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Two-photon ionization of the neutral argon atom*
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The two-photon ionization cross section for the neutral argon atom is calculated. A double per-
turbation expansion in the Coulomb correlations and the atom-radiation-field interaction is made.
Contributions from intermediate states are obtained by direct summation over Hartree-Fock bound
and continuum single-particle states, The effects of electron correlations and photon-radiative correc-
tions are investigated. Comparison is made with previous theoretical methods.

I. INTRODUCTION

The principles of multiphoton processes in
atomic systems have been known since the early
days of quantum mechanics. ' With the advent of
the laser, the experimental observation' ' of
multiphoton processes has become possible. Re-
newed theoretical interest' has centered around
the standard perturbation expansion in the photon-
field-atom interaction Hamiltonian' "and the
v cry intense- radiation-field methods. " '

The validity of perturbation theory itself extends
to quite strong photon fields. One of the first ac-
curate calculations of a two-photon ionization pro-
cess was made by Zernik' on the metastable 2s
hydrogen atom. The sums over intermediate
states found in perturbation theory were explicitly
evaluated by Zernik using the method of Schwartz
and Tieman. " Bebb and Gold' applied approxi. mate
methods to calculate for hydrogen and the rare-
gas atoms various ionization rates involving 2 —12
photons. Double photodetachment of various nega-
tive halide ions has also been investigated. " The
low ionization energy of the alkali metals has made
possible experimental observation" of two- and
three-photon processes using present-day chemi-
cal and glass lasers. Theoretical calculation" of
multiphoton ionization rates of the alkalis is made
easier as a result of the concentration of the os-
cillator strength in the low-lying bound excited
states. Sums over intermediate states can thus be
truncated to include only a few important bound
states without much loss of accuracy.

At very intense photon fields the standard per-
turbation theory breaks down. " The semiclassical
tunnel ionization method developed by Keldysh"
and the momentum-translation method of Reiss"
attempt to deal with the range of intensities at
which the atomic and photon fields are nearly
equal. At ultrastrong photon fields the electron-
atom interaction can be treated as a perturbation
on the laser-electron Hamiltonian. '

There are many interesting problems and fea-

tures in the current theoretical work on multi-
photon ionization using standard perturbation theo-
ry. Sums over intermediate states present a
problem for those atomic systems in which the
continuum plays a vital role. The Schwartz-
Tieman method can be used with hydrogenic wave
functions, "and a theory involving the Green's
function of a complex atom has been developed. "
Also being discussed is the question of how the
ratio of the ionization rates of circular polarized
light to linear polarized light behaves for higher-
order multiphoton processes. ' '" Higher -order
photon radiative corrections to a particular two-
or three-photon ionization process near resonance
are also being investigated. ""

In this paper we present a calculation for the
two-photon ionization of the argon atom. Contri-
butions from the intermediate states are obtained
by direct summation over the Hartree-Fock bound
and continuum single-particle states. The effects
of electron correlations and higher-order photon
radiative corrections are investigated. Although
experiments involving two-photori ionization of
argon await the development of x-ray lasers, the
methods used in this paper can be generalized to
yield accurate multiphoton ionization rates for any
atom. In Sec. II.we present the perturbation theory
of the two-photon ionization of an atom; Sec. III
contains the results of the argon calculation and a
comparison with other theoretical methods; and
Sec. IV contains a brief summary.

II. THEORY

The theory of the interaction of the electromag-
netic field with matter is well known. '4 The Ham-
iltonian for an atomic system interacting with a
radiation field may be written

H =Hatom + Hrad ++int

The Hamiltonian for an iV-electron atom, H„,
in configuration space may be given by

atom p~ + corr ~
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where

H,„= ——,
'

V',. -Z ~,. + V,

and

H„, =g v, , —PU;. (4)
i & J=y f=1

Atomic units are used throughout this paper. In
Eqs. (3) and (4), V, is some suitable single-parti-
cle potential, v, , is the Coulomb interaction be-
tween pairs of electrons, and Z is the atomic
number. The solution of the time-independent
Schrodinger equation using H» of Eq. (3) may be
expressed as a linear combination of determinants
formed from the single-particle solutions P„of

( —,
' V'-Z/r+ V)y„=e„y„. (5)

H d
——— E +H dr, (6)

The Hamiltonian of the atom may also be written
as a quantized field using creation and annihilation
operators for the states g„. The electromagnetic
field may be quantized" to yield

H] Hjfl t +Hgozg ~ (12)

