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It is observed that a number of phase-shift rules can be deduced from properties of the Jost
function. The simplest of these is f2" (dr/2)(5& (e) —6I (e'))=g„s«where 0& (e) is the phase shift,
5, Qs) is the first Born approximation to the phase shift, and s« is the nth bound-state energy
with angular momentum l.

In this paper, a class of sum rules is derived
for the phase shift in nonrelativistic potential scat-
tering theory. These sum rules can be obtained
quite simply from subtracted dispersion relations
satisfied by the Jost function.

In the following analysis we restrict ourselves
to the l =0 case, and furthermore require that the
interaction potential V(r) is well behaved and that
the first Born phase shift, '

f(-k)f(k, r) f(k)f(-k, r)
If (k)l If (k) I

where the coefficient f (k) = f (k, 0) is the Jost func-
tion' and the function f(k, r) satisfies the integral
equation'

f (k, r) = e ""+ —„Jt sink(r' —r) V(r') f (k, r') dr'

5Is(k) = —,k dr r'V(r)j ', (kr), s =
~o

n

5"s(k) =+5qs(k),
j=l

with terms

(2)

&, (k) = —— dr, V(r, ) sin'kr„

5s(k) = —, dr, V(r, ) sin'kr,
k2

o

dr 2 V(r, ) sin2kr„
? ]

is well defined. If this is not the case, the &',

appearing in the simplest sum rule noted above
should be replaced by the Is I- ~ limit of -2p, k

x k 2(kIT, (s)Ik), where T, (s) is the partial-wave
amplitude of the off-energy shell T matrix. For
simplicity, singular potentials for which this gen-
eralization is necessary will not be considered
here. For lc0, explicit proof of at least the first
sum rule is not difficult.

We will need explicitly only the first few terms
in the Born series to a given order, for /=0. This
series, for the nth-order Born sum is

The l =0 partial-wave S matrix is given by the
ratio f (k)/f (-k), and a simple dispersion relation
connects the phase shift 5(k) to the Jost function.
This relation is'

~" dk' &(k')
f(k) =exp —,. +gin 1+ —,"

k' —k+ z6

(5)

where e„=-&'„ is the nth bound-state energy. The
properties of these functions have been described
extensively in the literature. For our purpose
here, everything necessary is contained in Eqs.
(4) and (5), together with the definition of the Born
series in (2) and (3). As is conventional, we take
5(—k) = —5(k) for real k40 and 5(k-~) =0. &(k =0')
= xg„(1) is a consequence of Levinson's theorem. '

We rewrite Eq. (5) in the form

f (k) =exp[«(k)+&(k)1,

with

2 ",k'5(k')
R(k) = —f2

J
dk', „„+Pin 1+ —,", (7)

0 n

and carry out a series of subtractions in this dis-
persion relation. Subtracting and adding 5s(k'),
and using

The scattering state, asymptotic to
(1/r) sin[kr —5(k)j as r-~, is

1 k"
k2 kt2 k2 k2 (k2 k/2)

we have
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2 ",k'5~e(k') 2 "", k' k"
P t dk k2 k)2 + P dk „2 „2 „2 [6(k' ) —6 (k')]

0 ~f 0

dk')"Ill(k') —5, (0')]++ )n() ~, )77 Qp n
(s)

Next, add and subtract &, (k') in the second term and repeat the entire manipulation. Continuation of this
process produces, for example,

k' k'»
4(k)=)), (k)+4, ())+ 4, ()')+ —P I dk', „„,(ll(k') —I! ().')]

1 ]&4 i 1
+ ln i+~ —~+—~ + --I + I

k4 k» k4 (9)

where

2 ~" k' k"
Rq(k) = —P dk' k, „, 6)~(k') (10)

7T jp

k(k2)& '[6(k) b~e(k)] —g ( /P)&

0 n

define the terms R] 23 and I„. We have added
terms to the bound-state sum (and subtracted them
in defining I, ,) so that the entire [ ] term of Eq.
(9) is of order k ' for large k. Explicit evaluation
of R, (k) and R, (k), using Eq. (3), gives

i ~00

R, (k) = dr, V(r, ) sin(2kr, ),
dp

Since the phase shift 5(k) will have an asymptotic
expansion

6(k) = A/k+B/k'+O(1/k'), (is)

f (k, r) =e '""+Qf)(k, r),
j=l

(is)

we see from Eqs. (6), (14), and (16), that the Jost
function has the expansion

f (k) =1+iA/k+ (C —2A')/k'+ i[B —A.C —(1/3! )A']/k'

+ [D + —,'C —AB —2CA'+ (1/4! )A']/k'+

(17)

Next, consider the integral equation (4) and its
iteration. The direct iteration produces the series

1
R, (k) = ——, dr, V(r, ) sin'(kr, )

Np

(12)
where f&(k r) represents the jth iterate. Accord-
ing to Eq. (4), we have

dx, V~, cos 2k', .

