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We give a general nonperturbative treatment of cooperative emission in systems of N two-level

starting from first principles and including inhomogeneous broadening. In particular, we study

superfluorescence, which is defined as the cooperative spontaneous emission, i,e., radiation rate pro-

portional to N', from an atomic system initially excited with zero macroscopic dipole moment and

a uniform population difference between the excited and the fundamental states. The atomic system is

described by. means of collective dipole operators. A fundamental justification is given for the existence

of damped "quasimodes" of the mirrorless active volume. The damping of such modes is simply due

to the propagation of the Maxwell field, which escapes from the active volume. A general atom-field

master equation is derived for the system atoms plus field inside the active volume, described, re-

spectively, in terms of collective dipole operators and quasimode operators. An important feature of
this equation is that inhomogeneous broadening simply appears via a time-dependent atom-field coup-

ling constant. In this paper we give a semiclassical treatment of such a master equation. For a pen-

cil-shaped geometry of the active volume, generalized Maxwell-Bloch equations are derived for the

envelopes of the radiation inside the active volume and polarization. Such equations take into account

the two directions of propagation of the radiation and the inhomogeneous broadening. Suitably phras-

ing our initial condition in semiclassical terms, we find that propagation effects can be neglected at all

times and the generalized Maxwell-Bloch equations reduce to a simple pendulum equation. On the bas-

is of the discussion of the pendulum equation, we conclude that superfluorescence occurs when {i) the

length L of the active volume is much larger than a suitable threshold length L ~ {this condition en-

sures that the dephasing atomic processes occur on a time scale much larger than the times character-

istic of the cooperative emission); (ii) the length L is smaller or of the same order of a suitable coopera-

tion length L& (this condition ensures that cooperative spontaneous emission dominates stimulated pro-

cesses, which give radiation proportional to N). For L&&L„one has a hyperbolic-secant superfluorescent

pulse; for L=L„as one has in the recent experiments of Skribanowitz et al. , one finds oscillations in the

cooperative decay and in the radiation emission. Such oscillations are due to the contribution of stimula-

ted processes. For L &) L„ this contribution increases. As a consequence one gets more oscillations

in the radiated intensity, which becomes proportional to N, so that superfluorescence effects disappear,

I. INTRODUCTION

Cooperative emission from a system of N» 1
atoms is a typical many-body effect, consisting
in the emission of a radiation pulse with intensity
proportional to N'. A typical example is super-
radiance, which is a cooperative emission from
a system excited by a coherent pulse into a "cor-
related" state which has a macroscopic electric
dipole. Then the superradiant pulse is due to the
emission of this dipole, and the phenomenon is
describable in purely classical terms. Dicke'
was the first to point out the phenomenon of super-
radiance, which he treated in the case of atoms
confined in a volume of dimensions smaller than a
wavelength. This limitation was later eliminated
by Eberly and Rehler. ' A basically different phe-
nomenon is that of cooperative emission from a
system of unco~~elated excited atoms. In this
case no macroscopic dipole is initially present in
the atomic system; the phenomenon is started by
normal fluorescent emission. Later on the system
spontaneously creates correlations, i.e., a macro-

scopic dipole which gives rise to a pulse whose
maximum intensity is proportional to N' and whose
time duration is proportional to N '. We call this
phenomenon suPerfluorescence.

In contrast to superradiance, superfluorescence
is intrinsically a quantum process since, as we
said, it is started by the "n.oise" spontaneous
emission photons of ordinary fluorescence. This
effect was first described in Ref. 3 in terms of a
single-mode laser model.

A general quantum-mechanical approach to co-
operative and noncooperative spontaneous emis-
sion has been given by Lehmberg and Agarwal. '
However, they discuss the problem only for an
active volume with dimensions much smaller than
a wavelength, or for very few atoms or replacing
the atoms with harmonic oscillators.

In this paper we give a general nonperturbative
quantum-mechanical treatment of cooperative
emission in two-level systems, starting from
first principles and taking inhomogeneous broaden-
ing into account. We consider an active volume
with dimensions much la.rger than a wavelength;
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in particular, we assume a pencil-shaped geom-
etry, with maximal length L.