The solution 4'(t) of the time-dependent Schrodinger
equation,

"~")=He(t) (13)

may be expressed using the adiabatic hypothesis"
as

e ' "U (f)IC'",&

" '(4."I U. (t) IC".&

The time-evolution operator" U„(i!) is explicitly
written

(14)

Transition rates in multiphoton ionization of
atoms may be obtained from time-dependent per-
turbation theory using the Brueckner"-Goldstone"
linked-cluster expansion. The unperturbed Ham-
iltonian is given by

Hp=H ~+H„~,
and its eigenstates

~ C,".
& are products of an elec-

tronic state
~
C';) and a radiation state with n pho-

tons. The perturbation is then

where E and H are the electric and magnetic
fields, respectively. The vector potential is given
by

A(r) = g (e~aqe' ~'' +e~aqe ' &' '),

U (t)=1+ —.
i H ( t)rdr
~ OO

+ —., ' «d7'H, 7 Hy7. +

where A. is the index of the photon mode. The solu-
tion of the Schrodinger equation using H„& of Eq.
(6) may be expressed in terms of photon occupation
number states

i n~& and the action of the annihila-
tion and creation operators on them,

where

H (t) eiitotH ettte-itt~t
1 (16)

The probability Wthat a transition has taken place
from the ground state

~
C",) to the final state

~ C~ )
is given by

az
~

n~& = (2ttc'nz/ttt~)'t '
~
nz —1),

a, i n), & =[2ttc'(n, +1)/(u, P~'
i n, +1&,

(8)

(9)

li'=
I M I'/(+

I +&,

where

where ~q is the angular frequency of the Xth mode.
The interaction Hamiltonian H;„, is given by

H, , =Q [ —(i/c)A(r, ) V,. +(1/2c') iA(r, ) ~'].

(10)

The second term of Eq. (10) involving
~
A ~' does

not contribute in the dipole approximation. For
notational simplicity we can consider a radiation
field containing only one mode.

M = (C~ (t) i @(t)& . (18)

The denominator of Eq. (17) is needed to normal-
ize

~
4(t)&. Corrections to unity in(C ~4'& are

second order in the Coulomb interaction, and thus
they should have a fairly small effect on the tran-
sition probability (2,3/0 for photoabsorption by
argon"). For the two-photon ionization of an
atom, contributions to the matrix element M come
from second- and higher-order terms in the ex-
pansion of U„(t) in Eq. (15). Carrying out the time
integrations, one has

OO

Ep Hp+i92in '
Ep Hp +in (19)
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By the use of Wick's theorem, "the numerator of Eq. (19) becomes a sum of terms which may be repre-
sented by Goldstone diagrams. The denominator of Eq. (19) cancels the unlinked clusters. The transition
rate zo may then be expressed as"

0 0
(20)

where Q~ means that only linked diagrams are to
be included.

Techniques developed in previous applications"
of the Brueckner-Goldstone expansion may be
used to evaluate Eq. (20). Representative dia-
grams from each order are shown in Fig. 1. The
solid dots indicate an absorptive interaction with
the radiation field, the open dots are emission
processes, and the dashed lines not ending in dots
represent Coulomb interactions. The order of the
diagram is simply the total number of interactions,
either Coulomb or radiation. Figures 1(a) and

1(b) are the only second-order terms leading to
two-photon ionization. The third-order diagrams
of Figs. 1(c)—1(e) show how the time orderings of
the Coulomb interaction can vary. There are
many more third-order diagrams that are not
shown in Fig. 1 which contribute to the two-photon
process. Figure 1(f) is a pure radiative fourth-
order term. In a high-flux electromagnetic field
the electron that is being ionized by the two-photon
process may use as an intermediate process the
emission and absorption of a photon of the radiation
field (or the reverse) The o.pen dot of Fig. 1(f)
may have four possible time orderings, thus lead-
ing to different energy denominators. It should also
be noted that due to the two extra interactions with
the radiation field, Fig. 1(f) is of ahigher fluxdepen-
dence than the second- or third-order terms shown.
For high photon-flux rates a perturbation-theory
treatment of two-photon ionization will break down.
Figure 1(g) is just one of the many fourth-order
Coulomb correlation terms. Poles in the denomi-
nators of the diagrams of Fig. 1 are of two types.
In the two-photon ionization of an atom, certain
values of photon energy ~ can permit single-photon
absorption from a ground electronic state to a low-
lying bound excited state. This process gives rise
to radiation resonances. Another type of resonant
process occurs when a bound electronic configura-
tion is degenerate in energy with a two-photon
continuum configuration, These are autoionization
resonances. In both cases an appropriate half-
width and level shift can be introduced in the de-
nominator to remove the pole. Further discussion
of resonances is reserved for Sec. III.