The development of moment relations (sum rules)
for the phase shift requires the asymptotic expan-
sion of f(k) for large k. This is to be done in two

ways; first through the dispersion relation struc-
ture of Eqs. (6) and (9), and then directly from the
integral equation (4}.

First, consider the high-k behavior of R(k).
From the asymptotic evaluation of (12}, we have

R, (k) = (1/k')-,'V(r =0) —(1/k') ,', V"(r =0) +—O(1/k'),

R, (k) = (1/k')-,' V'(r = O) +O(1/k'), (13)

R(k) = C/k'+D/k4 +O(l/k'),

with

c = I, +-.'v(o), -
D —= I ——, V"(0) —', V (0).

(14)

while R, (k), together with the remainder of the

( ]' term in Eq. (9), is of order k '. Consequently,
we have

f~(k, r) = —
J

dr' sink(r' —r)V(r') f, , (k, r')
r

(19)

for j~ i, where f,(k, r') =e '~" . Each iterate can
then be expanded for large k in a series of the
form

—Z
n+j

f, (k, r) =e ""g a„"'(r),
2k

(2o)

so that the lowest-order term for the jth iterate
is k ~. Thus the complete sum for f(k, r) is

—zf (k, r) = e "" 1+g —b„(r)
2k

b (r) = Q a„"'(r).
jsn with
j+n=m

In order to carry out the calculation to order k 4,

we need all terms a„'j' for which j+n&4. This
includes 10 terms. After some computation, we
find
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+((& U(y)

s(() V(~)

a&'& = -v'(~),

+ ( I ) v II (y)

(&(2& ~ U2() )
&'& = -W(~) —U(r)V(~),."'= :V'(r) U—(~)V'(~),

."' = (1/3 ()U'(~),.,"' = -U(~) 1V(~) ——,'U'(~) V(r),

s,( ' =(1/4')U ()'), (22)

U(i) -=v(~') d)",

~ oQ (23)

—[5(e) —5's(e)] = Q e„, (28)

v'() ') d~'

The expansion for f (k) = f(k, r =0) then takes the
form

""de—a [5(e) —5's(e)] = —Q e'„,
Jp 1T

n& (29)

f (k) =1+ (f/k)[--,'b, (0)]+(1/k')[--,'b (0)]

+ ( /k')[-,'b, (O)]+ (1/k')[ —,', b, (O)] " (24)

with coefficients, from (21) and (22), given by

b, (0) =U(0), b, (0) = -V(0)+-,'U'(0),

b (0) = —V'(0) —iV(0) —U(0)V(0) + (1/3! )U'(0),

b. (0) = -V '(0) + -V'(0) —U(0)V'(0)

—U(o) iV(0) ——,
' U'(0) V(0) + (1/4! )U'(0).

(26)

and it is clear that each I,. in the series can be
evaluated by a higher-order expansion of the Jost
function, following the method above. However,
having gone through this explicit calculation, we

can see immediately what has occurred.
The Born series, or coupling constant iteration

for f and lnf, can be generated from (18) and (19).
From this series, we see that R, (k)+R, (k)+
is the Born series for R (k) =He lnf which accom-
panies that for Im lnf =5(k) =6&~(k) + 5~(k) y ~ ~ .
Consequently,

Comparison of Eqs. (17) and (24) now permits
evaluation of the four constants g, B, C, and D.
Thus we find the simple results

R"'(k) = gR,. (k) (30)

~ = =,'U(0), B =-—,'[V'(0) +W(0)],

c =-.' v(o), I) =-—,', v" (o)+-.'v'(o).
(26)

is the equivalent of Eq. (2), and represents the
nth Born approximation for R (k). The inverse
dispersion relation to Eq. (7) is'

There are two pieces of information contained
in (26). From a knowledge of A and B, we see
[Eqs. (16) and (23)] that the high-k expansion of
the phase shift is

6(k) = -(2/v) kP , R(k')

(31)

1
6(k) =- v(r)dr

2k

1 ()Q

V'(0)+ V'(r)dr + ~ ~ ~,
Jp

an expansion which is equal to that of 5'~(k) to
this order in 1/k. This asymptotic equality with
the Born series is well known. It is clearly the
asymptotic equality which makes the integrals in

IJ [Eq. (11)] convergent. What appears more sur-
prising is that the calculated values of C and D in
Eq. (26) imply, from Eq. (15), that I, =I, =0.
These two equations are the first two sum rules
for the phase shift. In terms of energy rather
than momentum these equations are

By adding and subtracting R, (k'), the first term
in (31) becomes

2 ",R(k') -R, (k')

