tions of elevation within the fluid. From the Gibbs-
Duhem relation, (A6), and the definition (El) it
follows that (a), for constant temjerature, "

dP
= d p. = —mgo dz = X dp

p

P=pp —f =P, +P, ,

where

P, =pp, , f, —

(E4)

(E5a)

1 dp

m)), ) +(mp);, ) '(SP/S1*)p 1;)'

where T, =dT/dz.

(F5)
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