The single-particle excited states used in the
diagrams of Fig. 1 are calculated by using Eq. (5)

where Y, (&, Q) is a spherical harmonic and X,(m, )
is the spin function. Each diagram is thus ana-
lyzed into its various angular momentum excitation
components. Each excitation component itself in-
volves an angular summation over m, and m, as
well as radial integrations over the various Cou-
lomb and radiation-field interactions. The con-
tinuum states are normalized according to

ck'

(0)

&&k

4
i k

m)& )(k

(c)

ik
0

&k

(e)

]ik
&k

m &Ik'

kll

kill

(g)

FIG. 1. Diagrams contributing to a two-photon process
that occur in the perturbation expansion for the atom and
radiation field. Solid dots indicate an absorptive inter-
action with the radiation field, circles indicate emission,
while the dashed lines not ending in dots represent'
Coulomb interactions. The order of the diagram ig
simply the number of interactions. Figures (a) an8 (b)
are the only second-order terms. Figures (c), (d), and
(e) are examples of ground-state, intermediate-state,
and final-state third-order correlation diagrams.
Figure (f) is a pure radiative fourth-order diagram
while Fig. (g) is a fourth-order correlation diagram.

with various spherically symmetric Hartree-Fock
V" ' potentials for V(r) such that

(r
~

k or n, l, m, , m, ) =B(k or n, l; r)
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p, =2/wk, (23)

where k is the outgoing electron's momentum. In
the dipole approximation, the lowest-order cross
section for two-photon ionization is obtained by
using Eqs. (20) and (23) along with Figs. 1(a) and

1(b) to yield

16m'E k c ~ V k' k' e V' n

cock Eq —Cgr +CO

&k~~ vIm&&m )~ W rn&
'

&m &a+ (24)

where- I' =wc is the photon flux, e~ is the energy
for the single-particle state

~
k), higher-order

diagrams add to the terms inside the absolute
square, and g represents a sum over bound states
and an integration over the continuum.

III. RESULTS

For the two-photon ionization of the 3P shell of
argon, the second-order diagram in Fig. 1(a) may
be written

F-(P (»t l»I » (t&' IJI 3'&»&(

63p 6 nl) I +(s4)l' n'

, (kf iZik'l &( tk'iZ
( S&p

+— dk'
——k'' +co

(25)
where the factor 2/&r arises from the normalization
of Eq. (22). The sum over bound states n' is
carried out explicitly for ten or so excited states
(for each l' value) and the remaining infinite sum
is estimated by the n ' rule. " J represents the

g(k, l; r )- sin[ km+ 6, + (q/k) ln(2kr) ——,
'

f rr]/r

as r -~, (22)

where V(x)-q/r A. s discussed by Amus'ya, et al. M

and others, "the appropriate V ' potential V(r)
is obtained by coupling the excited orbital to the
L,S-coupled core states to form various L8 states.
In the case of a single dipole interaction with a
closed-shell ground state, the potential V(r) is
that for a 'P many-particle excited state. For
two dipole interactions, the resulting many-parti-
cle excited state is 'D or 'S, with the correspond-
ing potential for each case. The single-particle
potentials obtained in this manner cancel not only
diagrams having interactions with the passive un-
excited states but also important intrashell corre-
lation diagrams.

Using the normalization of the continuum-state
functions of Eq. (22), the density of states with

respect to energy is

dipole operator in the length or velocity form.
From angular momentum selection rules l' =0 and
2 for l =1, and l' =2 for l =3. The energy of the
ionized electron in a single-particle picture is
given by

(26)

The complete set of radial functions n's and k's
were obtained using the Hartree-Pock V" ' poten-
tial for the (SP)'ks'P state T. he n'd and k'd func-
tions were obtained using the potential for the
(3P)'kd'P state. The final continuum states at the
energies given by Eq. (26) were calculated using
the HF V ' potential for the (3p)'kf 'D,
(3P)'kP 'D, and (3P)'kP 'S many-particle states.
The Silverstone-Huzinaga potential"'" was used
to guarantee the orthogonality between excited and
core states for the ks'P and kP 'D states. Schmidt
orthogonalization was used for the kP 'S states.

