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Adaptation of the momentum-space Schrodinger-Coulomb Green's function for second-order perturbation

calculations of the bound-state energy levels of hydrogenic atoms is demonstrated. The numerical viability

of the formulas derived is proven by. recalculating the contribution in second order of the spin-spin opera-
tor to the hydrogen hyperfine-structure residual R = (8v» —v»)/v». Application to positronium hyper-
fine structure is discussed.

INTRODUCTION

The general concern of this paper is the techni-
cal problem of calculating the energy eigenvalues
of the Bethe-Salpeter equations describing the
atomic two-body systems hydrogen positronium
and muonium. Since these atoms are rather ac-
curately described by the nonrelativistic spinless
Schrodinger equation with 1/r potential plus well-
known fine-structure corrections it is natural that
all foregoing work on them' ' has proceeded by ap-
proximating in some sense the Bethe-Salpeter
equation by the Schrodinger equation and developing
a perturbation scheme about the Schrodinger solu-
tion. Although recent work' directed towards cal-
culating with the Bethe-Salpeter equation in a co-
variant manner appears promising, it is felt that
the nonrelativistic approximation procedure is not
exhausted, and in any case it is always useful to
calculate quantum-electrodynamic (QED) correc-
tions by more than one method if possible. Also it
is likely that expressions of the type we shall ana-
lyze will arise in alternative perturbation schemes.

Specifically this paper is addressed to one step
in the aforementioned procedure, the calculation
in second order with Schrodinger wave functions of
an arbitrary perturbation operator, i.e. ,

~E(.) ~ &q. l@ lq.&&@.Ie le.&.

the sum over states includes integration over the
continuum. As will be discussed in Sec. I it is con-
venient and perhaps mandatory that the required
operators 6 be expressed in momentum space:

[()P)(P)=f O(P, P')P(P')dP'.

Although both bound and continuum wave functions
are known, ' "a direct summation, especially to
fairly high precision, appears impractical. For-
tunatel. y, it has been found straightforward in cases

of interest to replace the resolvent operator oc-
curring in (1) by a single kernel function of two
momentum variables, with the result that hE' may
be expressed as

b,E~2~ = dp dp' dp, dp,' y, p, 0

G"'(P, P') o(P' Pl) Vp(p,') .

The formula for G is obtained by exploiting the
formal similarity of the resolvent

g(p)( )) ~ Pn(P~V'n(P )

neo
(4)

and the momentum-space Green's function

G ( )) g Pn(p)(I()n(p )

a]] n En

for which parametric representations are avail-
able.

Unfortunately, because it seems necessary to
evaluate ~' numerically, one gives up the possi-
bility of developing AE ' as an expansion in powers
of o(, an important feature of all preceding QED
correction calculations. It may be that as specific
calculations are carried out techniques will be
developed for analytic evaluation; some parts of
the demonstration calculations were performed
analytically.

Section I contains a more detailed schematic dis-
cussion of the motiva. tion for this work. In Sec. II,
6' is extracted from G~ for the case of y, equaling
the ground and first excited state, and the s and d
partial waves of the G' are derived. Various nu-
merical checks of the formulas are described. In

Sec. III the previously calculated hydrogen hyper-
fine-structure residual is recalculated. In Sec. IV
some preliminary work on application to the sec-
ond-order positronium hyperfine structure is de-
scribed.
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I. HYPERFINE STRUCTURE

An important contribution in the high-precision
calculation of the quantum-electrodynamic fine
structure of hydrogenic atoms is the calculation of
certain fine-structure operators in second order.
An example of this situation is the case of the hy-
drogen hyperfine-structure splitting residual

R = (8 AV2 ~
—6V~ ~)/6V~~

(Av, z, b, v,z are the hfs splittings of the 1S and 2S
states) calculated by Mittleman, "Zwanziger, "
Schwartz, "and Sternheim. ' The work of Schwartz
and part of Sternheim's was the calculation of the
second-order contribution to R,

1&v., I AH. ~ + AH hf I ~.& I 1&~„I AH. ..+ ~hf I y„& I'8' =
(~) 8

F= j.-I'=0

a contribution of order o.'m/M emerging from the
Bethe-Salpeter two-body formalism. The y»»
are nonrelativistic Schrodinger -Coulomb functions
coupled to two-component spinors for protons and
electrons with total angular momentum F= L+S,
+S~. ~Qf denotes the dipole-dipole operator

(8)

and ~„,„denotes the spin-independent part of the
lowest-or. der relativity correction to the Hamil-
tonian

8 ' 8M""

r =r, —r~, p= V/i; (9)

the spin-orbit term does not contribute to S-state
calculations. The terms of type ~„,„&~„,„are
dropped since they do not contribute to the split-
tings. The ~„„&~„,„may be thought of as the
expectation value of ~„„with the lowest-order
relativity correction to y. These calculations were
carried out in coordinate space by the method of
Dalgarno and Lewis, "which does not calculate the
sum over states directly, but instead solves the
equivalent inhomogeneous equation.