We distinguish between two types of superfluo-
rescence: Pure suPexfluorescence, in which the
pulse has a single hyperbolic-secant shape; and
oscillatory supexfluorescence, in which the pulse
exhibits oscillations. The occurrence of one or
the other type of superfluorescence depends on the
values of the parameters in play.

In Ref. 3 only pure superfluorescence is dis-
cussed. A treatment of pure superfluorescence
from first principles is given in Ref. 6, in which
a full description of the radiation pattern and of
the frequency shift is obtained. In both Refs. 3
and 6 one finds that pure superfluorescence occurs
when the length L of the active volume obeys the
condition

where I, is the "cooperation length"" and, in the
notation of Ref. 8, L~' = o-' is the "gain per unit
length. "

Oscillatory superfluorescence occurs when
I ~ «L = L, ; these conditions are met in the recent
experiments of Ref. 8. The theory we present in
this paper gives a general treatment of coopera-
tive emission, including both pure and oscillatory
supe rfluorescence.

In Sec. II we introduce the Hamiltonian for the
system atoms and field; the interaction is taken in
the dipole and in the rotating-wave approxima-
tions. As in Ref. 6, we quantize the field in a
volume V much larger than the active volume v.
In Sec. III we define "slowly varying operators, "
which are the quantum analogs of the classical
"envelopes. "' In Sec. IV we assume a lattice
structure for the active volume, and introduce
collective dipole operators, whose consideration
is essential for describing cooperative emission.
In Sec. V we prove that inhomogeneous broadening
appears in our calculation scheme as a time-
dependent atom-field coupling constant.

In Sec. VI we define the quasimodes of the field
inside the active volume (which we call internal
field) and the guasimodes of the field outside the
active volume. It turns out that the interaction
Hamiltonian can be expressed completely in terms
of the modes of the internal field and collective
dipole operators. In Sec. VII we look at the atoms-
plus-internal-field system as an open system,
interacting with a bath given by the field outside
the active region. We then eliminate the bath in
the infinite volume limit on the quantization box
V- ~, obtaining a damping for the modes of the
internal field. In such a way we give a fundamental

L,«L~L, . (1.2)

The left-hand side of the bound (1.2) has a simple

meaning to the usual phenomenological introduc-
tion of a zero-temperature bath to describe the
losses of the field (see, e.g. , Ref. 10). In fact,
the damping of the modes of the internal field in
our theory is simply due to the propagation of the
Maxwell field, which escapes from the active
volume.

The field external to the active volume is im-
mediately reconstructed from the internal field
by the free propagation of the Maxwell field.

In Sec. VIII we give the initial conditions: no
photons present and all atoms excited. This is
essentially the preparation of the system per-
formed in the experiment of Ref. 8. The analysis
is specialized in Sec. IX to a pencil-shaped geom-
etry for the active volume; it turns out that all the
off-axial modes are negligible in the description
of cooperative emission, when the Fresnel number
is not larger than 1. In this paper we give a semi-
classical treatment of the atom-field master equa-
tion for axial modes; a full quantum-mechanical
treatment will be given in a separate paper. "

In Sec. X we treat the atom-field master equa-
tion in the self-consistent-field approximation.
By a suitable definition of the "envelopes" of the
radiation field inside the active volume and of the
polarization field, we derive generalized Maxwell-
Bloch equations, which take irito account the two
(right-left) directions of propagation for the radia-
tion field and the inhomogeneous broadening.

When the envelopes are initially homogeneous,
as is prescribed by the initial condition specified
in Sec. VIII, one sees that the envelopes remain
homogeneous at all times. In this situation, as is
shown in Sec. XI, the Maxwell-Bloch equations
reduce to equations for the two axial resonant
modes.

Such equations are then proven to be equivalent
to a single pendulum equation for the Bloch angle
y(&). The initial condition given in Sec. VIII corre-
sponds to the unstable equilibrium point. This
drawback is due to the fact that superfluorescence
is started by quantum-noise photons, which is not
accounted for in our semiclassical treatment.
Therefore we introduce the initial value of the
Bloch angle y(0) = (2/N)' ' which simulates a uni-
form "noise" polarization. This assumption has
been justified in Ref. 3(c) for the one-mode model
and will be generally proven in Ref. 11.

