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Quantum statistics of light after one-photon interaction with matter*
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The time development of the normally ordered generating functional of a light beam interacting
linearly. with a collection of two-level atoms is determined exactly. Rigorous conclusions on changes
of the statistical properties of the beam are drawn. It is shown that the field after the interaction
appears to be the superposition of a thermal field and of a field statistically similar to the initial
one.

I. INTRODUCTION

The quantum statistical description of light fields
after one-photon interaction with a resonant medi-
um has recently been extensively investigated. ' '
Most of the previous analyses have been devoted to
studying the first and second moments of the pho-
ton number distribution after the interaction. Shen
has shown that, when all atoms of the medium are
in the ground state, the nature of radiation re-
mains the same af ter the interaction, although the
field amplitude decreases exponentially with time. '
Chandra and Prakash have derived the linear term
in the time development of the second moment of
the photon number distribution and they have drawn
conclusions about the changes in statistical proper-
ties of the incident light. ' Finally, Loudon has
treated essentially the same problem, but he has
obtained solutions correct to all orders in time
for the first and second moments of the photon
number distribution. '

In the present work we derive the exact time de-
velopment of the normally ordered generating func-
tional of a field interacting linearly with a collec-
tion of two-level atoms and we draw rigorous con-
clusions on the changes of the statistical proper-
ties of the field after the interaction. We show
that this field appears to be the superposition of
two fields: One is statistically similar to the field
before the interaction and the other is a thermal
field. These conclusions confirm the accepted
view that stimulated emission maintains the co-
herence properties of stimulating light, whereas
spontaneous emission generates incoherent light. ' '

II. EQUATION OF MOTION FOR DENSITY
OPERATOR OF FIELD

Let us consider the interaction of light with an
ensemble of two-level atoms in thermal equili-
brium. These atoms have an electric dipole tran-
sition between atomic states I 1) and ~2) with fre-
quency separation ~, which coincides with the pho-
ton frequency of the kth mode. Following Shen,
the interaction Hamiltonian between the system of
photons and the ensemble of two-level atoms is
given by'

g„,= g [Xc,&c„E» (r&) +X*c ic,&E„+ (r&)],

where

is the positive-frequency part of the 4th-mode
electric field at the position of ith atom. Here ci],
c„, c„, and c„are annihilation and creation op-
erators for the ith atom in the states ll) and 12),

respectively; a and a~ are photon annihilation and
creation operators; g is the matrix element for
the transition.

The equation of motion for the density operator
of the total system is

in —p, ,
= [k. ..p...],

where BC,„,is the interaction Hamiltonian in the
interaction picture. By iteration, for small bt,
we have

We are only interested in the light field and we can
study the reduced density operator for the field
alone. This reduced density operator, at time t = 0,
is given by

P,(t) =tr„. , I p„„(t)I,

where tr.„denotes the trace operation over the
atomic variables. We assume that at time t=0,
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when the interaction is switched on, the radiation
field and the atoms are decoupled and

p, (0) =p&(0) e II p", (0),

—
pt = —pn, (a apz —2ap~a + pea a)

—pn, (aa p&
—2a pea+ pqaa ),

where

(2)

where p,,', 0) is the thermal equilibrium density
operator for the ith atom. If we assume also that
the ther»mal equilibrium of the atomic system is
hardly disturbed by the photon field, Eq. (I) leads
to write the appropriate coarse-grained derivative.
Thus the following equation of motion for the light
field is obtained:

signal gain of the laser amplifier also. If we want
to study other operating conditions of the laser,
the atomic system must be treated in higher-order
perturbation theory and Eq. (2) must be replaced
by a more complicated one. ' For the purpose of
the present paper we can confine ourselves to a
discussion of Eq. (2).

III. FIELD AFTER ONE-PHOTON INTERACTION

We notice that Eq. (2) can be solved formally
with iteration methods; as shown in the following,
this treatment is simple and very convenient to
study the statistical properties of fields interact-
ing with matter. This solution of Eq. (2) is

d d/']

Here n, and n, are the thermal populations for the
two atomic states and g(v) is the line-shape func-
tion.