An extremely important property of P' is the
fact that the 1S and 2S terms separately diverge,
and formation of the residual is required to obtain
a finite result. The divergence is provided by the
singularity of the operators at x=0 coupled with
the nonvanishing of the S-state wave function at x
= 0; a finite result would be obtained for non- S
states. Formation of the residual guarantees that
the divergent pieces cancel owing to the fact that
j y, z(0) (' = 8 [ p,z(0) )'. Thus we conclude that the
Schwartz- Ster nheim procedure is inadequate for
calculating directly the second-order corrections
to S-state hyperfine structure. Although not seri-
ous for the hydrogen ground-state splitting, where
the relative order is u'm/M -2 x10 ' and the best

possible calculation will have uncertainty -1 ppm
due to the uncertainty in o., the problem is im-
portant for the hyperfine structure of positronium
where the mass ratio is unity, and only the ground-
state splitting has been measured. Since this split-
ting has not yet been calculated to the accuracy of
the measurement, "resolution of the divergence
problem and calculation of the second-order hfs
contribution (as well as the numerous other un-
calculated contributions' ") remains an outstand-
ing problem in high-precision QED.

The origin of the divergence is well known and

becomes clear on examining the rigorous deriva-
tion of the hfs. One begins with the sixteen-com-
ponent Bethe-Salpeter equation. Including in the
zero-order equation only the instantaneous Cou-
lomb interaction and integrating over the relative
energy variable, one obtains the sixteen-compo-
nent three-dimensional Salpeter equation'

[E—H, H, —(A„A—„—A, A, )I,„„]P=0, (10)

similar to the Breit equation (H„H, are Dirac
free-particle Hamiltonians and the A, are positive/
negative-energy projection operators). The effects
of transverse photon exchange, multiphoton ex-
change, self-energy and vacuum polarization are
taken into account by perturbation theory, with
single-photon exchange providing the dominant con-
tribution to hyperfine structure. This derivation is
performed and perturbations written down most
simply in momentum space, since it is basica, lly a
matter of working with Feynman diagrams and
propagators, which have their simplest represen-
tation in momentum space.

The next step in the procedure is to perform an
algebraic reduction of the sixteen-component sys-
tem to a more familiar four-component Pauli-type
system. There exist several procedures for ac-
complishing this. '' ' '' " This would not be nec-
essary if one knew how to solve the sixteen-com-
ponent equations in some direct fashion. What next
transpires is that the reduced system is then ap-
proximated nonrelativistically by approximating the
widely occurring factor
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E =(P +m ) =m+ —— +'''.Z V'2

2m 8~3 [OV ](P) = O(P)N(P), (14)

This yields the momentum-space form of the
Schrodinger equation and fine-structure operators
which are immediately Fourier transformable to
the forms presented in (8) and (9). We note, how-
ever, that the second and succeeding terms of E~
are more divergent as P - than the exact form,
and this makes the coordinate-space form of the
operators more singular as ~-0 than the exact
operator, giving rise to the divergence in the hfs
calculation. [An example of this is the fact that
the exact hfs operator contains a denominator
E~(e)E~(proton) which is customarily approximated
by mM. ] In practice one also finds that the wave
functions for the relativistic equation differ from
the Schrodinger functions in their asymptotic be-
havior as P - , and this must be taken into ac-
count when one calculates one order or more be-
yond the lowest fine-structure order n~. How-
ever, it has been possible to express the revised
wave functions simply in terms of the Schrodinger
functions.

The situation described above leaves two alter-
natives if a convergent perturbation scheme is de-
sired. One could Fourier transform the exact op-
erators, a procedure that has not heretofore been
employed and seems unmanageable, or one could
calculate with exact momentum-space operators.
Thus the requirements of high-precision relativis-
tic atomic physics provide an important motivation
for studying momentum-space perturbation calcu-
lations.

II. RESOLVENT CALCULATION

The problems we address ourselves to is the
momentum-space calculation of the quantity

~(.) ~ {v.I6'
I q.&4. I

8
I v.&

The y„satisfy

~ +pffft(P ~2 p pl 2 %nlrb(P ttlnlm~

n =1, 2, 3. . . , l=0, 1, . . . , n —1, m= —l, . . . , +l,

(12)

E„=(1/n') x2um= (1/n') x1R„,

E = p,'„/2m, (15)

where I', (0, 0') obeys a simple four-dimensional
Euclidean surface-integral equation whose solution
1S

n=1, 2, 3. . . , l&n, —I ~m ~l, (16)

where the I„, are four-dimensional spherical
harmonics, and the development of a simple para-
metric representation for F, in terms of the more
useful variables p, p', E. I'hese are related to 0,
0' by the transformation

-2po.p po. -p
p2 ~p2 & 0 p2 +p2

where $ = (g, $,) lies on the four-dimensional unit
sphere and is equivalent to the angular variable Q.
Formal contact between (16) and expression (5) for
GE is acquired by evaluating the residue of F, at
the bound-state poles v=n, with the result

F tm(~n) 4 5 I 2 P tm(p) sn
~0n

l.e. ,

O(p p') =f(p)5(p —p')

As mentioned in the Introduction, our procedure
is to find an explicit form for the resolvent opera-
tor occurring in (11) and evaluate E~'~ as a multiple
integral. This is accomplished by extracting the
term

I y.&{q. I/(E —E.)
from the full Green's function Gz(p, p') and evalua-
ting the remaining expression at E =Eo.

