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Coherent optical transient study of molecular collisions: Theory and observations
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It has been shown recently that molecular gas samples excited with coherent light can display a
variety of transient phenomena, similar to those found in nuclear magnetic resonance. This article
elucidates how these coherence effects can be used to isolate or unfold molecular collision mechanisms

that normally remain hidden within the optical line shape. Elastic collisions, for example, are easily

detected here in two-pulse photon echo experiments for a "CH,F vibration-rotation transition. The echo-

decay function which provides a signature for the velocity-changing collision diffusion mechanism, is

not just a simple exponential in time but exhibits an exp( —Kt') contribution for short times and an

exp( —I t) decay for long times. This behavior, which is unknown heretofore, contrasts with spin echoes
in molecular liquids where Brownian motion leads only to the cubic decay law. An exp( —K t') be-

havior can be understood in terms of a solution of the Fokker-Planck equation which describes the

effect of Brownian motion on echo decay. Such a treatment is valid for small phase excursions; in the
case of a gas, this implies the Doppler phase factor k hu ~ & 1, where k is the propagation vector of
light, hu is a characteristic velocity jump for a binary collision, and r is the echo-pulse delay time.
When kb. u v && 1 as in the long-time regime, the Fokker-Planck solution fails. We, therefore, present a
new solution to the Boltzmann transport equation using a weak collision model and find agreement
with the entire echo time dependence observed. The echo measurements indicate very small changes in

longitudinal velocity per "CH,F-"CH,F collision, i.e., Au = 85 cm/sec„ thereby justifying the weak-

collision model. The total elastic collision cross section is 430 A'. It follows that elastic collisions
lead to velocity thermalization in a time of -5 sec when the "CH,F pressure is 1 mTorr. A com-
parison is also made of the "CH,F dephasing time v, in a coherent Raman beat decay, which is

independent of velocity-changing collisions, with the longitudinal decay time T, . Here, T, represents
the molecule-optical interaction time, due largely to jumps in molecular rotation (J) and orientation

(M) state, and is obtained from a delayed nutation measurement. The fact that the pressure dependent

part of v, = T, shows that T, is also independent of velocity diffusion, Futhermore, when a hole is

burned in the Doppler distribution, population recovery must be due to inelastic rather than elastic
collisions. Optical Carr-Purcell echoes, multiple pulse echoes, provide a direct measure of the "CH,F
transverse dephasing time T, without the effect of elastic collisions while being sensitive to "phase
interrupting collisions. " Again, we find that T, = T, so that phase interruptions are negligible. Had
such a process dominated the two-pulse echo, an exp( —t/T, ) damping would have been noticed with
no exp( —K t') contribution. Thus, the present study covers several new aspects of molecular collisions.
It represents the first detailed examination of velocity-changing collisions by coherence methods and

without the complication of Doppler broadening.

I. INTRODUCTION

The role of atomic. and molecular collisions in
optical line broadening was first demonstrated
by Michelson in 1895.' Other methods for studying
collision phenomena have evolved since, such as
molecular-beam' and microwave spectroscopy, '
but in the optical region, Michelson's spectro-
scopic technique persists even today. This article
discusses another optical method, coherent tran-
sients, now possible with the availability of laser
light and the recently-introduced technique of
Stark switching. ' It has been demonstrated already
that molecular samples excited with coherent light
over macroscopic dimensions can exhibit a variety
of transient phenomena ' that are reminiscent of

spin transients in nuclear magnetic resonance
(NMH). " " In this way, specific relaxation pro-
cesses can be isolated in contrast to steady-state
optical linewidth measurements which represent
a summation over all collision mechanisms. The
present work extends a preliminary Letter' on this
subject and includes details of new theory and

experiments.
We shall focus on the translational Brownian

motion problem of a dilute molecular gas, "CH3F,
and its effect on photon-echo experiments. The
measurement described in IV is sensitive to elastic
collisions between molecular pairs where the quan-
tum states remain fixed and the linear velocity
exhibits a diffusive character through small-angle
scattering. The transition frequency of the ra-
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diating sample is no longer pure therefore, but
displays a bandwidth corresponding to the velocity
spread produced by elastic collisions. The various
velocity packets diverge in their phase relationship
causing the echo amplitude to diminish with a
characteristic time dependence that distinguishes
the velocity-diffusion mechanism from other de-
phasing processes. We note that spectral diffu-
sion was not recognized in the echo study of Ref. 4.

The effect of spectral diffusion on optical echoes
produced in a molecular gas contrasts markedly
with that of spin echoes in a molecular liquid. In
the NMR case, "a single decay law of the form
exp(-Kt ') is observed and can be explained by a
solution of the Fokker-Planck equation. " In the
optical case, we observe two limiting time re-
gimes —exp(-Kt') for short times and exp(-I' t)
for long times. We show in Sec. II that for the
optical-echo problem, the Fokker-Planck solution
fails and the entire time dependence, which is
unknown heretofore, can be derived from a solu-
tion of the Boltzmann transport equation assuming
a weak-collision kernel. The experiments and
theory to be presented thus extend our understand-
ing of optical-echo formation in gases and the
collision parameters obtained characterize the
persistence of molecular velocity in gas samples.

The echo experiments of "CH,F indicate that the
linewidth contribution from velocity-changing col-
lisions is indeed quite small (-0.1 MHz) compared
to the Doppler width (-100 MHz) and would be easi-
ly masked in a steady-state linewidth measure-
ment. Even certain laser methods, such as Lamb-
dip or double resonance, that remove Doppler
broadening appear inadequate. " An exception is
the time-delayed probing of the Lamb-dip line-
width. " On the other hand, elastic collisions have
a profound influence on the optical phase memory
of coherently prepared samples in echo measure-
ments. This makes possible a determination of the
characteristic velocity jump, essentially the rms
change in velocity per collision, which is found to
be only -0.2% of thermal velocity for "CH,F.

A byproduct of these studies answers the ques-
tion: Are phase-interrupting collisions important~
Quantum mechanical considerations"'0 of this
topic indicate that if the collision interaction is
strongly state dependent, the velocity-changing
collision contribution to the line shape disappears
and the phase-interruption part dominates. On the
other hand, if the collision is state independent,
it follows that the phase-interruption. vanishes and
the concept of a velocity-changing collision has
meaning. When both contributions are comparable,
the theoretical complexity increases considerably.
For the vibration-rotation transition of ' CH3F
described here, we show that phase interruptions

are immeasurably small compared to velocity
changes. The conclusion follows from the com-
parison made in Sec. III of the longitudinal decay
time T, with that of T, from multiple-pulse photon
echoes (Carr-Purcell echoes").

II. THEORY

A few theories of echo formation in gases can
be found in the literature. ' In general, the Bloch
equations are used to derive an expression for
the echo amplitude that will account for simple
relaxation processes (i.e., T, and T, decay), but
will not include the effects of collision-induced
changes in the velocity of the radiating molecules.
Modification of the results to include velocity-
changing collisions has been carried out in some
cases, "but the solutions are based on inappro-
priate models and do not predict the time depen-
dence discussed here. Therefore, we shall present
a simple, but fundamental, solution of the echo
problem that is easily extended to the most gen-
eral case. The calculation will involve (A) a brief
review of the physics of echo formation, (B) deri-
vation of formal expressions for the echo-fieM
amplitude in terms of the polarization of the sam-
ple, and for the polarization of the sample in
terms of density-matrix elements, (C) writing
appropriate equations of motion for the density-
matrix elements and connecting these with the
Bloch equations, (D) solution of the equations and
calculation of the echo amplitude in a simplified
limit that serves to illustrate the physics, (E)
modification of these simplified results for the
actual experimental situation, and (F) an in-
terpretation of the results. Approximations and
assumptions of our model will be explicitly stated
throughout.

A. Echo formation

To produce photon echoes in a molecular gas,
one first subjects the sample to a radiation pulse
that produces an array of dipoles that are initially
in phase. These dipoles radiate and begin to de-
phase owing to their motion. The relative de-
phasing of a molecule moving with velocity v will
be k vt where k is the radiation propagation vector
and t the time elapsed after the applied pulse.

Another pulse applied to the sample at time 7

(see Fig. 1) can produce a phase change of -2k. v~
in molecules moving with velocity v so that the
relative phase of such molecules at time & will be
k v& —2k v7 = -k vT. Since the phase of each
molecule still increases an amount k v&t in a
time ~t, one easily sees that at time t=27 the
molecules are all in phase once again and an "echo"
pulse is emitted. The photon-echo amplitude will
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FIG. 1. Relative Doppler phase of molecules with axial
velocity v is shown. The molecules are all in phase be-
cause of a ~7} pulse at t =0. The phase then advances but
reverses sign at t= 7 by application of the 7( pulse. At
t =27, the molecular dipoles have all rephased again and
an echo signal is produced.

(
8 f 8 2n&~—+ ——Ez(z, t) = i C(t).
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To calculate C and S, we must calculate the
polarization induced by the laser field. The sys-
tem is assumed to consist of nondegenerate two-
level molecules with upper state a and lower state
b separated by frequency &. The polarization of
this molecular system is given simply by the sum
of expectation values of the dipole-moment opera-
tors for each molecule, i.e. ,

varying functions of z and t compared with sin(kz)
and sin((dzt), respectively. Substituting (3) and (4)
into (1) and keeping only lowest order terms, yields
amplitude equations

(
8 I 8

+ — Ec(z, t) = — ~ S(t),
Bz c Bt ~ ' c

serve to monitor all relaxation processes that in-
terfere with this dephasing-rephasing cycle and
is a sensitive probe of collision effects in gases.

P (R, t) = )( Q e(r, )~(R, —R)d'R, , (6)

where P(z, t) is the x component of the medium's
polar ization.