0

since

5, (k) =-—kP t dk' —,'
0

can be demonstrated directly. By using 1/(k'-k")
= (1/k') +k"/[k'(k' —k' ')], we then obtain
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il (k ) = 5, (k ) ——kP J d k ' , „ , [ik (k
'

) -ik, (k
'
)] ——) d k '

[55( k' ) ik, (-k' ) ] i I 15(
"

) ,

(32)

Equation (32) is the analog of Eq. (8). If we repeat this process of subtraction, we have the analog of Eq.
(9), i.e.,

2 2——J ——J1 k3 2&

pOO k"-
5(k) =5,'(5) +5,'(k)+ Ik(k) —, —kP dk' —,— „-, [ik (k) -ik' (k)]

Pp

-~ (', :: )""- -'('-') (33)

where

2 "" 1 k'
6q~(k) = ——kP dk', „-, R~(k') (34)

and

Z,. = —(k')'-'[R (k) -R"(k)] +
n

8E e' '[6(e) —5' (c)] = —, g (e„)',
'tT

n

"de . . 2(-1)'
g() 7T 2j -1

(37)

We emphasize that 6J~(e) and RJs(e) refer to the
sums of the first j terms in the Born series for
6(e) and R(e), respectively [Eqs. (2) and (30)]. An
immediate and somewhat surprising consequence

(35)

We have added terms to the bound-state sum (and
subtracted them in defining J, ,) so that the entire
f j term of Eq. (33) is of order k ' for large k.
Note that Eqs. (10) and (34) are consistent for any
j. That is, insertion of (10) into (34) leads to the
identity 5&s(k) = 5~(k).

If (33) is expanded for large k, the first two
terms 6, (k) +6, (k) give the correct asymptotic
expansion to order k '. The [ ] term of (33) is
of order k ', hence J, =J, = 0. This gives two sum
rules on R(k) =Re Inf (k) analogous to those
(I,=I,=O) on the phase shift 6(k) =Im Inf (k).

It is now clear that continued subtraction in both
equations (9) and (33) will give the result that

I& =J,. =O for all fixed j. This depends on the fact
that 6'~(k) and R'~(k) give correctly the asymptotic
values of 5(k) and R(k) to terms of order k '~"
and k ", respectively. The two sets of sum rules,
in terms of energy integrals and bound states

= -K are2
n n&

= —Q lc„+ 8 V'(0) —+, V" (0 ),

1
dkR(k) =Q g„+—,'U(0),

TT p n

1 "" 1—! dk k' ii (k) —,V(0))
p

(39)

(40)

—g &'„+—,', [V'(0) +IV(0)j, ,

where U(0) and W(0) are defined in Eq. (23). Equa-
tions (38) and (39) can be verified explicitly for
cases where the phase shift and bound states are
known for a given local potential. For a nonlocal
potential, or for l g0, the appropriate equation to
verify is (36). For example, when le0, the quan-
tity —,V(0) in (38) is in general multiplied by the
coeff icient

I (l+2)! l! (l+ 1)!
2 l! (l —2)! (l —1)!

Equation (38), which relates the potential at the
origin and its integral over all space to the phase-
shift and bound-state eigenvalues, has been pre-
viously obtained by Newton, ' and the first sum
rule is simplest to verify in this form (see Appen-
dix).

of (36), when there are no bound states, is that
6(e) must have values both greater than and less
than the first Born approximation 6'~(e); i.e., the
integrated [5(e) -5's(e)] is zero.

A somewhat more awkward form of the sum
rules can be obtained by explicit integration of the
Born terms, subtracting and adding the asymptotic
limit necessary in each integral. Thus, by using
Eqs. (3) and (12), we may show that the first two
sum rules in each set become

dkk 5(k)+ —„U(0) =- g~'„+-.'V(0), (3
2 1

0

2 "
~ 1dkk' &k + UO +, V'0+WO

0
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When no bound states are present, we know that
the phase shift uniquely determines the potential.
However, in the presence of bound states there
can be a variety of different potentials with identi-
cal phase shifts and bound-state energies. Barg-
mann has shown, ' by explicit construction of f (k),
that two of the Eckart potentials,

For this potential,

V (0) = 2 (~' —o.'),

V' (0) = 4w ()(' —o.')

V" (0) =4(Ic' —u )(3g2 —o('),
(A5)

V, (r, e, , p „X,.) =-o', A. ', p, e ~k" (1 +p, e ~&") ',

X,. &0, p, & -1 (42)
U(O) = dr V(r) =-2(~+n),

0

p, =4 —p„A., =[(5 —p, )/(1+p, )] A.„
o, =( po, )/(4 p,)- (43)

Thus, if ((T„P„A., ) = (6, 1, A., ), we are required to
have Bargmann's choice (cr„P„A.,) = (2, 3, 2A. , ) for
the second potential.