A particularly convenient form for GE is the one
developed by Schwinger, "making use of the O(4)
symmetry of the Coulomb equation. In the follow-
ing some familiarity with the notation of Ref. 19
will be assumed. I'he main result of Schwinger is
to show that GE may be written

-16m Po „
E(pl P ) (p2 +p2)2(p2 pl2)2 FU( t )I

where A„ is the rydberg, and 6 is an arbitrary
momentum-space oper,"+or of which there are two

types: integral,
P,'„/2m = (1 /n ') (—,

' o.'m) . (18)

and c number,

(13)
It is to be noted that, although the sum (16) is over
the positive integers n only, the hydrogenic con-
tinuum is included in (15). In order to express I',
in closed form one uses the relation
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1 v=1+—
1 —v/n n

V=1+-
n

V=}+-
n

1
+ V2

n (n —v}
2

V —V n-1
n 2sinrv

2 1

+ dPP P8 p

(19)

Q Y„, (Q) Y„*, (n') = 5(n —Q'),
nlm

(20a)

Y„, (Q)Y„*, (Q') =,(,), , (20b)
nlm

1
nlm( ) nlm( ) 2712 (1 p)2+p(( gi)2 i

(20c)

for v &1 (the contour c is described in Ref. 19, but
we shall not need it), and the relations

Use of

4p.'.(p —p')'
($ k) ~, p)~, „), (22a)

6(Q —Q') = '" 5(p p')
2~p U

(22b)

Y', (Q) YmQ (Q') =1/2112, (23a)

leads to formulas [Eq. (1), Ref. 19] for Gs(p, p') in
terms of E, p, p'.

In order to present Gs(p, p') in a form with the
contribution of a given bound state (here n = 1, 2)
separated, we expand (20c) in powers of p and

compare coefficients, finding

to find

r„(n, n ) =5(n —n')+ ',
V 2

+
27t 2 sin&v

1

($ —$')'

p
(1 —p)'+ p($ —5')'

(21)

Q Y21 (Q) Y2, (Q') = —
2 [($ —$')2 —2j, (23b)

lm

or, with the definition (22a) and use of the addition
theorem for three-dimensional spherical harmon-
1CS,

n Y* n = ' 4(p' -p'&: -p"),'4'
2lm( ) 2lm( ) 2112 ('P2 +P2)(P2 +Pi2) 3 (P2 +P2)(P2 +Pi2) g 2m( i 9 ) 2m( i 9 )

lm m — 2

(23c)

Evaluating (23a) and (23c) at the poles v= 1, 2 one finds the correct correspondence with the standard forms
of the Coulomb wave functions (Appendix A), as indicated in (17). Using Eqs. (20), (23a), and (23b), one
may slightly alter the derivation of I', by applying (19}only to the terms n &1, 2 to find I', in a form with
the n =1 or x = 2 pole separated:

1 —v 2112 2112 ($ —$') 2 2112 2 sinllv, 1 +p[(] (')2 2j +p' '

(24a)

l=p m

2

2~ 2 sin&v 1 +p — —2 + (24b)

The terms without the Y's have no pole at v =1, 2,
respectively. What remains is to substitute in the
momentum variables through Eqs. (22), (23a), and
(23c), express Gs in terms of I"„by means of (15),
show that the pole terms are of the form

'Pl ( 00)%P1Q (0)p
1 E E 1&

1

E1 2 Thus only the terms of 51 2 zero order in
E E1 2 are required.

This procedure is most simply illustrated for
the ground state because (23a) implies that one
need not consider a variation of Y,QQ(n) Y,*„(n') in
the region of the pole and may use (18) without
modification. lt is convenient to introduce as a
variable the binding energy by way of

P200(pi%200(p ) ~ Em 9 21m(P) F21 ( mp
E-E

. 2 2

where 5, 2 are regular as E-E, „and calculate
To obtain the required resolvents one dis-

cards the pole terms and evaluates the rest at E

= 2IQ, P2, = 2m', = ~2m

With the substitution

v = ann/p „=(B,/B) ~2

Z, Z, . (26)

(27)
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the pole term is

"(2ss82+p')'(2~8, +p")' q ...(p) q ...(p')
2 8, (2~8 +P')'(2~8+ P")' 8 —(BB,)~'

Expanding about JB=B„ere find

~...(p) y,'..(p'),
B B ' 0 -(0)0- (2 ) SB

"
(2 B .j')(2 B .0"))' '

(28)

The calculation for n =2 is complicated by the fact that one must in addition expand (23c) about the
point B=B, An .interraedxiaOte formula that contains all terms through order (8 —8,) Gis

8m 1 2B2
~B, B-B, 2 (2~08, +p')'(2~82, +p")'

& 8 2m' ' 8', +28, 8 —8, 2~8, -p' 2~B, -Q" —2mB —8, 4~B,-p'-p"

+ m' xx' $ F (5 )F (5' ')[B' SB (B B )] ) '
) (80)PP ~ 1)B 2 9 1)B 2 9 2 B B (2ypsB +P2) (2snB +P) 2)

ltt 2

Again neglecting terms of 0(B —8,), one finds a
formula of the form (29) with the correct pole term
plus r emainder.