The sum over bound and continuum excited
states in Eq. (25) was made explicitly. The ma-
trix elements (kl

~
J

~

n'l'& and (kl ~Z
~

k'f'& were
evaluated by truncating the radial integration at a
fixed value R. If the cross section is computed
using Eq. (25) for various cutoff values R, it be-
comes convergent as R is increased. In this paper
R =20.365 bohr was used. It may be noted that the
radial probability distribution function for the
Hartree-Fock 3P state of argon has a peak value
of 0.67 at 1.4 bohr and is less than 10 ' by 9.1
bohr. The cutoff at R =20.365 is sufficient to ac-
curately calculate ( k l

~
Z

~
n 'l ') for several low-

lying bound excited states. The number of mesh
points in k' space needed to provide proper eval-
uation of the continuum integral in Eq. (25) was
determined by a sum-rule check. The quantity (in
the length formulation with linear polarization)

I-(kl) = Q
n'

2
+ —

. dt"(&I(I»
I
&'t'&(t"t'I» I&t'&)

1T p

(27)

was evaluated and compared to the collapsed inte-
gral (kl ~z'

~
SP). Results of this comparison at

A =20.365 with a 76-point k'-space mesh are given
in Table I for the three final states kf 'D, kP 'D,
and kP S involved in the two-photon ionization of
argon. It was found that increasing the radial cut-
off point 8 beyond 20.365 bohr results in a sub-
stantial increase in the number of k'-space mesh
points needed to properly evaluate the continuum
integrals and therefore a considerable increase in
computing cost.

Results for the two-photon ionization of argon
in lowest order are shown in Figs. 2-4. Calcula-
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TABLE I. Comparison between L(kl ) and (jkl ~zt( 3P) for It = 30.366 bohr.

co (eV)
A. kf 'D final state

(kfl~'I3P&.a.i (au)' L(kf) r~adiai (a u )
'

9
10
ll
12
13
15.25

-3.609
-4.613
-5.145
-5.390
-5.458
—5.261

-3.523
-4.607
-5.167
-5.380
-5.456
-5.250

(o (eV)
B. kp ~D fi.nal state

tkp I z 'I 3P) r.dpi (a u ) L, (kp)t d 0& (a.u. ) &(kp)radigi (a & )

9
10
11
12
13
15.25

-2.930
-2.839
-2.628
-2.402
-2.189
-1.786

-2.892
-2.794
-2.710
-2.424

2 ~ 127
-1.862

-2.984
-2.863
-2.606
—2.402
-2.193
-1.796

(u (eV)
C. kp S final state

(kP lz I 3P) a a (a u ) L(kp) ',
„. d;~) (a.u.)" L(kp)'„. dj~( (a.u. )

9
10
11
12
13
15.25

-2.954
-2.949
-2.794
-2.599
-2.399
-1.985

-2.939
-2.892
-2.871
-2.635
-2.342
-2.058

—2.995
-2.980

2 0773
-2.597
-2.403
-1.993

~Angular parts of $f|z 2( 3P) and L(kf) are the same.
Angular part of (kp [st ) 3P ) equaLs the sum of the angular parts ofL(kp)' = and L(kp )' = .

talons were carried out for linear polarization of
the radiation field using Figs. 1(a) and 1(b). For
circular polarization the kf 'D and kp 'D results
are multiplied by —,

' while the kp'S final state is
forbidden by angular momentum selection rules.
In order to have the energies for the resonances
and thresholds agree as closely with experiment
as possible, experimental values from Moore's
tables" are used for all bound excited-state sin-
gle-particle energies. The ionization energy of
the SP state is 0.579 a.u. (15.755 eV)3' while the
Ss removal energy is 1.075 a.u. (29.24 eV)." Fig-
ures 2-4 cover the energy values from threshold
for two-photon ionization, &o =

~ s,~ ~
j2 = 7.88 eV,

to threshold for single-photon ionization, &u =
~ s» ~

=15.755 eV. The denominator associated with the
sum over bound states in Eq. (25) will vanish when

The resonance peaks of Figs. 2-4
thus extend to infinity since Eq. (25) is evaluated
without including shifts and widths (which are flux
dependent) in the denominators. The radiation
resonance energy corresponds to the energy needed
for bound excitation of the atom by a single photon.
The resonance peak at ~ =11.62 eV in the partial
cross sections for kp 'D and kp 'S in Figs. 2 and 3
results from the excitation of the 3p'4s'P state.
Intermediate states of Eq. (25) involving s waves

are not allowed in lowest order for the kf 'D par-
tial cross section. The 5s'P and 3d'P resonances
occur at 14.09 eV and 14.15 eV, respectively. The
remaining infinity of bound ns'P and nd'P reso-
nances are found between ~ =14.15 eV and the sin-
gle-photon ionization threshold at 15.755 eV. |"al-
culations were not carried out beyond co equal to
the 3d'P resonance energy. Points were calcu-
lated for Figs. 2-4 and 6 at intervals of 0.5 eV
starting at ~ =8.0 eV. The diagram component
given by Fig. 1(b), for n=SP, m =3s, and k=kp
was found to make a relatively small contribution
to the kp'D and kp 'S cross sections when corn
pared to Fig. 1(a).