The calculation involves a quantum mechanical
evaluation of the polarization of the medium in-
duced by the laser field followed by a determina-
tion of the corresponding echo-field amplitude
from Eq. (1). A consistent solution can be ob-
tained by assuming that a laser field of the form

Ei(z, t) =E,cos(kz —&vent)

with oscillation frequency ~ and propagation
vector k =4'z will give rise to a polarization

P(z, t) = C(t) cos(kz —(dzt)+S(t) sin(kz —~~t),

and, in turn, to an echo field

E(z, t) = Ec(z, t) cos(kz —(dzt)

+Ez(z, t) sin(kz —(d~t), (4)

where C(t), S(t), Ec(z, t), and Ez (z, t) are slowly

B. Polarization and field equations

As long as the echo-field amplitude is much less
than the laser-field amplitude and the pulse dura-
tion is much greater than an inverse optical cycle,
a rather simple expression for the echo amplitude
in terms of the medium's polarization can be ob-
tained. The wave equation in a lossless medium
for the electric-field amplitude E(z, t) of a wave
polarized in the x direction and propagating in the
z direction with negligible transverse spatial
variation is

S'E(z, t) 1 O'E(z, t) 4z O'P(z, t)
8z' c' ~~ ' C'

c.c. stands for complex conjugate, and

p„„.(R, t) = g A'„(R, t}A'„,(R, t) * (10)

is the &&' density-matrix element. Bather than
deal with the purely quantum mechanical density-
matrix elements p«c(R, t), it is possible to go
over to density-matrix elements in classical phase
space p„„(R,v, t) which obey a structurally simple
transport equation to be given below. In terms of
the p „(R,v, t) which are functions of the classical
position and velocity variables R and v respectively
[p „(R,ct) was a function of the quantum mechani-
cal variable R] the x component of polarization is
simply

p (R, C) = Jd'c (cc,.p. ,(R, v, t ) + c.] . c

where r,. is the relative electronic coordinate of
molecule g, R, is the center-of-mass coordinate
of molecule j, the sum is over all molecules, and
we have taken a one-electron system without loss
of generality. Note that (r&) is a function of R,
and I' since the wave function for the two-level
jth molecule is

q'(r, , R, , t) =A.'(R, , t)y. (r, ) +A",(R, , t)q, (r, ),
(7)

where g, (r,.) and (I),(r, ) are molecular-state eigen-
functions and A', (R, , t) and A~~(R, , t) are probability
amplitudes. Using Eqs. (6) and (7) and parity con-
siderations, one easily calculates

P (R, t) = er, ~ p„,(R, t) +c.c., (6)
where



COHERENT OPTICAL TRANSIENT STUDY OF MOLECULAR. . . 1671

Thus, one must (a) solve a transport equation
(to be given) to obtain p„(R, v, t), (b) calculate
P (R, t) using (11), (c) write P (R, i) in the form of
Eq. (3) to determine C(t) and S(t), and (d) finally,
obtain the echo field amplitudes Ez(z, i) and Ec(z, t)
from a solution of Eq. (5). Note that, experiment-
ally, we measure the time-averaged quantity

I ~ (i E, (z, t)+ E(z, t) ')= ,'E', +E-,(z, t) E„(12)
where terms of order E2c have been dropped. Thus,
in the experiments to be discussed, the echo signal
Ec(z, f)E appears as a heterodyne beat superim-
posed on a dc signal 2EO.

C. Density matrix and Bloch equations

The density-matrix elements p«t(R, v, i) obey
a quantum mechanical transport equation that
consistently takes into account the interaction of
the molecular system with external fields while
collisions are occurring within the system. " The
equation appropriate for the experimental situation
ls

+(ik) '[H, +V(R, t), p(R, v, &)]„„t

(1/T, )p„„,(R,v, t) —&p„„(R,v, t)

d'v'W v'-v p „R,v', t .
(13)

The contributions to Bp„„(R,v, t)/Bt are (a) a con-
vective flow term —v Vp „(R,v, i), (b) the change
in p „due to the free molecular Hamiltonian Ho,

(ik) '[H„p(R,v, &)]„„.= —i~„„.p„(R,v, t), (14)

with

~„„=(E„-E„)/k,
and E„ the free-molecule eigenenergy of state &,
(c) the change in p'„„due to the molecule-optical-
field interaction

(ik) '[V(R, i), p(R, v, t)]

with matrix elements of V(R, f) given by

V.„,(R, i) = -ex„.,E,(R, t), (16)

in which Ez (R, i) is the laser field [Eq. (2)], and
the effect on the sample due to the echo field has
been assumed negligible, (d) a population loss
term -(1/T, )p„„(R,v, f) due to effects such as
quenching collisions and molecular transit out of
the laser beam with T, ' being the rate for such
processes (an assumption implicit in writing such
a term is that population losses are state inde-
pendent which is reasonable for different vibra-
tional levels of a given electronic state), (e) a
term I'p„„-t (R, v, t) giving the loss of p„„(R,v, t)
due to velocity-changing collisions occurring with
rate &, and (f) a term

JO'O' W(v'- v)p«(R, v', i)

giving an increase in p„„(R,v, i) due to velocity-
changing collisions associated with the collision
kernel W(v'- v) that bring molecules from velocity
v' to v.

The fact that both & and W(v'-v) are real
[1' = Jd'v' W (v- v')], is a consequence of the as-
sumption that the collision interaction is state
independent —the only effect of a collision is to
change the velocity of the molecule. Furthermore,
(13) implies that T, =T, because phase-interrupting
collisions are assumed negligible. In the more
general case of a state-dependent collision inter-
action, additional terms would be needed in the
transport equation" and then T, & T, . Furthermore,
for simplicity we have assumed T, and I' to be
independent of molecular speed o —allowance for
the speed dependence of these variables would
not significantly affect any of the results. 2' Final-
ly, we should note that pumping terms are ex-
cluded from (13) on the assumption that any mole-
cules pumped into the lower state after the initial
laser pulse will not contribute to the echo ampli-
tude.

In terms of components for our two-level sys-
tem with V(R, i) given by (16) and Ez(R, t) given by
(2), Eq. (13) becomes

(B/Bt+v V)P„(R v, t) = ilicos(kz -—&zt) [P„(R,v, &) —P(„(R,v, t)]

—(t; + P )p„(R, v, t) ~ J d'v ' W(v'- v)p„(R, v', t)

(9/Bt+v V)p„(R, v, i) = —i&p„(R, v, t) —igcos(kz —(d)zt)[p„(R, v, i) —p»(R, v, t)]

—(p, ~ I')p, (R, v, t)+ Jd'v'W(v' v)p, (R, v', ),

(17a)

(17b)

where X = 8X (, ER/k, (19)

(20)
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x„ is taken as real, and equations for p» and p„
can be obtained by interchanging a and b (and (I)

with -&) in the above equations. The normaliza-
tion taken for p is

Q jl p„„(R,v, t)d'Rd'v =2,

where 2 is the total number of active molecules.

By Wl ltlng

p„(R, v, &) = p„(R, v, t) expi (k R —&~t), (21)

with k=kz and P,~(R, v, t) assumed to be slowly
varying in space compared with cos(kz) and in time
compared with cos(&&t) and by using the rotating-
wave approximation [neglect of rapidly varying
terms in Eqs. (17)], Eqs. (17) can be reduced to

(u/ut v v) p(R, vt) = —I (
—I) [p, (Rv, t) —p„(RV t)] —(I; I')p„(Rv, t)+ f d'v'w(v'-v)p„(Rv, ),

(22a)

(8/8 t + v V)p„(R, v, t) = —i (~ —~z + k ' v)p„(R, v, t) —i (-,'](')[p„(R,v, f) —p»(R, v, t)]

—(I;+I')p„(R,v, t) fd'v'IV(v'-v)p„(R, v', t) (22b)

plus equations with a 8 and (& —wz, +k v)
——((I) —(t)~ +k ' v).

Equations (22) are the starting point for the theo-
retical calculations. Some authors prefer to use
linear combinations of density-matrix elements.
For example, defining

m(R, v, t) =p„(R,v, t)+ p»(R, v, t), (23a)

w (R,v, t) = p„(R,v, t) —p„(R,v, t),

v (R,v, t) = i[]o,R(R,v, t) —p„(R,v, t)],

u(R, v, t) = p„(R,v, t)+ p„(R,v, t),

(23b)

(23c)

(23d)

[the variable v(R, v, t) is to be distinguished from
the velocity v], one can transform Eqs. (22) into

(8/ut+v V)m(R v, t) = —(V +I')m(R v t)+ f d'v'W(F-v)m(R v, t) (24a)

(p/ut+v' V)ut(R, «t) = —(I;+I'),u(R, v, t)+ f d'v' )V(v' v)u (R, v', t) —Iv(R, v, t) (24b)

(8 /8 t + v ' V )v (R, v, t ) = —(I; + I') v (R, v, t) + Jf
dRu ' W (v'- v) v (R, v', t) + ((I) —(d)i + k ' v) u (R, v, t) + gw (R, v, t ),

(24c)

(u/et v ~ v) ( uv,Rt)=-(r r) v(uv, Rt)+ f ' d(vwvv)(Rvu, t) —(tv —tv, +u ~ «) (v, ut)R (24d)

More compactly, we can define a quantity

5((d)) = ((I) —(I)& d. k v),

and vectors

B(R,v, t) —= (u(R, v, t), v(R, v, t), w(R, v, t))

and

(26)

The assumption is made that the laser beam is
uniform over a homogeneous sample which implies
that any spatial variation of the vector variable
B(R, v, i) is to be neglected so that its R argument
can be dropped. Furthermore a new vector vari-
able

B'(v, t) =(u'(v, t), v'(v, t), w'(v, t))
& =(-X, 0, 8(~)), (27)

+ d'v'W v'-v B R,v', t,
(28)

enabling one to write Eqs. (24b)-(24d) as

(8/8t+v ' V)B(R,v, t) =0 x B(R,v, t) —(I;+I')B(R,v, t)

=B(v, t)er~',

can be used to transform Eq. (28) into

BQ'~ t","; "=ax B (,-, f) rB (;, f)

+ d'v' 8" v'- v B' v', t .