At this point it is coxnvemieat to introduce atomic
units:

G(p, p ) = [m/(~)']t:(x, x')

and grave functions

q (px) = [1/(ops) "]V(x)

(32a)

(32b)

xxx =p) p /~ 2 P()2(a u ) =12 P()B(a u ) =0 2

B = —8 =—1
1 g& 2 8 ~

Green's functions have dimension

Prom now on we shall work with resolvents, leav-
ing off the pole terms. The resulting expressions
for resolvents corresponding to the ground and
first excited states are

&' D,'D,", 1 +p(4 ~x —x'
~
'/D, D', —2) +p' ' (SSa)

xx' $2S78 2048$258 (-,'+x'+x'*) 258$5)2)0

1)B 2 P 2m ) 9 DSD($ S~ 7( D Dd
m 2 2 2 28, 32 1 1 163(84 ~x-x'(2

-D, '("-")-—"D,D, ).- .-] — " D D"

1024 1 ' 1+(16 ix -x'
( ~/D, D,' -2)~+ p(16 ix -x' ('/D, D,' —2)

w' D'D" 1+p(16 ix —x' i'/D D' 2) +p'— D~, D2 = 1 +4x2, 1 +4x'2.

(33b)

g&&(„x )
— [6D&D'8 9(1 4x~)(1 4x'B)D,D,' 16(-', —x' x")D,D', +48-(-,'+x'+x")(1 —4x')(1 —4x")]

2 2

It should be noted that the first set of square
brackets of (33b) includes the term 730/(2~' D22D),

which comes from the p integral (i/2 sinn)d)IG dp/p'

by way of (19) and which is obtained by decomposi-
tion of the integrand of (24b). The p integrands of

(33) now have no singularity at p =6 and are thus
evaluated as ordinary real integrals, as indicated.

At this point one can make the first and simplest
numerical cheek of the formulas. Since G~''~ are
resolvents they are orthogonal to (p„G(x), (p~G(x),
and in particular, for x'=0; that is,

dx (x„,(x)G'"(x, O) = fdx0„,(x)G '(x, 0) = 0.
(34)
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The p integrals are elementary, and the rest were
performed numerically or analytically if simple.
The relations (34) are satisfied to a high degree of
accuracy (-1/10'). Appendix C contains some par-
ticulars of the numerical work.

For the calculations envisioned O(p, p') has very
simple rotational properties fe.g. , hfs = (spin sca-
lar) x (orbital scalar) + [(spin tensor) x (orbital ten-
sor)] „„„gand thus partial wave expansion is ap-
propriate by way of

(2,2)

G(x, x', x ~ x') = Q G1(x, x') Q I'), „(0)Y'13'„(Q'),
&=0,1,2, 3...

pJQ ]. Dommn of p p

=S, P &,f

1

G„(x,x') =2)( G(x, x', y)P), (y) dy, y=cos &„- „-
1

(35) multipliers. The expressions are simplified if one
introduces the auxiliary definitions

~1, 2e =] 1, 2+ &1, 2 (37a)
(0, 0' are now ordinary angles). It has been found
simplest to perform the y integrals first and then
the p integrals. The results are expressible in
terms of elementaryfunctions. Appendix B con-
tains some details of these calculations. It was
found convenient for the p, y integrals to introduce
the variables

co --tan '
(4-b* )"')1, 2+

1 (151, 2» +1, 21 2v
y (37b)

P, =4(x2+x'2)/D, D', , y, = 8xx'/D, D', ,

P, = 16(x'+x")/D, D,', y, = 32xx'/D, D,' .
(36)

These lie within the triangle indicated in Fig. 1,
as can be demonstrated by the method of Lagrange

n(» —~~lb 2 1/2& 112% &

(4 b2 )1/2
6 =tan '

1 b 2& b )
1 b2%

The s waves are

0&6, „&~.
(37c)

G,'(x, x') = —~ „[-5x'x"+3x'+3x" +11]——,+—,, log

(38a)

16 1——,D,D„(2+(1/r, )[-'(p, r, )»g—(p, —r, ) —2(p, +y, )»g(P, +r, ) —(4 —b,' )' '0', '+(4 —b,', ) 'Q' ]}
1 1

= g(1) +g(1) + g(1) +g(1)
S, l S, 2 $33 S15&

G(2)(x, x') = g, [6D2D2" —QD2D2(1 —4x2)(1 —4x'2)- 16(2 —x2 —x'2) D D2 +48(2 +x2+x'2) (1 —4x2) (1 —4x'2)]
2 2

8 5(x —x') 64 1 1 x —x' 65536 (x'+x")
D2 X' V D2D2 XX' X+X' r B32D23

2048 1 1 P, -y,
(3 —P,) ———log ' ' + ,'b', log(P—,-y, )D D' y +y

b+ /bg(b +y—') — b(4 —b )'/'//( /—'+ b(4 —b )O—''2( ~ /

= G(2) +g(2) + g(2) + g(2) + g(2)
S/1 S32 $. 3 S14 S, 5'