We emphasize that Eq. (2) can describe the small

X I„& dpoh~dd .(3)

where p, =pz(0) is the density operator of the field
at time t =0, when the interaction is switched on.
The sets of operators E,. and hj are given by

I (a, at) = -ipn ataexp[i6~, ' ] —ipn aa exp[i6»]+iexp[i6, -' ]+(2pn, )' 'aexp[i6, ')+(2pn2)' a exp[i6; ]

h, (a, at ) = —i exp[ —i 6,.' ] + ipn, a a exp [—i 6; ]

+ipn, aa etx[p-i6~$»]+(2pn, )' 'a exp[-i6 ]+(2pn, )' 'aexp[ —i6; ] .

I et us now introduce the normally ordered gen-
erating functional of the field,

C($) =tr&(exp($a )exp(-)*a)P), (5

where tr& denotes the trace operation over the field
variables. It is well known that the functional C(g)
completely characterizes the density operator p of
the field. '' When a field is described by its gen-
erating functional C($) the modal densities,

tr&f a "a™p]=(at"a™),
are given by

exp(»tata) f(a, at)exp(-Xa a)

= f[a exp(- »». ), atexp(+»». )] .

We also have
(tb)

where C,(g) and C, (g) are the generating functionals
for the component fields. '

For the following we need some properties for
boson operators. When A, is a c number and f(a„a )
is a function that can be expanded in a power series
of a and a, then'

f(a, a )exp(Xa ) =exp(Xa )f(a+A, at), (7a)

Moreover, the generating functional C...(g) of a
field which is obtained by the superposition of two
independent fields is given by

C,„,(() = C,($)C,((),

(8)

From Eqs. (3) and (5) the generating functional
of the field interacting linearly with the atomic
system may be written as

00 4 n n

ct(g, t) = g —,t"trz II II II II — d6, '»
t»,, exp(i&ca at)exp($a )exp( —)*a)exp(-icosa at)l„, , ; p, ],n=0 nI,, „, 2nj= I 1=1
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since the reduced density operator p&(t) for the field has been expressed in the interaction picture. By
using E(Is. (7) the generating functional becomes

00

Ct(nt) =, trt Iexp(na )exp(-2 2) g —t

where

z! = (exp(+i(ut)

and

Q )
tttte

foal ]Il)]t pp

tz(a, at) =h&(a+z!, at +z)*)=-iexp[-i8[I'~]+iPn, (at +z!*)(a+z))exp[-i8[zz]]+iPn, (a+z!)(at +z!*)exp[-i8~$]]

+(2Pn, )' '(a +]7*)exp[-i8~']+(2Pn, )' '(a+z!)exp[-i8&+] .

When we set
(io)

I& =-zPn, exp[z8& ] a — -t a + = —iPn, exp[i8 j a + = a—(1) ~ B ~y B . . (1)
Ba Ba Ba Ba

+texp[tatt']+(ppn, )' 'exp[lett ] (a — t) +(2pn, )' 'exp[tet ] (a + =),
by means of E(Is. (3) we can write

00 4 n

Ct(nt)=trtIe, xp(na )exp( —2 a) g —tt" '
) — dpt" t, tap I,n= 0 j=1 i= 1

since, for a c number, it is L,c = cl, .
The generating functional of the field can be expressed, therefore, in the following compact form:

C&(z!, t) =tr&(exp(z)a )exp(-z)*a)exp[tK(z!)] pg,
where

4

K(z!)=
L n

)=1 2m

By performing the integrations over 6" in the above expression we obtain

K(z!)= —Pn a — at+ = —(8zz, at+= a — „-Pn,(a +q*)(a+z))
Ba~ Ba ' Ba Bat'

—Pn, (2+el)(pl+el )+2(ln, (B +2 ) (a
—.t) +2(( tn)(a2++n=) .

Consequently, we have, with straightforward calculations, that

exp[tK(z))] =1+tN(D+A)+ ,t'N'[(D +A)'-+(D+2A)]+(t'/3!)N'[(D+A)'+3(D+A)(D+2A)+(D+2A)+2A]+l ~ ~ ~

where, for the sake of brevity, we have used the following notations:

D=z)at —z!*a, A = —(n, +n, )(n, —zz, ) 'z!z!*, N = p(n, —n, ) .