(29)

(30)

which is just a generalized form of the Bloch equa-
tions equivalent to Eq. (22) for density-matrix ele-
ments. B'(v, 0) =(0, 0, -1VW, (v)}, (31)

The initial condition at t =0, assuming the mole-
cules are in their ground state is
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where W, (v) is the normalized thermal equilibrium
initial molecular-velocity distribution and N is the
density of active molecules.

determined by

~u2 —(1 (P)u2 = 2 (1 (y)u~ (33)

D. Solution of the equations —echo amplitude

Equations (22) or (30) may now be solved for our
experimental situation in which the laser field is
always present and the molecular transition is
switched in or out of resonance by application of a
Stark field. The molecular transition frequency
shall be designated by , with the Stark field off
and +, with it on. The pulse sequence is shown in

Fig. 2.
From t=0 to t=t, and from t=t, to t=t„

and at all other times the Stark field is off so that
The molecules start in their ground state

at I'=0 and the first pulse excites them into a linear
superposition state. The time t, is assumed short
enough to neglect all relaxation processes in this
interval. From I'=I', to t =t„ =0 and the mole-
cules of concern are so far off resonance that, for
all practical purposes, we can effectively take
X=0 in Eqs. (24} for this time region. During this
interval, the molecules will dephase due to their
Doppler motion, emitting a free-induction-decay'
signal. Collisions and other relaxation processes
are also taken into account. From 1=I', to t=t„
the molecules are switched back into near reso-
nance with the field and this pulse will produce a
phase change in some of the molecules that will
start them rephasing. All relaxation processes are
neglected in the I', —~, interval. Finally, from

3 to the obse rvation time t, = , and we again
can effectively take p =-0. Those molecules, which
have been properly rephased by the second pulse,
will produce a maximum echo signal when ~ —~,
= t, —t, unless collisions or other relaxation pro-
cesses have come into play.

To carry out the calculation, a choice for the
collision kernel W(v'-v) must be made. Since the
functional dependence of the results will be inde
pendent of the choice of kernel, we have adopted
the Brownian motion kernel of Keilson and Storer, "

W(v'- v) = r(w~u') '~' exp[-(v —&v')'/t u'], (32)

where I' is the (speed independent} ra, te of elastic
collisions, & is a constant close to unity, and ~u,

is root two times the rms change in velocity per
collision while u is the most probable speed of the
thermal equilibrium distribution. Equation (33)
follows from imposing detailed balancing, Eq. (40).
The kernel (32) is mathematically simple to deal
with and the assumption that + =1, which corre-
sponds to having very small changes in velocity
per collision, will be supported by the experi-
mental data. Definitions of variables to be used in
the calculation appear in Table I in Appendix A.

u'(v, t) =0,

v'(v, t) = y w '(v, t),

u '(v, t) = -yv '(v, t),

(34a.)

(34b)

(34c)

having used the fact that I' t, «1 and ~5(&,)~t, «1.
The solution of Eqs. (34) at t =t, subject to initial
condition (31) is

u'(v, t, ) =0,

v '(v, t, ) = -NW~(v) sinyt„

w'(v, t, ) =-NWO(v) cosset, .

(35a)

(35b)

(35c)

We can further simplify matters by choosing t,
such that gt, = &n leading to

Simplified case

In order to illustrate the physics of the problem,
we first consider a simplified case in which the
time intervals t, and t, —t, are assumed so short
that

~
&(&,)t, ~«1 and

~
&(&,)(t, —t, )~«1 for all mole-

cules of the sample while at the same time the op-
tical-field strength is large enough so that yt, =1
and y(t, —t, )=.1. Physically, this corresponds to
assuming that the pulses uniformly excite the en-
tire thermal distribution of molecules. In this
model, collisions change the velocity (and, con-
sequently the phase) of individual molecules but
do not alter the velocity distribution of the en-
semble. Modifications of the theory to account
for the actual experimental situation in which only
a fraction of the bandwidth is excited by the pulses
will be discussed below.

The solution is now traced for each time region
shown in Fig. 2.

a. 0««, . In component form, Eq. (30) be-
comes

v'(v, t, ) = NWO(v), w'(v, t, ) =—u'(v, t, ) =0. (35)

0 t) t2 t3 Time~
b. t, &t&t, . In this region =, and g is effec-

tively zero giving a value of 0 equal to

FIG. 2. Pulse sequence showing the Stark field ampli-
tude e versus time. The two pulses occur over the inter-
vals t=o to t&, and t=t2 to t3.

0, = (0, 0, 5 (~,)), (37)

to be used in Eq. (30). A trial solution of the form



1674 BE RMAN, LE VY, AND BRE WE R

B'(v, t) =NW, (v)B'(v, t)

=NWO(v)[u'(v, t), G'(v, t), u('(v, t)],

when substituted in Eq. (30) yieMs

W (v)B'(v, t) =W (v)Q x B (v, t) —W (V)I'B (v, t)

(38)

subject to the initial condition

p,', (v, t„t,) = a[u'(v, t, ) —iv'(v, t, }] = i.
We try a solution of the form

p,', (v, t, t, ) = ,'i e—xp[ix(t,t, ) ' v+y(t, t, )],

(47)

(48)

+ d'v'8" v' v 8' v' B' v', t . (39)
where the variables x and p satisfy initial condi-
tions

Since W, (v') is the thermal-equilibrium distribu-
tion, detailed balancing requires

W(v'- v)W, (v') = Wo(v)W(v —v'), (40)

(41)

(42)

In terms of components, Eq. (41) is

u'(v, t) = -& (~,) U'(v, t) —I'u'(v, t)

and W, (v) may be factored from Eq. (39) leaving
4

B'(v, t) =0,x B'(v, t) —I'B'(v, t)

+ 0'v'W v-v' B' v', t,
subject to the initial condition [obtained from Eqs.
(36) and (38)]

B'(v, t~) =[0, -1,0].

x(t„ t, ) =0, y(t„ t, ) =0. (49)

d

ix v+y = —I'+ d'v'W(v- v')

x exp(i[k(t —t, ) -x] (v —v')},

(50)

which, after inserting the explicit kernel W(v-v')
given by (32) into the integral and performing the
v' integration, may be reduced to

0

i x ' v +y = -I' + I' exp $i (1 —o.')[ k (t —t ) —x] ' v}

x expI-[k(t —t, ) —x]'hu'/4}. (51)

The second term will contribute only if

Substituting (48) into (46), one arrives at the equa-
tion

+ d'v'W v-v' ' v', t, (43a) [k(t —t, ) —x]'b,u' ~ 1 (52)

v'(v, t) =6(&,)u'(v, t}—I'u'(v, t)

+ d'v'8' v-v' v' v', t, (43b)

u('(v, t, ) =0. (44)

Equations (43a) and (43b) are most easily studied
by introducing a variable

p.'(,(v, t, tg) =2(exp[i6(~0)(t —tl)1}lu'(v, t}—i"'(v t}]

(45)
Recalling that &(&,) = (~, —&~+k v) and using Eqs.
(43a) and (43b), we may show that p,'~ obeys the
equation

i(

Spa((v& t
v t(. )

~ah v» j. j

d'v'W v-v'

x exp[ik (v —v')(t —t, }]P,', (v', t, t, ),

(46)

v '
(v, t) = -& dv

'
(v, t ) + fd v W (v - v'') d'' (v ', t)

(43c)
For the assumed thermal-equilibrium condition,

the solution of (43c) is simply

u('(v, t) = u('(v, t, ),

so that, using (36) and (38), one finds

and, in that case [using Eq. (33)], the first ex-
ponent

l(1 —~)[k(t —t, ) —x]'vl=l[k(t —t, ) —x] v~u'/(2u')l

~ lk(t —t, ) —xl&u(bu/u) «1
enabling one to expand the lead exponential in Eq.
(51) to obtain

ix v+y = —I'+I'(exp(—[k(t —t, ) —x]'bu'/4})

x (I +i (1 —o.')[k(t —t, ) —x] ' v}. (53)

This equation immediately yields two equations

x(t, t, ) = I'(I —o.')[k(t —t, ) —x]

x exp(- [k (t —t, ) —x]2&u'/4}, (54a)

y (t, t, ) = -I'(1 —exp[-[k(t —t, ) —x]2b,u2/4}), (54b)

which may be numerically integrated to find x(t, t, )
and y(t, t, ). It might be noted that if the exponent
in Eqs. (54) is much less than unity, Eqs. (54)
reduce to similar equations obtained by solving the
echo problem using a Fokker- Planck Ie 2 24

rather than a transport equation. Thus, the validity
condition for the Fokker-Planck treatment is Eq.
(52}. The physical implications of that equation
will be discussed below.

It is possible to find an analytic solution to Eqs.
(54) for a case of practical interest. Since echo
signals are only observable for pulse separations
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r such that 1 ~ ~ 1 and since (1 —a) «1, for all t
of interest

e. t, &t&t,. Equations (34) are once again ap-
plicable and are easily solved to give

r(1 —a)t =rtbu /2u «1. (55)

I xl « Ikl(t —t, ), (56)

Equation (55) shows that the time of approach to a
thermal-equilibrium velocity distribution [I (1-a)]
is orders of magnitude longer than the experimen-
tal observation time 1/I'. To solve Eqs. (54) in
this limit, we further assume

u'(v, t,) =u'(v, t,},

v'(v, t, ) =eos[y(t, —t, )] v'( vt, )

+ sin[y(t, —t, )] w'(v, t, ),

w'(v, t,) =cos[y(t, —t, )] w'(v, t, )

—sin[y(t, —t, )] v'(v, t,),

(59a)

(59b)

(59c)

2Z
y(t, t, ) = -I'(t —t, ) + 8 d7j.k~u (57b)

It is easy to verify that (56) is satisfied when (55)
holds.

Using Eqs. (48), (45), and (38), one may finally
obtain

u'(v, t, ) = (-,
'

i)hW, (v) exp[- i~(~,)(t, —t, )]

leading to an immediate solution

x(t, t, ) = 2r (1-a)k(k'b u') '(1- exp[-k'(t —t, )'Au'/4]],

(57a) u'(v, t, ) =u'(v, t,),

v'(v, t,) = v'(v, t,-),

w'(v, t, ) =0,

(60a)

(60b)

(eoc)

where Eq. (44) has been used.
3 We can proceed as in the t, & t & t, re-

gion. The quantity

and to simplify matters we assume that t3 ~2

is chosen such that y(t, —t, ) =v (a r pulse). In that
case one finds

&exp[ix(t„t, ) ' v+y(t„t, }]+c.c.,
v'(v, t, ) = ——,'1VW, (v) exp[- ie(~,)(t, —t, )]

&& exp[ix(t„t, ) v +y(t„t, )] + c.c.