The d waves are

(38b)

(,), 2 5(x —x') 4 1 3 1 1 1
G„'(x x') = —— + +

1 1 1

= g(1) +g(1) +g(1)
&, 1 ' &32 d, 3)

3(x'+x")' x —x' 16 1 ~)(P„r,)
1 1

(39a)

(,), 8 5(x —x') 64 1 3 1 1 1 3(x'+x") x —x' ' 2048 1 p2)3 ( / D x2 v D D/ 4 x2 x/2 2xx/ 8x3x/3 g x ~x/ )1 D2D/2 ( 2/ 2
2 2 2 2 2

=g(2) +g(2) +g(2)
db 2 d,''3 ' (39b)
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The J are given by

J "(P„r,) = (1/r,') [6 —sy |+2 (P, —2) + (P, —2)']

+ (1/y', ) log(P, —y, )[2 ——,'y,'+(P, —2)(3 ——,'b,' +-', y,b, ) +(P, —2)'(-,'+b, ))

+(I/r', )»g(p, +r, ) [-2+2r,' (-P, -2)(3 —-'b', + +-'rib, ) —(P, —2)'(2- b, +)]

+(1/y', )Q~ i(—8+b,' + +b,' +[y', —3y, (P, —2)](l —4b', ))

—(1/y,')Q']-8+b'„+-,'b;, +[y', -3y, (p, —2)](1 —lb,', )j —(3/r')(P, -2)[-'(&'„—&', )),
~"(P„r,) = (1/y.') [--'y,*+3+ (P. —2)(.rl+ '-.') + -'(p. —2)'- -'(p, —2)'1

+(1/y2)log(P2 —y2)[3 —~zy2 —i~b2 +ky2b2 +(p2 —2)(4+2'b', )+(p2 —2) (2-Bb2 )]
—(1/y', ) log(P, +y,)[3 ——,'y', —,b,', + -,'-y'P'„+ (P, —2)(4+-,'b'„) +(P, —2)'(—,

' —,'-b'„)]

- -'(1/y:) [-'(~.:,—e: )] .

(40a)

(40b)

It should be observed that despite appearances all
the above expressions remain finite as y1 2 0.

Some simple numerical computations have been
performed to check the formulas and assess the
accuracy obtainable. In the case of the s waves
one may calculate

cp~ x g('' x, x' y„x' gxdx

n =d states

1 = -2.25, -14.40,
1, 2 3

(43)

(41)

Values for ix'
i
=0.5, 1.0 are given in Table I. By

appropriate modification of the Balmer formula
(12) [using 8(p) =xp~ as a perturbation and compar-
ing with the A. term in the expansion of the modi-
fied Balmer formula] one may conclude that

p„,)x) )'')x, x')$ rp„-, (x')~

v" 5 y„,(x) G')(x, x') 5 (p„„(x')5

(42)

The calculated values are V~') = -1.25, V,",„,
= -0.741, V ') = -1.991; V22~ = -0.375, V,'i „„,= -0.121,
V')= -0.496. Similar checks may be performed on
non-s waves by inserting them between states of
the same angular momentum but different n. For
example, to check the d waves we calculated

with the r esults D1+2+3 1.811 —0.342 —0.087
224~D1+2+358133318524014371

Note that calculation of V' '), unlike the rest of
the checks, must include the sum over the continu-
um; the accuracy of the result indicates that it is
properly included automatically.

III. CALCULATION OF RESIDUAL

ln calculating 8' one develops techniques that
will be required for the general hyperfine-struc-
ture calculation. However, for this calculation it
is found that double vector integrals are all that is
required and the general situation implied by (3)
has not yet been treated. In momentum space the
hfs operator may be expressed as' (for convenience
we let the proton have g =2)

n 1 dp
2 ' 4~ (p-p'i'
x[o, o. -o, (p-p')o. (p-p')]V(p'),

(44)

TABLE I. Resolvent orthogonality check.

xl Total

0.5

1.0

i=1
i=2

$ —1
i=2

1.8430
10.186 03

0.4499
2.5091

-0.9219
0.0000

-0.2251
0.1956

-0.7483
-1.698 04

-0,2248
0.0216

0.0
—10.186 20

0.0
-2.6077

-0.1726
1.697 93

0.0000
-0.1197

-0.0001
0.0003

0.0000
-0.001
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the Fourier transform of (8). The second term contains both a scalar and a tensor part, which we
may separate by way of the general tensor decomposition

i/2
ot Agg A= — A Q TIr (0ir v'g) Yg tr(HA& pA)+ gggt ' egA

15
(45)

(see Ref. 20 for the conventions employed), arriving at the more workable expression

(46a)

The coordinate-space tensor form is

8m ~' ].
4mM 3 "'" ' '4mM 15 y'

tensor cross terms. In second order the scalar
part contains only intermediate s states and the
tensor part only d states.