The matrix element (kl~ J~ n'l') of Eq. (25) must
be known quite accurately in the energy range +
near a ~n'l') state resonance. The radial integra-
tion cutoff at R =20.365 is sufficient to accurately
evaluate the veloc ity-matrix elements involving
the 4s'P, 5s 'P, and 3d'P states and the length-
matrix element for the 4s'P state. For energies

near the 5s 'P and 3d'P resonances, length-
matrix elements in Eq. (25) for the 5s 'P, Gs 'P,
3d'P and 4d'P states calculated to R =20.365 are
replaced by ones calculated to A =90.0. This is
an approximate procedure since it disturbs (a
1-30'%%uo effect) the balance between the bound and
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continuum contributions needed for the sum rule
of E . (27). Without this modification, however,
the length curve in Figs. 2 and 3 would no
di to near zero between the 4s 'P and 5s iP reso-zp on

othernances. The velocity formulation, on the o
5s 'Phan

~
s oud h ld give reliable results near the s

fatRand 3d'P resonances. The radial cutof a
so that more=20.365 can of course be increased so

bound ma rex e ernet ' lements can be evaluated accurately,
but only at the cost of a large increase in the num-
ber of mesh points needed for the continuum in-

tegral of Eq. (25).
Two approximate results, ' labeled AHF and AHY,

are presente zn ig.t d
' F'g 4 for the kf 'D partial cross

section. For some set of frequencies ~(~) the
following equality must hold (in the length form
using linear polar ization)

(kflz'I 8P &D(kf)=
M(M)

(28)
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where D is o(kf) is obtained from Eq. (25). &(&) was
found to decrease uniformly from = — . e a
=9 eVto += — . e= —21 8 V at & =14 eV. En the argon
results of Bebb and Gold, ' Eq. (28) was used to
solve for D(kf) by choosing ~(&) as a constant
equal to the first excitation energy of argon. The
curves AHF and AHY, calculated by Eq. (28) with

usesuses Hartree-Fock wave functions and AHY us
hydrogenic wave functions. The approximate re-
sults are in ve ry poor agreement with the lowe st-
order kf 'D results obtained using Eq. (25).

The effect of electron correlations on the lowest-
order kf 'D partial cross section was investigated.
Angular-momentum excitation components of a
f f the many third-order diagrams are shown
in Fig. 5. The values of l' and l are determin

1 r selection rules. The intrashell
c it resultsground-state correlated length and velocity resu s

Fi . 4 (labeled LG and VG) include the
l' =2 l" =2 and l' =2, l" =0 components of Fig. (a)
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FIG. 5. Excitation components of various third-order
diagrams contributing to the &f D partial cross section
for the two-photon ionization of argon. Sums over inter-
mediate states labeled bye'l' or k "l" involve bound as
well as continuum contributions. Figures (a) and (b) are
intrashell components of ground-state correlation dia-
grams. Figure (c) is an intermediate-state correlation
diagram while Fig. (d) is a final-state diagram. Figure
(e) involves an interaction on a hole line.

and their exchanges and the l' = 2, l" =2
component of Fig. 5(b) and its exchange. The l' =2,
f" =2 component of Fig. 5(a) and its exchange
dominate by an order of magnitude the individual
contributions from the other two calculated ground-
state components. From previous photoionization
calculations of argon" we estimate that Figs. 5(a)
and (b) are the most important ground-state cor-
relation diagrams.

An intermediate-state correlation diagram is
shown in Fig. 5(c). The important intrashell lo

=1, f' =2, I"=2 component of Fig. 5(c) and its
associated exchange are cancelled by interactions
with the potential and the passive unexcited states
as has been previously explained in Sec. II. The
intrashell /, =1, L' =2, l" =0 component of Fig. 5(c),
its exchange, and their interactions with the passive
unexcited states were calculated and added to the
ground-state correlated results. Radiation reso-
nances due to the n"s 'I states (at ~ =B and D) now
enter the kf 'D partial cross section as shown in

Fig. 6 (curves labeled LGI and VGI). Intrashell
correlation effects are thus seen to introduce addi-
tional resonance structure into the partial cross
sections.