(58a)

(58b)

w'(v, t) =0, (61)

and the variable p,'~(v, t, t, +t, —t, ) defined by (45)
satisfies the differential equation (46) subject to
the initial condition

p,', (v, t„t,+t, —t, ) =-,'[NW, (v)] '[u'(v, t, ) —iv'(v, t, )] exp[-ie(~0)(t, —t, )]

= 2[TWO(v)] '[u'(v, t, ) + iv'(v, t, )] exp[- i 6(&0)(t, —t, )]

= p,', (v, t„ t, )*

,'i exp[—-—ix(t„t, ) v+y(t„ t,)]. (62)

x'(t„t, +t, t, ) = -x(t„t,), —

y'(t„t, + t, —t, ) =y(t„t, ),

(64a)

(64b)

which may then be numerically integrated for any
t & t, . If I'(1- a}t«1, then x'(t, t, + t, —t, )
«k~(t —t, —t, +t, )~ for a sufficient range of t that

We see that the effect of a n pulse is simply to
convert p,'~ to its complex conjugate. The second
time variable is chosen as (t, +t, —t, ) in

P,'„(v, t, t, +t, —t, ) solely for convenience. With
this choice, the Doppler phase k v(t, —t, ) has been
eliminated from the initial condition (62), and we
can solve for P,', (v, t, t, + t, —t, ) in a manner parallel
to that for obtaining p,', (v, t, t, ) in (46).

A solution of the same form as (48),

p,', (v, t, t, +t, —t, ) =--,'i exp[ix'(t t, +t, —t, ) ' v]

xexp[y'(t, t, +t, —t, )], (63)

again works and leads to Eq. (54) for x'(t, t, + t,—t, )
and y'(t, t, +t,—t, ) subject to initial conditions

l

the x'(t, t, +t, —t, ) terms may be dropped from the
right-hand side of Eqs. (54) and the equations in-
tegrated to give

x'(t, t, +t, t, ) = -2x(t„—t, )+2r(1- a)k(k'au') '

&: (1 —exp[-k'(t —t,—t,+ t, )'b, u'/4] },
(65a)

y'(t, t, +t,-t, )=2y(t„t,)-r(t t,-t, t, )

0 ( t-t p-t2+ t y ) M/2

kAu
e" dq,

v (v, t) =-',NWo(v)e &' exp[- ie(&u )(t —2T)]

&& exp[ix'(t, 2v)' v] exp[y'(t, 2r)]+ c.c.,
(eea)

(65b)

where x(t„ t, ) and y(t„ t, ) are given by Eq. (57).
By combining Eqs. (65), (63), (45), (38), and

(29), the quantities of interest v(v, t) and u(v, t)
may be obtained as
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u(v, t) =-(i/2)NW, (v)e ~'exp[-i&([d, )(t —27)]

&& exp[ix '(t, 27) v] exp[y '(t, 2&)] + c.c.,
(66b)

where v is the mean interval time

and recalling the definition (25) for &([vo), one
finds

S(t) = ex„Ne ~~ e"" ) cos[([d, —[v~)(t —2r)]

x exp(-[k(t —2T) —x'(t, 2T)]2u'/4l (71)

(67)

and x' and p' are given by Eqs. (65).
The polarization of the medium is easily calcu-

lated using Eqs. (11), (23), and (21) as

I' [z)) = ex., ,Jd'U[a (v, t) c os ()!z —~~t)

Ec(z, t) =zA(t). (72)

From Eq. (5a), one finds that A. (t) satisfies the
equation

To solve Eq. (5a), we assume that the sample is
thin enough so that the field builds up linearly
along its length, i.e. ,

+v (v, t) sin(kz —[v~t)], (68) + —A = — S(t). (73)
so that comparison with Eq. (3) gives

C (t) = ex„d'v u(v, t), (69a,)

S(t) =ex„d'vv(v, t). (69b)

(
8 1 8 2p L—+ ——E,(z, t) = ' S (t).
88 c Bt c (5a)

Substituting (66a) into (69b) assuming a thermal
distribution

W, (v) =([[u') ' 'e (70)

The echo field amplitude Ec(z, t) appearing in Eqs.
(4) and (12) is then obtained as a solution of Eq.
(5a),

While this equation can be integrated to give A(t),
we can note that, at a given z, the field will vary
in time on order ([d —&z, )

' or ku =10' sec ' due to
the time variation of S(t) so that ~(dA/dt)/(c/z)A~
=kuz/c«1 for our sample size of 10 cm. Thus,
to sufficient approximation, A(t) = -(2m~~/c)S(t)
and the field exiting the sample at z =L is

Ec(L, t) = Ec(t) =LA(t—) = (2n~z/c-)LS(t). (74)

It can be seen from Eq. (71) that the echo signal
has an envelope of width =(ku) ', that is modu-
lated at frequency 0- z, and that the maximum
echo amplitude occurs at t=2T. Using Eqs. (74),
(71), (67), (65), and (57), one may calculate the
echo amplitude

Ec(t =2T) =—2m~ 41' r but )/)4 I'2 (I &)2+2
-

k2~&2t 2 - 2

p ~it-1"t+ ~ e " dg —4» 4 1-exp—
C k~u „, »Su4

(75)

where terms of order I' t, or 1"(t, —t, ) have been
neglected. The last term in the exponent will be .

negligible for the case of experimental interest

I/ku «1, (76)

so that the maximum absolute value of echo ampli-
tude normalized to unity and denoted by Ec(t = 27')

khgt /4
Ec(t=2&) =exp -I't —I't 1- e " dq1 kAut

('l7)
which is the result quoted in our earlier paper.

If one applies subsequent n pulses at time
t = (2n+1)v (n =positive integer) additional echoes
will be produced at time t =2n~ (Carr-Purcell-type
experiment). It is a simple matter to convince
oneself that the normalized maximum echo ampli-
tude for this case, denoted by Ec(t =2nw, CP) is
given by Eq. (77) raised to the nth power, i.e. ,

E (t =2n7', CP)
nn7 /2

=exp -1;t- I't 1— e deaf
k&uz o

(78)

The physical interpretation of Eqs. (77) and (78)
will be given below after discussing the necessary
modification of these results for the actual experi-
mental situation.

E. Extension of the theory

In the actual experiment, it is possible to use
field strengths such that the optimal conditions
Xt, =2m and y(t, —t, )=)) ar,e maintained. Owing to
power broadening, a, monochromatic source ex-
cites a frequency bandwidth of order X in a sys-
tem of two-level molecules (see Appendix A for
the details of the calculation). For the echo prob-
lem under consideration, the velocity bandwidth
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that may be excited is of order

u, =g/k, (79)

and will be centered around U, = -(~, —&~)/k. In
the simple model above, we assumed that uo was
much greater than the thermal speed u so that the
field interacted with the entire thermal distribu-
tion of molecules. Moreover, since uo=g/k»u,
the power broadening was so great that the excita-
tion spectrum was constant over the entire thermal
distribution of velocities.

Experimentally, u, =10' em/sec while u=10'
cm/sec indicating that only a fraction of the mole-
cules will interact with the laser field. The excita-
tion spectrum for the molecules will not be con-
stant but, instead, will have a width of order uo.
This, in turn, implies that if the field represents
a n pulse for one velocity subgroup, it will not be
a n pulse for another velocity subgroup. Thus, the
simplification of assuming 2~ and n pulses for the
entire sample cannot be maintained.

Appendix A of this paper contains a calculation
taking into account the finite excitation bandwidth.
The results of that calculation with regard to the
modification of Eq. (77) due to finite bandwidth and
other than —,'m and m pulses will be discussed be-
low. In addition, we shall comment on modifica-
tion of the Carr-Purcell signal (78) and on effects
of degeneracy.

Finite banduidtf/E. The fact that only a fraction
of the molecules are excited by the laser means
that collisions, in addition to producing the changes
in the Doppler phase factors discussed above, will
also cause the excited velocity distribution of
molecules to decay towards equilibrium. However,
if I'tb, u'/u'«1, as it is in our experiment, changes
in the velocity distribution can be neglected" and
Eq. (77) is not affected. If collisions did produce
large 4u such that 4u&up such collisions would
remove molecules from the excitation bandwidth
and would be reflected in an effective increase in
the population loss rate I"„however, this situation
does not prevail according to the experiments of
Sec. III.

Excitation spectrum. As is shown in Appendix A,
the fact that there is an excitation spectrum rather
than 2n and w pulses for the entire sample will
lead to a modification of the shape of the echo
signal, but not any change in its functional time
dependence on pulse separation. In other words,
the relative contribution of each velocity subgroup
to the echo amplitude is unchanged as the pulse
separation is varied. Thus, Eq. (77) can still be
used to describe the dependence of echo amplitude
on pulse separation.

Carr-Purcell signal. If all pulses after the first
are anything but n pulses, the expression for the

F. Interpretation of the results

From the discussion above, we see that Eq. (7'I)
may be used to analyze the two-pulse echo signal.
The nature of the solution (77) depends on the value
of the rms collisional change in the Doppler phase
kt).uv', The asymptotic limits of (77) are

kb, ur «1: Zc(t =2w) -exp[—I;t - 4", I' t'(kb. u)'],

(soa)

2 ~i/2Iksu» 1; Z ( 2))-&p&{x)') r~,
k~u

(sob)

The exp(-I', t) represents the decrease in echo
amplitude due to population decay and is easily
understood. The other terms in (80) represent
the effects of velocity-changing collisions. Addi-
tional physical insight into these terms may be
obtained by looking at a mathematically nonrigor-
ous picture of echo formation.

The maximum echo signal arises when the net
Doppler phase factor

exp[tk v(t, —t, ) —ik v(t —t, )] (81)

goes to unity —i.e., the dephasing-rephasing pro-
cess of echo formation has been accomplished.
Collisions will produce a change in the Doppler
phase factor which roughly goes as

(&ik' Av v ) (s2)

where (''') represents a collision average Let.
b.u be v2 times the rms change in velocity per
collision. If &&u~ »1 any collision produces de-

Carr-Purcell signal becomes quite complex since
the overall amplitude factor of the echo signal
varies with each subsequent echo. A formal anal-
ysis of the problem is not too difficult, but the
algebra is tedious. The fact that the experimental
data seems to follow Eq. (78) may imply that the
pulses approximate n pulses fairly well.