The first-order hfs splittings implied by (46) are

xQ ( 1)"T—~„'~&, „(0) (46b)

p(1) g (j.) [ A g(z)+~ ls, gs +Ets, gs I triplet ~ ts, gs ~ singlet

=-,'egg(m/M)(1, —,
' j a.u. . (47)

The T x Y part does not contribute to ~ in first
order, and in second order there are no scalar-

The scalar part of the second-order hfs is the
simplest to calculate:

(, ,) 1 ' e ' e ' 2 '( ~ [J f dpdp'gpss, s(p)q)„(p')][f f dp, dp', yt(p, )y,s
.,s(p,')]

ts', gs= 2v' 2m 2M 3 E
nre 1S, gS 1S, 2S n

(48)

the factor -8 coming from spin algebra. The p, p', integrals may be performed immediately with the result

dx its „(x)= (8tt', tt g) . (48)

Forming the residual (6},(7} we find

= -[(2 =gg)/3]n'(m/ )M(3 -21og2)

according to Ref. 14. Inserting the s-wave part of the resolvents and simplifying,

(5o)

dxdx Y g Y* g g(~)g g

—= R,' ' +R ' ' +R"+ R~' ' + Rh ' ' = --(3 —2 ln2) = -1.0758, (51)

the subscripts on R" correspond to the individual
terms of the G, [Etl. (38)]. All the terms have been
calculated analytically except R,''. The results
presented in Table II appear to verify the correct-
ness of our approach.

Note that the n =1, n =2 contributions to R, -",
R,"), which are precisely the zeroth- and first-
order Born terms in a scattering expansion of
Gs» (p, p'}, separately diverge, but adding the
integrands yields convergent results. The remain-
ing terms converge separately. This suggests the
conjecture that an adequate resolvent for the "rela-
tivistic Schrodinger- Pauli equation" mentioned in
Sec. I [see, e.g. , Eqs. (4.11) and (4.12), Ref. 7,
minus the spin terms] may be obtained by using

TABLE II. Scalar contribution to second-order resi-
dual.

g(2gS) ~(2s~) g(2g~) ~(2sS) ~(2gS)
2 3 4 5 Total

t-(i)

(2) +4

+ 0.9242 0.0 -1.3()33

=+3 ln2 —T 1.968719

the zeroth:And first Born scattering terms from
that equation, which may be written down imme-
diately, and what we have calculated here as an
adequate nonrelativistic approximation for the rest.
For the Born terms one would then require the
correct operators and wave functions.
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The calculation of the tensor contribution is
rather more complicated owing to the coupling
between the required angular integrations. The
major problem encountered is to perform the inte-
gral

Vyo 2g(x) x dx dQ Y (Q t)

x(y, (x') = Y' (Q')R (x')] . (52)

Our approach is to develop a spherical harmonic
expansion for Y, (Q„- -„); in our special case only
the terms containing Y„(Q') will contribute since
the resulting expression is multiplied by Y»(Q )
and integrated. Recalling the rectangular form of
the spherical harmonics, expressing the resulting
functions of 8, cp, 8', y' in terms of F, (Q) and

Y, (Q'), one finds

F„(Q; „- ) = I,I, [x'Y„(Q) +x"Y„(Q') —xx'(~4'&)' 'F„(Q)1;,(Q')],1

Y„(Q„„) I,I, (g~) [xF„(Q) —x' F„(Q')][xY„(Q) —x' Y„(Q')],
1

(53)

F (Q .) =
I I, [x'F (Q)+x" Y„(Q') —xx'(20m)'~'Y, (Q) j;,(Q')+(5v)' '(x'+x") Y„(Q)1;,(Q')]

(5/16 m)
'

Y, .= (-1)~ Y,*..

The next step is to expand 1/Ix —x' I' in spherical
harmonics (up to l=2 is all that is required). The
terms thus generated involving a, product of two
spherical harmonics of the same argument must be
reexpanded. On employing the selection rules for
integrals over products of three Ps and dropping
all terms that do not have Y,*,(Q') dependence, very
few terms remain; the general result is

Y2 (Q-„„-) = [1/(4v)' ']g(x, x') Y, (Q) Yo*,(Q'),

5 Sx'
g(x x') =2~

4 4

Sx' 3 x sx'3 x-x'
+ log

4 x 8 x' 8 x', x+x'

= x'Q, (x, x') —2xx'Q, (x, x') +x"Q,(x, x'),
(54)

the Q; being the expansion coefficients of 1/Ix -x'I'.
The calculation of the radial integrals ipcjicated in
(52) is straightforward but long; the results are

K„(x)= f x"dx'g(x, x')R„(x')

K„(x)= x"dx'g(x, x'}R,o(x')

3u"(v3)1 2

4 16x2

(1 +4x ) 4 16 64x2

+3 —+, tan '2x . (55b)
1 1
x 2x3

A simple check of this procedure can now be made

by calculating the matrix element of the hfs tensor
part between y», q~, and «p» in both momentum
and coordinate space and checking that they are
equal. Using Eqs. (46) and (55) and canceling vari-
ous constants and spin factors, it is required that