The important intrashell lo 1 l 3 l 2 'com-
ponent of the final-state correlation diagram shown
in Fig. 5(d) and its exchange are also cancelled by
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FIG. 6. k'f D partial. cross section (10 cm /a, u. of
flux) for the two-photon ionization of the 3p shell of ar-
gon. The radiation field is l.inearly polarized. The
length (I GI) and vel.ocity (VGI) curves include contribu-
tions from diagrams leading to the 4s 'P and 5s P re-
sonances as well as third-order intrashell ground-state
correlations. The curves (I ) and (V) from Fig. 4 are
repeated for comparison. The two-photon threshoM is
at ~ =A. , the single-photon threshold at ~ =F; co =8, D,
E are the 4s ~P, 5s ~P, and M ~F' radiation resonance
energies, while u =C is the M D autoionizing resonance
energy.

the choice of potential for the radial &f states. The
intershell diagram of Fig. 5(e) and its exchange and
radial equivalents were calculated and found to be
extremely small. There are no radiation reso-
nances due to 3s 3P'n"P 'I' states since the energy
e„ is sufficiently large to prevent the (e„—&„~
+&) part of the denominator of the intershell lo
=0, l' =2, l" =1 component of Fig. 5(c) from
vanishing for the energy range of & considered
here.

The intershell lo=o, l'=2, l" =I component of
the final-state correlation diagram of Fig. 5(d)
gives rise to configuration interaction or auto-
ionizing resonances found commonly in photoioniza-
tion work. ' The bound 3s 3P'nd'D states for which
the(e„—e„„+2&)part of the denominator vanishes
are degenerate in energy with the continuum
Ss' 3P' &f 'D states. The approximate location of
the 3d D autoionizing resonance, shown in Fig. 6
(at &u = C), is obtained semiempirically from
Moore's tables. " Widths and level shifts for auto-
ionizing resonances in many-body perturbation
calculations can be found in the usual way"'" by
summing certain higher-order terms involving
only Coulomb interactions.

The effect of photon radiative corrections on the
kf 'D partial cross section was also investigated.
The pure radiative fourth-order diagram of Fig.
1(f) and its three other associated time orderings
of the emission interaction may be calculated ap-
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proximately. Figure 1(f) may be given by

2m E~ (kf
~

z'~ 8P )
["(")+ &1'[&(&)+ 2~1

(29)

which is added to the terms inside the absolute
square of a length formulation of Eq. (24). The
set of frequencies &(~) are calculated using Eq.
(28). Values for D(kf) in Eq. (28) are obtained (at
each &) by summing diagrams from second [Eq.
(25)] and third order. It was found that the fourth-
order diagram of Fig. 1(f) and its three other time
orderings begin to significantly affect the lower-
order kf 'D cross section results at around a flux
E of 10"photons/cm' sec (0.07 a.u. ).

In the vicinity of a radiation resonance, higher-
order photon radiative corrections contribute to
the half-width and the level shift in the denominator
of the second-order results of Eq. (25)."'" At
low photon fluxes the widths and shifts are a result
of the spontaneous decay of the resonant bound in-
termediate state. At higher photon fluxes the
radiation-field-induced emission and absorption
rates yield flux-dependent widths and shifts. The
effects of the laser line shape may also become
important. ~'

effects. An explicit sum over both bound and con-
tinuum intermediate states has shown that previous
approximate methods can be in serious error when
applied to multiphoton processes in atoms other
than the alkalis. The inclusion of electron correla-
tions in the two-photon process has introduced the
same wealth of phenomena that is found in current
photoionization work. Radiation resonances for-
bidden in the lowest-order partial cross sections
have been seen to occur through correlations in
higher orders. Autoionizing resonances were
found when considering various intershell electron
correlation terms. The flux-dependent nature of
the two-photon ionization rate was also investi-
gated by approximately calculating certain fourth-
order radiation field corrections.

A generalization of the methods used in this paper
can be applied to a wide variety of multiphoton pro-
cesses in both atoms and molecules. The useful-
ness of adequate approximate methods remains,
however, since the number of intermediate states
involved in, say, a high n-photon process of an
open-shell atom may become prohibitively large.
We plan to study other multiphoton processes in
future work.

IV. SUMMARY

In calculating the two-photon ionization rate of
the argon atom we have sought to examine several
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