Degeneracy effects. In reality, we are not deal-
ing with a simple two-level system, but many two-
level systems. If each of these two-level systems
interacts independently with the field, they will
contribute independent echo signals with somewhat
different shapes but the same modulation frequency
(i))o —&I,). In any event, the functional time depen-
dence of maximum echo amplitude on pulse separa-
tion given by Eq. (77) will be unchanged. Possible
interference effects such as two transitions sharing
a common level or transfer of a dipole moment in
a collision have not been included in the analysis,
but it seems doubtful that these contribute signifi-
cantly, particularly when the degeneracy is lifted
by a Stark bias field.
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structive phase interference so that the only term
which survives in Eq. (82) will be the one in which
no collision occurs during the time t =27. Since
the associated probability is e ', one finds

kAg7' && ].: II e

corresponding to (80b).
On the other hand, if ~&u~«1, each collision

produces only a small phase change such that

H = 1 ——,'k'((av )')~',

where we have assumed (b v)=0 for simplicity.
The quantity ((&v')) will be equal to (number of
collisions in time t = Ft) && I (b v') for one collision
=-,b,u'] so that

kh~7 && 1: H-1 ——'k 6g'v2I"t

= exp[-I'f '(kb, u)'/16] . (83b)

x d'vW v-v' k v —v' '

(84)

In addition, Eq. (83a) will still be valid for knui
»1 so that Eqs. (84) and (83a) generalize our re-
sults to any Brownian motion kernel. This argu-
ment substantiates our claim that the t' and t de-
pendence associated with velocity-changing colli-
sion is independent of the choice of collision
kernel.

Previous theories of echo formation employed a
Fokker-Planck equation (FPE) rather than a trans-
port equation to treat collisions. """'"For
times 1 t(l —o.') «1, such theories give the limiting
form (80a) for the echo amplitude rather than the
entire Eq. (77). It has been shown that the transi-
tion from the transport equation to the FPE is
valid only if a single collision produces a negligible
change in the distribution-function or density-
matrix elements. For the echo problem, the ef-
fect of a single collision is negligible only if k&u7

Except for numerical factors, Eqs. (83) agree
with the asymptotic forms (80) of the transport
equation solution. Thus, the decrease in. echo
amplitude due to velocity-changing collisions re-
sults simply because the collisions destroy the
perfect Doppler phase cancellation which would
have occurred had the collisions been absent.

We note by expanding the exponential in (50) and
carrying through the calculation as above, it is
easy to derive the following formula for the echo
amplitude valid for any type Brownian motion colli-
sion kernel W(v'- v) when k4ui «1
khu7' « 1:

( 1 )m( )21tl+$

X,(&=2.)=a p( r~ 2P (2m)!

«1. Thus one can expect the FPE treatment to
fail (as it does) when k&ui ~ 1.

Finally, we might mention the Carr-Purcell
signal (78). If one can use short pulse separations
7 such that k&uv «1, Eq. (78) will reduce to

kau~«1: Zc(t =2n~, CP)-e

and the Carr-Purcell signal can be used to deter-
mine the population decay rate ~, .

III. TI MEASUREMENTS

Photon-echo experiments, as we shall see in
Sec. IV, allow a direct and quantitative study of
molecular-velocity-changing collisions and a test
of the validity of (77). In this section, we consider
the phenomenological damping &, which also enters
(77) through the diagonal density-matrix equations
of motion (13) where it is defined. The principal
contribution to T, is due to the molecular transit
time across the laser beam and to jumps in molec-
ular quantum state arising from inelastic colli-
sions. Clearly, if the velocity-changing collision
part of (77) is to be examined quantitatively, an
independent measurement of &, is required. We
may also compare T, with the relaxation time ob-
served in optical multiple pulse (Carr-Purcell)
echoes' and coherent Raman-beat experiments"
where the importance of phase-interrupting colli-
sions and other conclusions can be reached.

A. Apparatus

The experimental arrangement employed through-
out this article is shown in Fig. 3. It utilizes the
Stark switching method' that has now allowed the
observation of optical nutation, ' photon echoes
involving two or multiple pulses (stimulated"
and Carr-Purcell echoes'), optical free induction
decay (FID), ' coherent Raman beats, ' ' optical
adiabatic fast passage, "the optical analog of spin
locking, "and FID interference pulses. "

A molecular gas sample that is Stark tunable is
irradiated by a continuous wave CO, laser beam.
Electronic pulses are applied repetitively to the
sample thereby switching the molecular level
structure in or out of resonance with a fixed laser
frequency, and a particular coherent transient
effect can be selected simply by varying the pulse
sequence.

Transient light signals that are emitted by mole-
cules switched out of resonance propagate in the
forward direction and are monitored together with
the transmitted laser beam by a germanium-gold-
doped photodetector (rise time: 30 nsec). Hetero-
dyne detection is possible in the Raman-beat and
photon-echo experiments to be described since
the emission signal is Stark shifted from the laser
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CW Laser
Beam

Stark Cel l Detector Recorder B. Delayed optical nutation

Box Car
Integrator

Pulse
Generator

Oscilloscope

FIG. 3. Method for observing coherent optical tran-
sients following a sequence of Stark pulses (from Brewer
and Shoemaker, Ref. 4).

frequency; this increases the echo signal 1000-
fold and also enhances detection sensitivity. Opti-
cal nutation ringing patterns are detected also by
monitoring the transmitted beam when a Stark
pulse suddenly switches molecules into resonance.
The detector output is amplified 1000 times with a
preamplifier having a 5 nsec risetime, and is
stored and signal averaged in a Princeton Applied
Research 160 box car integrator before being dis-
played on an x-V recorder.

Single or multiple electronic pulses with a 5 nsec
risetime and a variable width (0.1—300 Jj, sec),
amplitude (0-200 V) and repetition frequency
(2.5-80 kHz) are applied to an optical Stark cell.
Single or double pulses are derived from a pulse
generator that uses TTL logic elements, and a
gated n pulse train from a Tektronix 2101 pulse
generator. The time scale is calibrated by a
Tektronix 2901 time mark generator, accurate to
3 parts per million.

A free running, frequency stable CO, laser,
which has been described previously, " is made
to oscillate in the lowest-order mode on the P(32)
laser line at 1035.474 cm '; the line is selected
by adjustment of a rotatable grating at one end
of the optical cavity. Fine-frequency tuning over
the 50-MHz CO, Doppler width is accomplished
piezoelectrically. The laser beam, -1 W of con-
tinuous power, is expanded to -1 cm diameter by
a Galilean telescope to lengthen the molecular time
of flight across it. The radiation is linearly polar-
ized, perpendicular to the Stark field, so that
4M= +1 optical selection rules apply.

The same vibration-rotation transition of "CH,F
reported in our preliminary findings' is examined
here as well. This is the fundamental v, band R(4)
line, (&, K) =(4.3)- (5, 3) that overlaps the P(32)
CO, laser line at 9.66 p, m. Gas samples that were
90/o enriched in "CH,F were used, and pressures
were measured in the m Torr range with an MES
Baratron gauge. The Stark cell had Bn active opti-
cal path length of 10 cm and for most of the mea-
surements a 0.602 56-cm gap spacing.

w(T)=~, —[u), —u(0)]e "/r& (86)

where u(r) —= [p„(T)—q+ (T)J at the end of the pulse,
u(0) is the population difference at time zero
preceding the pulse during steady-state excitation,
and mo is the population difference in the absence
of radiation. We see that the second nutation pat-
tern of Fig. 4 will grow with increasing pulse
width, according to (86), and that T, may be

(a)—

C0
CL

0
M

(b)

I

0 2.5 5

Time ( p sec) ~
I"IG. 4. Optical nutation in ~3 CH3F. Pulse amplitude

E =35 V/cm (from Brewer and Shoemaker, Ref. 4).

Figure 4 illustrates a new optical. technique for
obtaining T, that is based on the nutation effect.
A molecular gas sample that is Stark tunable is
irradiated under steady-state conditions by a con-
tinuous laser beam, thereby burning a hole within
the Gaussian velocity distribution. When a Stark
pulse of width 7 appears, a partially saturated
velocity group v is suddenly switched out of optical
resonance with the laser frequency and emits a
short-lived FID signal. Simultaneously, a second
velocity group v', which need not concern us, is
switched into resonance giving the first optical. -
nutation pattern of Fig. 4. When the pulse termin-
ates, the initial. vel. ocity group v is switched back
into resonance and generates the second nutation
pattern. The amplitude of this delayed nutation
which is of interest depends on the population of
the group v at the end of the pulse and thus on the
extent to which the hole has been filled during the
pulse interval. (Note that the group v' simulta-
neously emits a FID signal which is unimportant
because it is short lived. ) The dependence of the
nutation amplitude on pulse width &, derived in
Appendix 8, is proportional to the population dif-
ference
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readily obtained from the envelope function.
The above discussion presumes that the satura-

tion hole is filled dominantly by molecules that
have suffered a change in quantum state rather
than by a molecular velocity-diffusion mechanism.
The latter process as the present study shows is
indeed a much slower effect. In particular, the
Raman-beat measurements of Sec. IIIC remove
any doubt concerning this point. %e also note
that this T, measurement is simpler theoretically
and experimentally than the two-pulse nutation
technique described in our previous letter. '

The T, nutation measurements carried out as a
function of "CH,F pressure are summarized in
the linear relation

1/T, =0.080+ 0.089P psec ' (87)

C. Coherent Raman beats

The coherent Baman-beat effect" is partic-
ularly interesting in these studies because its
decay time is independent of velocity-changing
collisions. This contrasts sharply with the faster
dephasing behavior of the two-pulse echo to be
discussed and supports the idea that photon echo
experiments are profoundly influenced by molec-
ular collisions that alter velocity. The Raman
decay may also be compared with the T, meas-
urement of Sec. IIIB in determining to what ex-

for P in m Torr. As expected, T, is found to be
independent of laser intensity. The intercept of
0.080 p, sec ' corresponds to the molecular time
of flight across the 0.6 cm transverse dimension
of the Stark cell. The collision term compares
to 0.076P p. sec ' of Schmidt et al. ' and to the
microwave result 0.095P p, sec ' of Jetter et al."
The average of the three values gives
(0.087+ 0.007)P p, sec

The pressure dependence of (87) signifies col-
lision-induced jumps in the rotational (J) and

space quantized (M) states arising from the long-
range permanent dipole-dipole force of "CH3F
pairs. Using (87), we calculate a total inelastic
cross section o =1/T,Nuv2 of 500 A'. The results
of Brewer, Stenholm, and Shoemaker, "using
collision-induced optical double resonance, show
that 15/0 of the collisions contributing to T, (for
this same optical transition) produce a change in
M state while (J, K) remains fixed. Their work
also confirms a conclusion of this article, namely,
that the molecular velocity suffers only slight
changes for col.lisions that tip only the angular-
momentum vector. The rema, ining 85%%up of the
collisions influencing T, presumably involves quan-
tum changes both in J and III/I and a greater smear-
ing of molecular velocity.