3 x'dry„r &
(r) 1

4 R2O(~)

1
dx dx' x'x "R»(x) f " g(x, x')

JR,.(')1, K,o(x) 0.030429

K„(x} -0.005508
(56)

5+—+ — +
9 3 1 6 3x'

2+

1 1—12 —+—tan 'x
x x3 (55a)

The equality is satisifed rather precisely.
To complete setting up the tensor part, one needs

to perform the required spin algebra and remain-
ing angular integrations. The second-order energy
shift may be written

~@(2,&l (1~ 2~)
1 ' & ' e ' » ~ I I dx[K,....(x)yg, ,][(1/4&) 'Z &~u'Y, . , (Q)][c',„, (Q)R„(x)]I'

'„-'-„'Pg)",t
' ' 2 2m 2M 15

~&1$, 2S
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+v, X, ,l;,(0) . (58)

Performing the spin sum and 0 integration and re-
placing the sum over states by the resolvent ker-
nel, one finds

dx dx' x'x"K„„x
xG~&t 'l(x x')K (x') (59)

~e note that if one retains the sum over states and
performs the corresponding coordinate-space cal-
culation, the result agrees with the expression
preceding Eq. (16) of Ref. 14 if one takes go=2 and
inserts a factor (e/2M)'= p. '„. This form was ar-
rived at by starting with a different form of the
tensor interaction. Using (59) to construct the re-
sidual, we find

~(2, t) p(2, t)+g(2, t)+g(2, t)
1 2 3

2

dXdX Xx

x [8K„(x)G~('~(x, x')K„(x')

—K„(x)G,"'(x, x')K„(x')]

4 ~„„is the total angular momentum wave function
of the state n. Since T' is rank 2 and the spin
parts of 4 ~„„are either S = 0 or S= 1, it follows
that X„.„,„,has no matrix element with 4 ~„„, and
the spin of C is 1. The orbital part of 4 must have
t=2, and since T x Yis a rotational scalar the con-
tributing states have (taking M = 1)

4'~=, „,„(3=2, S= 1) = V, )(„Y„(Q)—t(;, )f„F„(Q)

gv() = -'n'm1 2 1
tetlsor 2 t(2 1 44

—,'u'm =4.6645 MHz . (61b)

V/e have attempted to obtain some idea of the order
of magnitude of the scalar term (the tensor term is
smaller owing to the small overlap between s and d
radial functions}. The convergent pieces are easily
calculated:

The zeroth Born term is linearly divergent, and

thus one cannot reasonably expect that any cutoff
calculation would yield a good approximation to the
relativistically correct expression, and thus we
omit it. The first Born term is logarithmically di-
vergent, and one might expect to obtain a fair an-
swer by cutting off the integrals at P-m or x= 1/u

The Born-term integral thus cut off is

b v(2~ = ( 2/9t()(4o. 'm)(4/t()2I(A),
x XX' X —X'

I(A) = dx dx',
(

„ log

~x dx
, (tan 'x)'

1 +x

= --', log(1 +x')(tan 'x)'~ A

, tan 'x 1
+ dx log(1 +x'}, + 0

1 +X

Evaluation of I(A) gives

I(A) = —~t(2log(1/n) +2.76,

with the consequent splitting

= —(t(g~=2)(',-', ——', log2) =0.02319, (60)

where the last line is the analytic result of. Ref.
14. Again the subscripts on the R(' 'l correspond
to the individual terms of the G~ [Eq. (39)]. Again
one finds the integrals of the zeroth and first Born
terms separately divergent, but the indicated com-
binations convergent. Table III contains the re-
s~its; in this case all integrations were numerical.
Again the agreement is reasonable. There is,
however, room for improvement (see Appendix C),
and it is felt that refinement of our preliminary
numerical procedure should yield better accuracy.

This added to the convergent terms gives a total of
10e92 MHz, which is about two standard deviations
of the experimental result. The form of the Born
term may indicate the presence of a logarithmic
contribution in the corresponding term of a rela-
tivistic calculation. This requires further inves-
tigation since, although Fulton et a/. ' found a log-
arithmic term in the diagram representing succes-
sive transverse exchange with free-particle pro-
pagation in between, presumably corresponding in

TABLE III. Tensor contribution to second-order resi-
dual.

IV. POSITRONIUM

exe~ = —'(-'eex) —f dxdx'Gx~(x, x'), (61a)

The formulas that give the splittings for the posi-
tronium ground state are (48) and (59}, (1)

d

( (2)
d

R(2t).
0.021 31

R(2,t)
2

0.001 75

R(2, t)

0.008 97

—0.009 14
0.0229
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part to the zeroth Born term we have omitted, they
found none corresponding to exchange of a single
Coulomb photon between the transverse exchanges.
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APPENDIX A: COULOMB WAVE FUNCTIONS

We tabulate here the wave functions' "required
for the calculations described. With (p„, (x)
=R„,(x)1", (x), ((7„, (r) = R„,(r)Y, (2") defined as the
momentum- and coordinate-space forms, we have
(in atomic units)

R„(x)= -4 —
(

.. . R„(r)=2e ",

(x)=~(1 4 ), R, ( )=~~
" '(1 '7—

)

128i x 1'-'"'=~a, (1+4x) '()=2~a' ""
u'2 X2

81 x2'
775! (1 +9x') 4 'R„(x)=

4 e-» /3~2

The phase indicated makes these exact Fourier
transforms of one another [Ref. 10, Eq. (28)].