(i2)

(i3)

Since

exp[(e ' —1)(D+A)j = 1+tN(D+A) + 2t'N'[(D+A)'+(D+A)] + (t'/3!)N' [(D+A)'+3(D+A)'+(D+A)]+ ~ ~ ~,

exp[z(e~' —1)'A] = 1+ pt'N'A+ 2t'N'A+ ~,

E[I. (12) becomes
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exp[tK(q)] =exp[(e"' —1)(D+A)]exp[ ', (—e"' —1)'A].
Thus, the generating functional (11) is

c,(q, t)
= tr& (exp(qa )exp(-@*a)exp[(e" ' —1)(qa —q*a)]

exp[-,'(e' ' —l)A] p,}.

Finally, from the Baker-Hausdorff equality"

exp(Y)exp(Y) =exp(X + Y'+ 2[X, Y']),

valid when the operators X and Y commute with
A

their commutator [X, 1'], the generating functional
of the field after the interaction can be written as

C&((, t) =tr&[exp(exp([P(n, —n, )+ im]t} $a }exp(- exp([P(n, —n, ) —i&a]t})*a)p,j
xexp(-n, (n, —n, ) '(exp[2p(n, —n, )t] —1}gg*}. (14)

Here we have recalled the notations that have been
introduced by Eqs. (9) and (13).

It is clear that the field after the interaction with
the atomic system appears to be the superposition
of two fields whose generating functionals are ex-
pressed, respectively, by

C,(g, t) = try[exp(exp([p(n, —n, ) +ice]t}pat}

x exp(-exp([p(n, —n, ) -i&a]t})*a}p,j
and

C, ($, t) =exp(-n, (n, —n, )

x(exp[2P(n, —n, )t] —1].g*}.

We wish first to discuss the statistical proper-
ties of the field corresponding to C, ($, t) We no.-
tice that the generating functional C,(() of the field
before the interaction with the atomic system is
given by

C,(g) =tr&(exp($a )exp(-&*a)po} .

We easily see that C,($) is forms. lly identical with
the functional C,($, t), provided that the variables
g and $* are replaced by variables )exp([P(n, -n, )
+i~] t} and )*exp([p(n, —n, ) —i&a] t}. We therefore
conclude that these fields are statistically similar.
Then, if &at"a ), and (a "a™),are the (n, m)th-
order normally ordered modal densities obtained
from the functionals C,($) and C,($, t), respectively,
we have, according to Eq. (6), that

&at "a"),= exp [(n+ m)p(n, —n, )t]

xexp [i+(n —m)t]&a "a ), .

This result shows that the initial field is attenuated
by the interaction when n,& n, and amplified when
Pl 1+ 'Pl2 which corre sponds to an atomic population
inversion.

We discuss now the statistical properties of the
field corresponding to C,($, t). This generating
functional is a standard Gaussian distribution and
therefore describes a thermal field of mean pho-
ton number

&n(t)) =n, (n, —n, ) '(exp[2P(n, —n, )t] —1} .

In fact, the density operator of this field can be
written as

p, (t) = (1 —exp [-p,(t)]}exp [—p,(t)a a],
with

p(t) =ln([&n(t))] '[&n(t)) +1]}.
We point out that, if the field is initially inco-

herent or if there are no photons present initially,
the field is incoherent at all subsequent times.

It may be of interest to discuss the above results
also in the P representation. ' The field before the
interaction is described in the P representation by
the density operator

P() = d'o. P,(n) I
o& &~ I

.

From Eq. (14) we have that the field after the in-
teraction is given by the superposition of two
fields. The first is described by the density oper-
ator

p, (t) = d'u P, (o.exp([p(n, n, ) - i—(u] t})I o) &a I

and the second by

In p, the amplitudes n and n* of the initial distri-
bution P,(n) are multiplied by a factor, so the
field has changed its statistical properties in a
rather trivial way since it is simply a translation
of the P distribution in the n space. The second
is a thermal field.

To sum up, in the interaction with the atomic
system the initial field is amplified or attenuated,
but this process generates incoherent light also.
Clearly, since the amplified light is obtained by
stimulated emission process and incoherent light
is generated by spontaneous emission, our results
confirm the accepted view' ' that stimulated emis-
sion maintains the coherence properties of stimu-
lating light, whereas spontaneous emission gener-
ates only incoherent light.
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