tent phase interrupting collisions are important.
Raman beats are monitored in these studies

using the experimental configuration of Fig. 3 as
described in Ref. 5. For the purpose of discussion,
l.et us consider only three levels where two of
them, labelled 1 and 2, are initially degenerate
in M and are in superposition with level 3 because
of excitation with laser light. This constitutes
the steady-state preparative stage preceding the
Stark pulse. Sudden application of a step function
Stark field removes the 1-2 level degeneracy and
coherent forward Raman scattering follows, the
laser now being nonresonant with either the 1-3
or 2-3 transition. Both Raman and laser light
coincide spatially producing a coherent beat signal
at the detector and with a frequency equal to the
Stark splitting &u» —-(E, —E,)/h Brew. er and Hahn'
have shown that this transient signal decays as
exp(- f/T, ), independent of molecular velocity,
where 7; is the phenomenological Raman dephasing
time introduced in the equation of motion for the
off-diagonal element p». It is not evident a priori
that

(88)

because collisions might shift the level spacing
40 j 2, disrupting the phas e of p» and shortening T2 ~

However, simultaneous measurements of 7, and
T, as a function of pressure show indeed that they
are the same to within an uncertainty of -3%.
Here, the ~, values have been corrected slightly
for the rate at which the Raman transition is
driven by the laser; the observed dependence of
decay rate' on laser intensity I is of the form
suggested by Brewer and Hahn

1/T, (eff) = I/r, [1+0.076I (/cm')].
In view of the experimental support of (88), we

concl. ude that phase-interrupting collisions have
a negligible effect on p» and therefore on Raman
beats. Clearly, the Raman-beat effect provides
an alternate way of determining T,.

The resul. t that &, = T, also confirms that a T,
measurement is insensitive to velocity-changing
collisions. Another implication of this specific
result, discussed further in Sec. IV, is that large
jumps in velocity are unimportant for elastic
CH, F-CH, F collisions.

D. Optical Carr —Purcell echoes

The optical analog' of Carr-Purcell multiple-
pulse spin echoes" is demonstrated in Fig. 5 for
the Stark-pulse sequence shown. Under appropri-
ate circumstances, this method also provides a
value for T, when the dephasing time T, associated
with the off-diagonal. element p,„satisfies



COBE RENT OPTICAL TRANSIENT STUDY OF MOLECULAR. . . 1681
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FIG. 5. Optical Carr-Purcell echoes in CH3F. The
first echo of the sequence is marked by an asterisk.
Conditions are the same as in Fig. 6 (from Schmidt,
Herman, and Brewer, Ref. 8).

10

(89)

K= I'k'b u'/48, (90)

where I, =2T. For the Carr-Purcell n-pulse echo
train, the amplitude of the last echo at time
f =2nT is proportional to the nth power of (90)

-8K' 3~f7 -Kt~/n2je j =e (91)

We see that over the same time interval t, the
exponent of (91) is sma. lier than that of (90) by the
factor 1/n' and the Carr-Purcell method can give
a much longer decay time. It is also clear that
while the velocity diffusion contribution (91) is
never zero, it can be made vanishingly small. by
reducing T.

On the other hand, the linear decay term e '
is the same in either a two-pulse or multiple-
pulse echo sequence, and therefore, it gives a

Carr-Purcell echoes were developed in NMR
to minimize the dephasing of p„arising from
spectral diffusion. In solids, spectral diffusion
results from local fluctuating dipolar fields on a
spin site due to its neighbors. " In liquids, Brown-
ian motion causes the nuclear spins to diffuse
through the gradient of an external magnetic
field. " For either case, the transition frequency
in this two-level problem undergoes small chaotic
variations, describable by a diffusion law, that
disrupts the coherent behavior of p,„. In the opti-
cal case treated here, the transition frequency of
gaseous molecules wanders randomly by small
increments because of elastic collisions that
alter the molecular velocity and hence the Doppler
shift of the emitted light. We now show that the
dephasing caused by velocity-changing collisions
can be virtually eliminated in a Carr-Purcell
exper iment.

Spectral diffusion of gas molecules in a two-
pulse echo experiment leads to the nonlinear
decay law of (80a)

e =e-Kt -8E73

residual damping in a Carr-Purcell measurement.
Molecular collisions that shift the transition fre-
quency will introduce phase interruptions in p,„,
causing T, to be less than T„ in general. How-
ever, in the present experiments (Fig. 5), the
envelope function of the Carr-Purcell echoes
when plotted in Fig. 6 falls on top of the T, nuta-
tion results of IIIB. This shows that T, = T„and
as in the case of Raman beats, collisional phase
interruptions are negligible.

Furthermore, we see that all three methods
described in Secs. IIIB-IIID are independent of
velocity-changing collisions and agree well with
the value of T, given in (87), to within a 3% un-
certainty.

e ', for short times;

e ', for long times.

(92a)

(92b)
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[
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FIG. 6. Decay curves of optical coherent transients in
3CH3F. The pressure is 0.32 mTorr, the laser beam

diameter matches a 1.3-cm Stark spacing, the Stark
pulses are 40 V/em and a bias field of 80 V/cm is added
to remove any complication of level degeneracy. The
expanded laser beam's power density is about 350 mW/
cm2. The time axis is the total elapsed time t for each
experiment, so that t = 2v in a two-pulse echo or t = 2n 7
in an n-pulse echo train (from Schmidt, Berman, and
Brewer, Ref. 8) .

IV. TWO —PULSE ECHOES

A typical two-pulse echo' is shown in Fig. 7 and
its decay behavior as a function of delay time
t =2v is plotted in the lower curve of Fig. 6. The
first and second Stark-pulse widths are 100 and
200 nsec, and a Stark bias field of 83 V/cm has
been applied to suppress the coherent Raman-beat
effect. The decay is not a simple exponential but
shows an unusual time dependence that departs
first slowly from the T, behavior (upper curve)
and then more rapidly at longer times. Closer
examination shows that there are two limiting
time regimes of the form
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FIG. 7. Two-pulse photon echo in CH3F. (a) Optical
response, (b) Stark pulse sequence with E =35 V/cm
(from Brewer and Shoemaker, Ref. 4).

The long-term linear decay is clearly evident in

Fig. 6 over two decades of signal amplitude, but
the cubic time dependence is better shown in

Fig. 8 when replotted on a t' time axis.
The observed functionality in time (92) is pre-

ciseiy what is predicted by Eqs. (80a) and (80b).
The agreement constitutes primary evidence that
elastic molecular collisions involving small.
changes in velocity play a crucial role in photon-
echo measurements. The departure of the echo
from the T, decay in Fig. 6 is due solely to the
velocity-changing mechanism and is consistent
with the experiments of Sec. III where T, is shown
to be independent of elastic collisions.

It is interesting at this point to compare the
effect of spectral diffusion on spin echoes in
molecular liquids. In that case, the same e
law is obeyed, but the long-time exponential. e

1.0 i~ I I
'ego

0.9—
~~

0.8— ~~~~

0.5—

0.4 I

200
I I

400

t (@sec)

I

600

FIG. 8. Decay curve of two-pulse photon echoes in the
region of short times where the t3 behavior is evident
out to 400 p sec3; replotted from the lowest curve of
Fig. 6 with the T& decay subtracted (from Schmidt, Ber-
man, and Brewer, Ref. 8).

decay witnessed here never appears. To under-
stand this behavior notice that, for a dilute gas,
echoes are formed in the t' region by all active
molecules whether they have collided or not,
whereas in the t region only the collision free
molecules form echoes. The ones that collide
contribute to echo formation only for short times
when the phase excursions are small, kt&u&1.
This accounts for the short time regime of (80a).
As the pulse delay advances so that kt&u~1, col.-
liding molecules have completely dephased and
no longer participate in the echo. The group that
didn't undergo collisions obviously generates an
echo, but its survival probability diminishes with
time as e ', in accordance with the observed
long-time behavior of (80b). On the other hand
for a liquid, collisions are so frequent and the
phase jumps so small that the phase excursion
remains small compared to unity; therefore, only
the t ' region is seen.

According to (80) and the above argument, the
transition from the short to the long-time regime
should occur when the Doppler phase factor

kt4u-n, (93)

the result being independent of gas pressure.
Pressure-dependent studies seem to confirm this
prediction where the intermediate time 7-6 p. sec,
as can be seen in Fig. 6. This implies that the
characteristic jump in velocity of a CH, F-CH, F
collision is

bu =80 cm/sec. (94)

We shall show later that this value agrees well.
with a more careful analysis of the echo-decay
data.

Another feature expressed in the velocity-de-
pendent collision term of (77) is the linear pres-
sure dependence contained in the I' factor. We
find that the collision parameter I", as derived
from the observed long-time decay e ~', fully
confirms the expected linear pressure dependence
where examples are given in Fig. 9. Similar
measurements in the short-time region reveal
the same linear pressure behavior in K= Fk b.g2/48
for the e ~" decay.

Before proceeding further, one may question
the importance of collisions where the velocity-
change falls outside the detection bandwidth of
a two-pulse echo experiment. It is apparent that
these coll.isions would contribute to T, but not to
the Raman-beat decay T, since 7; is independent
of velocity-changing collisions in general. The
fact that T, = T„ following (88), allows us to con-
clude that these collisions are not important and
have no influence on the present echo studies.
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A. Intensity - dependent dephasing

One puzzling aspect of the echo measurement
that still remains is an intensity-dependent de-
phasing effect not predicted by (77). The phenom-
enon is best characterized by Fig. 9 which shows
a family of I'-vs-pressure curves as a function of
laser power. We see that increasing the laser
intensity, in the range 0-1 W/cm', shifts the
intercept of F upward but does not influence its
pressure-dependent slope noticeably. The decay
parameter K shows a similar shift in its intercept
with intensity. At a given pressure P, we find
that I and K depend on laser intensity I in the
foll. owing way

I (P, I ) = F (P ) + SI,

K(P, I) =-K(P)+ CI,
(95a)

where I (P) and K(P) are intensity independent and

echo decay rate in an intensity-dependent manner.
Another possibility is that the Raman-beat effect

could occur simultaneously and compete with echo
formation. However, the Raman-beat effect can
be suppressed with an adequate Stark bias field,
as in the present two-pulse echo experiments, so
that the required pulse preparation cannot take
place. Even more convincing are experiments
with ~M = 0 optical selection rules where the
Raman effect is excluded and yet the intensity
dephasing still persists.