APPENDIX B: INTEGRATIONS FOR PARTIAL WAVES

intermediate results for J(' "(t},y) of the d waves
are given here. The s-wave integrals are similar
but much simpler. We have

1
~"'(13,r) = 3 1 -1 + (P —2 —yy)' +p(P —2 —yy)P2(3)= 23 2] 1 (P

3 3(P —2) 3 3 1 3(P —2) 1 1 3 3 (P —2)' 3(P —2) 3 1
yp yp~ yp 2y'p' y'p 2yp yp 2 yp yp 2yp

x log
1+ (P —y —2)p+ p'
1+(P+y —2)p+p' (B1)

'(tl, r)= dP J dvp2(X)1,
(P 2), 2

3 3(P —2) 3 3 1 3(P —2) 3 3 (P —2)2 1 3(P —2) 3 1

J, y'p' y'p' y'p 2 y'p' y'p' y'p' 2 y'p2 2yp' y'p 2 y'

x log
1+ (P r- 2)p+-p'
1+ (P+y —2)p+ p' (B2)

Both integrands are convergent in the limit p-0.
To proceed we need the integrals

1 1 1 1 1

1+6 p+p'
xlog

1 +Q p+p2 (BS)

are

(4-&*)"' (4-&')"' (4-(&*)"')

All but M, may be calculated straightforwardly by
partial integration to eliminate the logarithm. The
integrals then required are

1 1 1 1
q1, 2,3,4, 3,6,7 P 4 & 3& 2» & P& P

P P P P

1
X 1+bp+p' '

which in terms of

Q7= 1 —', b log(2 +b) —+ —,'(b' —2) Q, ,

Q, = —,
'

log(2 +b) ——,'b Q, ,

Q4
= ——,log(2 +b) —logA. —2'b Q»—

Q3
= -1 + 1/A, —f3)3 —b Q4

Q, = --,'+1/2~2 —Q, —bQ,

Q, = —3 + 1/SA. 3 —f)!3 —b f3)2 .

Upon combination with the surface terms of the M,
and insertion into (Al) and (A2) all A, dependence
drops out and the results of (40) are found, with
the Q,', coming from Q, .

A rather complex procedure was employed to
evaluate M„even though the simple form of the
result indicates that something far simpler might
have been done, although forms presented in stan-
dard tables are based on Taylor expansion of the
integrand. Our procedure is to develop a general-
ized power series expansion for log(1+bp+p'),
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which reduces to the small-p Taylor expansion for
any value of b, which, due to the properties of P, y
(Fig. 1), lies between -2 and +2. We may write

log(1+bp cpm) =log(1 +p/d )(1+p/d, )

g (-&)""(n)" p (-&)"" y)"

where the expansion is valid since p &1 and

8, =tan '[(4 b')' '/b, ], 0 &8, &m.

The simplicity of the coefficients of cosn8 suggests
that this series is the Fourier series of a simple
function defined on a suitable interval, and this
turns out to be true. One can show that

odd

d, = ,'b a ,'i —(4——b')'~'

lie on the unit circle. To proceed, note that n= 2 even

f....(-8)=-'(8--' )'-~ ',

—„+d—„= —+ — =2 Re — =2Re d

since

(d*,/d, d*, )"= (d.*)"= (d-)".

Writing

d =~e"'

we have

r =1, e'=tan-'[-(4-b') '/b],

and

2Re(d )"=2cosne'.

Since the cosine is an even function,

2 Re(d )"= 2 cosne,

e=tan '[(4 b')"'/b]-, 0& 8«,
and thus

4+

( 1)II+1
log(1+bp+p') = 2 p" cosne.

n
n= 3.

Integrating term by term

1)n+1
M, = 2 g, (cosne —cosne, ),

The appropriate interval of definition is 0 & 8&2~,
and the appropriate extension of f, and f, is defined
by requiring them to be even about 6) = r. Note that
f, , is even-odd about 8= —2~, —,'w. Combining these

M, = 2(8', —82),

8, =tan '[(4 b', )' '/-b, ], 0&8, &&.

APPENDIX C: NUMERICAL INTEGRATIONS

The numerical integrations were performed in
double-precision Fortran on a Digital Scientific
Meta IV computer. A standard trapezoidal routine
IUEMANN, ' was used. This routine employs one
iteration of self-correction and was especially val-
uable for this work in that it handled the logarith-
mic singularities automatically with no special
programming required. For double integrals it
was advantageous to compile two of these and let
the first call the second for its integrand.

As yet no systematic effort has been made to op-
timize computer time and accuracy. A major
source of error is the fact that the individual terms
of the C,' '„'., diverge badly as y»-0, although the
sum does not. This could be remedied by using a
Taylor series expansion about y, ,=0 for y» less
than some preassigned value.
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