I would like to thank Walter Kohn for many help-
ful comments and suggestions during the course
of this analysis.

APPENDIX —TWO EXAMPLES

A classic example, ' for which everything neces-
sary is known and very simple, is the Eckart po-
tential of Eq. (42), with (o, P, X) = (2, P, 2o.). Thus,
with 5 = 2p = 1, we take

will have the same f (k), and hence the same 5 (k),
R(k), and e„. Specifically, Bargmann shows that
the potentials V, (r, 6, 1, A,,) and V, (r, 2, 3, 2X,) have
identical Jost functions, and he observes that
these potentials have common values at the origin
and common integrals over r [V(0) and U(0) equal],
although their shapes are quite different.

The sum rules make clear the necessary rela-
tion between potential parameters. If 5(k), R (k),
and e„are identical for two potentials, then it is
clear from our equations (38)-(41) that V(0), U(0),
V" (0), and [W(0)+ V'(0)] must also be identical
for these two potentials. Applying these restric-
tions to the Eckart potential of the form (42), we
find that (..xcept for the trivial solution v, =o'„
P, =P„X,=A.,) we must have

where we have eliminated the parameter P by using
(A2). Insertion of (A4) and (A5) in the sum rules
(38)-(41) now gives

2 K
y

Q K+CV

0
dkk tan ' —+tan ' ——

k k k
= -R (K + (X ),

(A6)

2 | 3 ~~ c + K+(X K +Q
dk k3 tan ' —+ tan ' —— + 3

m 0 k k k 3k'

00 k2 + 2 1/2
dk ln — = —,

'
((k —e()

m g0 k2 + (y2

=-,' (~'+ n'), (A7)

(A8)

k2 ~ ~2 1 j2 ~2 ~2
dkk2:in-

J J +a
= ——'(~' —a')2k'

(A9)

and each of these is verified by elementary inte-
gration.

For a second example, consider the usual T
matrix theory for the general nonlocal potential.
The potential term in the SchrMinger equation
becomes jd r (r I

V
I
r &y(r )»d (r I Vl r')

V(r)5(r r') tak—es us back to the local case.
The off-shell T matrix for this interaction satisfies
the equation

V(r) =-8Po.'e '""(1+Pe '"") ',

for which there is one bound state for I =0 with
E0 = -K and2

v = o. (p —1)/(p + 1),

with the very simple Jost function

f(k) = (k+iv)/(k -in),

(A1)

(A2)

(A3)

d3
+ I ~, (klvlq&

Q'x l z (qlT(z)lk & (A10)

for complex z, where

(k()r(k')= fd'rd'r'e '"''(r(r(r')e'" ' (Al()

so that R (k) and 5(k) are given by

R (k ) = 1»(, , )
5(k) =tan '(z/k)+tan ' (o/k). (A4)

is the Fourier transform of (rl Vlr'&.
The partial-wave expansion

(rl Vlr'& =+V, (r)I; "(r"')(rl V lr'&
l, m

(A12)
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results in

(kl v o»(~) lk')

= (4&)'P V, (k)Y, ~ (k') (kl V, or T, (g)lk'&,
l, m

(A13)

The classic model problem in T-matrix theory
is that of the separable potential (xl V, lr'&

=A, f, (x)f, (r'), a form which also quarantees
separability in k space. The solution to (A15) can
then be constructed explicitly. To make that solu-
tion even simpler, consider the cutoff attractive
potential

with

(k~ r ~k') = I drdr'r j, jk'r)(r~r ~r )r"j', jk'r')

(A14)

52
(klvlk'&=- ~ „,„,e(k-k)e(k

for fixed l. Then

(e) =We(e —e)j e -=k2k'/2ij,

(A17)

(A18)

(klT, (z)lk'& = (kl v, lk'&

+ — q'dq, ', (qlT, (z)lk'&.(kl v, lq&

0

is the Born phase shift. From the (now trivial)
solution to Eq. (A15), we then find the single bound
state (A. positive only)

(A15) 0 87) 1& (A19)

Bound states e„, =g appear as poles on the negative
real axis of the T matrix, while the full scattering
amplitude is

f(k, k')= —,
k (js~ T( ~ ii!) Ijs')

5(e) =tan ' i 1 ——ln ——1 e(e -e).
1T E'

together with the phase shift tusing (A16)],

2p, h 'k's's "'s'sii (k)= — k k~r(+is) lk)
2p.

(A16)

gives the phase shift. The first Born phase shift
is given by

5,"(k) = (2p/a-') k (k l
-v, lk).

The first sum rule [Eq. (36) with j =1] now reads

e 'de, A. k:
tan ' 1 1 ——ln ——I -~ I,e -1

(A21)

and again this can be verified by direct integration.
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sion.
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