Other possible explanations of this anomaly have
not been pursued as yet.

9. Collision parameters

In the absence of understanding the above in-
tensity dephasing effect, we make use of the
empirical quantity (95), thereby obtaining col.lision
parameters in the zero-laser-power limit

6=0.23 p. sec 'W 'cm',

4=1.1&10 ' psec 'W 'cm2. (95b)

I'(P) =0.074P gsec ',

K(P) =4.9x10 'P gsec ',
(96)

One obvious intensity-dependent mechanism is
an off-resonance driving effect. Because laser
radiation is always present throughout the mea-
surement, molecules that produce an echo when
switched out of resonance can be driven slightly
in their off-resonant condition. However, esti-
mates of this effect do not appear to influence the

with P in mTorr. Here, 1 and K are derived from
the observed long- and short-time two-pulse echo
decay behavior, Figs. 6 and 7 for example, after
subtracting the measured I/T, contribution. Mea-
surements as a function of laser intensity allow
extrapolation to zero intensity and give (96).

We are now in a position to determine the
"CH3F-"CH,F co 1lis ion param etc rs

0.60 cr=430 &',

b u=85 cm/sec, (97b)
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FIG. 9. ~3CH3F decay rates 1/T& vs pressure (curve a)
and (1/T&+ I') versus pressure and laser intensity: curve
b, (307 mW/cm ); curve c, (660 mW/cm ); and curve d
(1110 mW/cm2).

Ec(t = 0) = exp(2m' 'F/k& u). (98)

A value of 6 u may then be derived from (98}for
each decay curve using the observed intercept and
I". We find in this way that the average value is
& u = 50 cm/sec, in reasonable agreement with

for velocity-changing collisions where the total
elastic collision cross section is defined by
o = F/¹v2 and bu = (I/k)(48K/F}' ' from the def-
inition (90}. Here, 0=6.50x10' cm ', u=3.75x10'
cm/sec, and I' and K are taken from (96). Mea-
surements of I' and K at different pressures re-
veal. that 4u is pressure independent in agreement
with our collision model. We note that the mag-
nitude of 4u agrees with our previous estimate
(93), but it is about a factor of 2 smaller than the
preliminary measurement of Schmidt et al. which

is considered less reliable.
A self-consistency check of the slope method

used to obtain (97) can be obtained by noting that
the echo amplitude in the long-time regime (80b)
displays the extrapolated zero-time intercept
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(9Vb).
In considering the errors involved in these

measurements, we should note that the measured
quantity of interest is the difference between T,
and the two-pulse echo decay. Since this differ-
ence is a small. quantity in the short-time regime,
it is more susceptible to error than in the long-
time behavior. This implies a larger fractional
uncertainty in &u than in 1". The remaining un-
certainty lies in the intensity extrapolation which
is difficult to assess at present.

V. SUMMARY

We have shown that the optical line profile of a
molecular gas may be decomposed into elastic and
inelastic collision contributions through coherent
optical transient experiments. The velocity dif-
fusion or elastic part is detected by two-pulse
echoes and is emphasized here in view of the
absence of previous experiments and relevant
theoretical predictions.

The echo decay function, which provides a sig-
nature for the velocity-changing collision mech-
anism, is characterized by two limiting time
regimes, e ~' for short times and e ' for long
times. The cubic decay law is due to molecules
that collide elastically, and applies when the
Doppler-phase excursions are small, k~u7«1.
The resulting diffusion in velocity space can be
described by a solution of the Fokker-Planck equa-
tion as in spin-echo experiments where molecular
liquids are subject to Brownian motion. In the
long-time regime, k&u»&1, most of the mol. e-
cules that collide have by now dephased and don' t
contribute to echo formation. The echo is then
due to those molecules that didn't collide, their
survival probability being an exponential in time.
Here as in the intermediate time region, the
Fokker-Planek solution fails.

The entire time dependence, which is unknown
heretofore, follows however, from a solution of
the Boltzmann transport equation. Our experi-
ments suggest a Brownian-motion weak-coll. ision
model, and for convenience we have adopted the
Keilson-Storer kerne l.

W(v'- v) = I' (m& M') ' ' e

which all. ows an analytic solution. In terms of
these collision parameters, the echo measurements
of CH3F reveal that root two times the rms
change in vel. ocity per collision is only &u = 85
cm/sec and that the total elastic collision cross

0
section is @=I'/Nuv2 =430 A2. From the above
&u, value and (33) we see that (1 —o.) =2. &&16'0
so that the velocity jumps are closely clustered
about the initial velocity as required in a weak-

col.lision model. Furthermore, it fol.lows that an
arbitrary initial velocity approaches a thermal-
equilibrium distribution" as exp(- Pt) in a time
P

' =[I'(1—o.)J
' =5 sec which contrasts greatly

with the time scale of an echo experiment
'-14 p. sec at 1 mTorr pressure.

It might be argued that the echo measurement
is insensitive to large jumps in velocity that fal. l
outside the detection bandwidth and therefore
would go unnoticed. However, coherent Roman
beat and T, decay measurements deny this pos-
sibility. Such large velocity changes woul. d l.imit
the molecule-optical interaction time and would
contribute to a T, decay which is determined here
in a delayed nutation measurement. The Raman
decay time 7„on the other hand, is independent
of collisions that induce changes in velocity.
Since the experiments show that T, = T„ it must
be concluded that T, is independent of all velocity-
changing coll. isions, and large velocity jumps are
of no consequence in an echo or any other mea-
surement. This further implies that when a hole
is burned within the Doppler profile, velocity
equilibrium is established not primarily by elas-
tic col.lisions but rather by the inelastic ones.
The total cross section for inelastic collisions, "
as determined from T, measurements, is found
tobe 500A.

Another competing mechanism to be considered
is that of "phase-interrupting collisions. " HBd
this mechanism prevailed, coll. isions would be
state dependent, and the echo signal would have
been of the form e '- 2 with no e ' dependence,
in contradiction to the observations. Phase inter-
ruptions are also ruled out by optical Caxx-
I'uxcell echo measurements which give a direct
measure of T, and would ref 1.ect such phase
changes while being independent of elastic col-
lisions. Since we find that T, = T, where T, cannot
depend on phase interruptions, we can exclude
this possibil. ity as well. . The result is physical. ly
reasonable for a vibration-rogation transition be-
cause upper and lower transition states are not
expected to show a significant relative or absolute
frequency shift. Gn the other hand, for an elec-
tronic transition it would be of interest to see if
the two-echo pulse shows a simple exponential
decay arising from phase interruptions and hence
no contribution from velocity changes.

The pressure-dependent; part of T, represents
still. other collision processes, namely, those
that involve population changes and thus a change
in quantum state, the most conspicuous being
jumps in molecular rotation (J) and orientation
(IVi). Recent optical double-resonance studies3'
of "CH,F have indicated efficient transfer among
neighboring M states, due to the permanent dipole-
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dipole interaction. This interaction presumably
plays the dominant role in elastic collisions as
well. A more complete theoretical treatment
would require the replacement of the collision
kernel by a detailed interaction description, and
in fact, optical coherent transients could be used
to investigate the nature of the collision inter-
action.

Thus, the present experimental and theoretical
study covers several new aspects of molecular
collisions. It represents the first detail. ed ex-
amination of velocity-changing collisions by
coherence methods and without the complication
of Doppler broadening.
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APPENDIX A: GENERALIZATION OF ECHO

CALCULATION

In this Appendix, we generalize the echo cal-
culation of Sec. II to allow for arbitrary pulse
widths and a realistic velocity bandwidth of the
sample molecules. The calculation parallels
that of the text for the simpl. e model. and we con-
sider the various time regions of Fig. 2. We
again assume that the time intervals t, and

(t, —t, ) are small enough to neglect any colbsiona, l
relaxation during these intervals.

a. 0&1& t, . It follows directly that the set of
coupled equations represented by Eq. (30) with
u = ~, and with the col.lision terms dropped can
be solved to yield

B' (v, t, ) = [u'(v, t, ), v'(v, t, ), co'(v, t, )J,

b. t~& t& 12. In this region, = (d0 which is
assumed to be so far off-resonance for the mole-
cules excited by the first pulse that we can ef-
fectively take g=0. Proceeding as in the text, we
find that we must solve Eq. (30) for B'(v, t) with
0 = Q0 given by Eq. (37) subject to the initial con-
dition (A1) for 8'(v, t, ). The new initial condition
differs from that of the simple model of the text
in that its velocity dependence is no longer that
of the thermal-equilibrium distribution W0(v), but
rather W0(v) multiplied by a velocity distribution
with width of order

u, = X/& (A4)

f' t (~u'/u') «1. (A5)

In our experiment, Xt,=1, t,=10 ' sec, k=2n &10'
cm ' giving u0=10' cm/sec which, combined with
the value &u =100 cm/sec, leads to (&u/u, )' =0.01.
Thus, for the range of interest of our experiment
(1"t=1), Eq. (A5) is satisfied and we shall make
negligible error by assuming the velocity dis-
tribution is unchanged throughout the experiment.
In that case, the entire calculation of the text may
be repeated to yield

As we trace the evolution of B'(v, t) in this time
regime, two nonseparable physical processes
will be occurring. First, there will be the col-
lision-induced changes in the Doppler phase fac-
tor discussed in the text. In addition, there will
be the relaxation of the initial velocity distribution
given by Eq. (A1) to the equilibrium distribution
W0(v). One can consistently treat both processes, "
but the mathematics becomes quite involved.

There is a simplification possible for the case
of physical interest. In a previous paper, "it has
been shown that, provided 4u/u, «1, the velocity
distribution wil. l be unchanged for times I; such
that

u'(v, t~) =2M W (v) ' 2sin2(8~0/2),

v'(v, t, ) = —NW0(v), . sin8»,4(~.)

(Ala)

(A lb)

u'(v, t, ) = —,'[u'(v, t, ) —i v'(v, t, )] exp[ —i5(&u, )(t, —t, )]

x exp[ix(t„ t, ) vJ exp[y(t„ t, )] + c.c.,
(A6a)

u '(v, t, ) = —NW0(v)
' + . cos8„5(~) '

X

iO& g U)z

o'(v, t, ) = & [u'(v, t, ) —i v'(v, t, )] exp[ —i 5((u0)(t, —t, )]

x exp[ ix(t„ t, ) v] exp[ y(t„ t, )] + c.c.,
where

8,, = g(&u, ) (t, —t, )

and

(A2) go'(v, t, ) =w'(v, t, ),

(A6b)

(A6c)

(A3)

One notes that the bandwidth of molecules excited
by this pulse is on the order of 5(~)=g.

with u'(v, t, ), v'(v, t, ), and w'(v, t, ) given by Eq.
(A1) and x(t„ t, ) and y(t„ t„) given by Eq. (57).

c. t, & t & t, . We solve Eqs. (30) with u& = &, and
neglecting the collision terms, subject to initial
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conditions at t =ts given by Eqs. (A6), to obtain

u'(v, t, ) = ' cos8„+ u'(v, t, )
5 ~s 32

w'(v, t, ) = cos&»+ ' w'(v, t, )
g(ds gCU

5((u, ) sin&»v'(v, t, )

. sin8„u'(v, t, ),
g((d )

(A7c)

—2 ', sin'(-, 8»)w'(v, t, ),
(ds

(A7a)

+, sin6„w'(v, t, ),4(~s )
(A7b)

o'(v, t, ) = cos8»o'(v, t, ) + ' sin6»u'(v, t, )
u's

where 8» is given by (A2).
d. t)t3. Under the same assumptions used for

the t, (t &t2 region, we can proceed as in the text
if some care is taken. Instead of using Eq. (45)
to define p'„(v, t, 2T), we define three terms
through

u'(v, t ) —i v'(v, t ) = 2 (p'„(v, t, 2T)exp[- i&(&u,)(t —2T)]+P'~(v, t, t, —t, + t, )exp[ —i5(~,)(t —t, + t, —t, )J

+P'.o(v, t, t, )exp[ —i5(&,)(t —t )) (A8)

where each of the P,', effectively is a solution of Eq. (46). The initial conditions are obtained from Eqs.
(A6)-(A8) to be

p'„(v, t„2r) = —,'[)t/g(~, )]'(1 —cos6») exp[-ix (t„ t, ) v]exp[y(t„ t, )] [u'(v, t, )+i u'(v, t, )],

p'„(v, t„ t, —t, + t, ) = —,
' [—,

'
[)tjg(~s )J' (1 —cos8») + cos6„—i[6(&u, )/&(ws )]sin8»)

xexp[ix(t„ t, ) v] exp[y(t„ t, )][u'(v, t, ) —iu'(v, t, )]

p'„(v, t„ t, ) = ——,'(2[)t5(~, )/&(e, )']sin'(-,'8») + i[)t/((~, )J sln8»j w'(v, t,).

(A9a, )

(A9I3)

(A9c)

Since the velocity phase factor does not vanish
at t = 2T in the second two terms in Eq. (A8), they

will contribute negligibly to the echo signal at
t=2T (Their co.ntribution will be down from that

of the first term by a. factor of order e '"0'«1.)

Thus, in the vicinity of the echo, only the lead
term in the right-hand side of Eq. (A8) need be re-
ta, ined. Solving Eq. (46) subject to the initial
condition (A9a) and calculating the corresponding
u' and v' for times t-'-27, we find

g'(v, t }= —,'[ y/&(~, )]'(1 —cos8»)exp[ix'(t, 2w) v] exp[ v(t, 2r)] exp[- i&(vo)(t —2T)J [u'(v, t, )+iv'(v, t, )J + c.c.,

(A10a)

u'(v, t) = —,
' i [It/((cu, )](1—cos6ss)exp[ix'(t, 2T) v Jexp[y'(t, 27')J exp[ —i&(e,)(t —2r)] [u'(v, t, )+ iu'(v, t„)J+c.c.,

(A10b)
where x' and y' are given by Eq. (65).

Substituting in the values of Ls'(v, t, ) and u'(v, t, ) from Eq. (Al) and using Eq. (29), we finally arrive at

u(v, t) =-,'&&,(v)[y/$(~, )]'(1—cos8»)e' ' "e &' [2[)t5(~, )/$(~, )']sin'( —,'6„)cos[x'(t, 2r) ~ v+5(&u, )(t —2T)J

—[)i/&(~, )Jsin8„, sin[x'(t, 2T) v+6(I,)(t —2T)]), (Alla)

u(v, t ) = sA'8'o(v)[g/&(~, )]'(1—cos8»)e' "'"e "|'[)tj$(~, ) J sin8„cos[x'(t, 2T) v+ 5(~,)(t —2T)]

+ 2[)t~(&s )/C(~, )'J sin'(-,'8») sin[x'(t, 2r) v+ 5(&uo)(t —27)]J,
(A 1 lb)

which are valid for t= 2T If needed, w. '(v, t) can
be found by solving Eq. (43c) subject to initial
condition (A7c) at t = ts. The population difference
w(v, t) =w'(v, t }e ri~ will be found to have "steady
state" and oscillating components.

S(t ) = e x~ d' u u(v, t ). (A12)

Finally, we calculate the driving term S(t ) for
our echo field from Eq. (69b).
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TABLE I. Definition of some variables used in the cal-
culation.

Variable

] nn'(R v t)

p y (v, t)

u (v, t)

v (v, t)

w (v, t)

p(v, t)

B' (v, t)

8'(v, t)

P,'b (v, t, t')

Definition

eo.' density matrix element

pab(R, v, t) exp[-i(%' R-cult)]

p a b (Vb t ) p b a (V i t )

i[p a b (V, t ) pb—a (V, t )]

Paa (V, t) —Pb b (V, t)

[u(v, t),v (v, t), w(v, t)]

B(v, t) exp(I'qt)

[NWb(v)] iB' (v, t)

2 exp [i6 (cu b) (t—t')] [u ' (v, t )—iu'(v, t)]

M-(dL +k v

ex, +0/k
j.
2 (t3+t 2

—t &)

It is not necessary for our purposes to carry
out the integrations in (A12) [recall that $((u), ()M,
and &» all depend on v]. If, as in the text, the
x' ' v term can be dropped, then the maximum
value of S(t ) evaluated ai t = 2T gives

g(t = 2T)~ e'& '"'"e-r, ~ (Als)

which is the same result obtained in the text for
our simple case. Thus, in the limit I'tbu'/u2«1
and xt, = x(t, —t, )'= 1, the only effect of finite
pulse width will be to affect the shape of the echo
signal and not its functional dependence on the
pulse separation.

APPENDIX B: THEORY OF DELAYED NUTATION

u =-&(&)v—u/T„

v =5(&o)u+Xw —u/T„

w =-Xv+(w, —w)/T„

(al)

which are given here in component form. The
phenomenological damping times T, and T, have
been introduced where it is assumed that they
dominate the relaxation behavior so that decay due

to elastic collisions can be neglected. The term
, =p„—p» in the absence of an applied optical

Consider a molecular velocity group that is ini-
tially excited in steady-state by a cw laser beam.
It is then switched out of resonance with the optical
radiation by a Stark field of pulse width &, during
which time the population of this group partially
recovers. We wish to obtain an expression for the
amplitude of the nutation signal, that arises when

the pulse ends, as a function of the delay time T.
Our starting point is the Bloch equations (28}

field.
For the period preceding the pulse, t&0, when

the Stark field is off, the well known steady-state
solutions" of (Bl) apply

-xw, ~(&,)
(" )'+X'T, /T, +1/T' '

)
Xw, /T,

8(~,)'+ X'T, /T, +1/T,''
X'w, T, /T,

g (w )2 + ~T /T + I /T2 '

(B2)

u(~) =[u(0)cos&(~,)~ —v(0)sin&((u, )v]e '~ 2,

v(r) =[v(0)cos()(w, )r+u(G) sin&((oP]e '~ a,

w(v) =w, —[w —w(0)]e '~ &.

(B4a)

(B4b)

(B4c)

For the nutation period t~7 after the Stark pulse
terminates we should solve (B1) again subject to
the initial conditions (B4}. Note that Eq. (B1}can
be simplified to

u =-&(cu,)v,
v =5(~,)u+xw,
zv =-gv

(B5)

if we consider solutions of the nutation signal for
sufficiently short times following the pulse so that
relaxation need not be included. On the other hand,
the case with damping has been reported already
and could be incorporated if desired. '4 We can
thus obtain, analogous to Eqs. (A I), u(t), v(t) and
w(t) in terms of u(r), v(T), and w(r). However,
anticipating that the terms proportional to u(r)
and v(r) will damp rapidly due to Doppler dephasing
when the field strength X is large, ' we keep only
those terms proportional to w(~) and find that the
solution of (B5) for t&v is

u(t} = X[&(&,)w (T)/g'][cos&(t —&}—1],

u(t) =X[w(~) sink(t —~)1/h, (B8)

w (t) = w (~)(1+(X'/P)[cos](t T) I]],-—

Since the velocity group under consideration is
switched out of resonance by the Stark field for the
pulse interval 0& t &a, we may set X =0 in (Bl) to
obtain

u =-&(w, ) v —u/T„

v =&(~,)u —u/T„ (Bs)

w =(w, -w)/T, .
The transverse component (u+ tv) gives rise to
free induction decay (FID),' which is usually short
lived compared to T (as seen after Doppler aver-
aging) and is of no particular interest here, where-
as the longitudinal component w is crucial. The
solutions to (Bs) are found to be
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with p =[5'((d,)+g'] and 5((v) = ((v —&z +k v).
The Doppler-averaged polarization is of a form

resembling (3)

P = (ex„[u(t)cos((vt —kz)+v(f) sin((vt —kz)]),

by E(I. (5).
If the active velocity group is sufficiently nar-

row and centered about v„we may factor the
Gaussian out of the integral and obtain

(B7) (v(t)) =y[w(v)vw/ku] e ("(~"' J,(yt). (B9)

where

(u(t)) -O

( ( )) )(w (T) (yig)2 sin)tdv
uW(r

(B8)

and produces a change in the laser field expressed

The result (B9) exhibits the nutation oscillation
behavior indicated in the zero-order Bessel func-
tion &,(yt) and contains as a factor the population
difference w(&) of E(I. (B4c). Thus, the initial
amplitude of the delayed nutation signal, which is
proportional to (v(t)), depends on the pulse width
& through u (v) as mentioned in Sec. IIIB.
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