Finally, in Secs. XII and XIQ we discuss the
pendulum equation with such initial condition and
give a general description of superfluorescence.
Our conclusion is that one has superfluorescence
when the following conditions are satisfied:
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physical meaning; in fact, it is equivalent to the
following condition:

(1.3)

where 7~ is the time duration of the pulse in the
case of pure superfluorescence' and T2 is the
reciprocal of the inhomogeneous linewidth, which
is assumed to be the smallest atomic relaxation
time. Then (1.3) prescribes that the time scale
of cooperative emission must be much shorter
than the atomic relaxation times; otherwise, the
atomic decay processes would destroy coopera-
tive emission.

The right-hand side of the bound (1.2) means
that to have superfluorescence, cooperative spon-
taneous emission must dominate stimulated pro-
cesses. In fact, a typical example of a system
in which stimulated processes dominate is the
usual laser, in which one has instead of (1.3),

(1.4)

where L has to be considered as an effective
length, if mirrors are present. The condition
L ~&L prescribes that the laser is above threshold.
Thus we see that the right-hand side of condition
(1.2) is badly violated in the laser or in stimulated-
emission amplifiers, which radiate proportionally
to N. In the case L «I., the pendulum becomes
overdamped, stimulated processes are completely
irrelevant, and we regain the results of Ref. 3.
In the case L =I „which is realized in the experi-
ment of Ref. 8, stimulated processes cause oscil-
lations in the radiation intensity. In a separate
paper" it will be shown that our treatment is in

good agreement with the experimental data of
Ref. 8. On the other hand, we stress that there is
a big difference with the theoretical description
of superfluorescence given in Ref. 8, wherein
superfluorescence is treated by means of a semi-
classical model of an amplifier. The conclusion
of those authors is that the only condition for
superfluorescence is I ~ « I, i.e., L» 1; there-
fore any good amplifier would be superfluorescent.
We claim on the contrary that the condition L & L,
is also necessary, because it distinguishes a su-
perfluorescence source from a stimulated emis-
sion amplifier. %'e suggest two experiments to
test our theory.

(i) Starting from the values of the parameters used

in the experiment of Ref. 8, one could decrease
the length L with the density p constant or de-
crease p with L constant, taking care to preserve
condition L»L&. In this case one should observe
pure superfluorescence.

(ii) Starting from the same values of Ref. 8,

one could conversely increase the length L with

fixed p or increase p with fixed I . In this case
one should observe that the superfluorescent pulse
becomes more and more oscillatory and broad and
more and more depressed, until for I +&L, the
superfluorescent behavior proportional to ~' com-
pletely disappears.

We mention finally that a brief account of part
of the results of this paper is given in a letter'
and has been presented at the 1974 Erice School
of Quantum Electronics. "

II. HAMILTONIAN

Q g, (a-„&r,. e '"'"' —H.c.). (2.1)

(i) V is the quantization volume of the radiation
field. We take V much larger than the volume v

of the region occupied by the atoms. In this way
the atomic system is an open system. Irreversi-
bility will be obtained by letting V- ~ at the end of
the calculations.

(ii) gk is the coupling constant:

g, = (ckp, '/2k)~' (2.2)

(iii) r; and r„are spin operators describing
the two-level ith atom; aT,

~ and a& are the field
creation and annihilation operators:

[r,', r, ] = 2 6r... [r„,r,". ] = ~r.,'8, , , .(2.3)

(2 4)

2&„ is the population difference of the ith atom,
whereas &,

' represents the dipole of the ith atom.
The aim of the following analysis is (a) to in-

troduce the collective dipole operators which are
essential for describing coherent spontaneous
emission, and (b) to eliminate the field outside the
active region 0, obtaining then a time-evolution
equation for the modes of the active region coupled
to collective dipole operators. The analysis pro-
ceeds through several steps.

We consider N»1 two-level atoms, with posi-
tions x, and resonance frequencies & (j =1, . . . ,N),
interacting through a dipole interaction with the
radiation field. For the sake of simplicity we

assume a random orientation of the atomic dipole
moments, so that the coupling between atoms and

fieM depends only on the modulus p, of the atomic
dipole moments, and the radiation field canbe treated
as a scalar field. The Hamiltonian of the system,
in the rotating-wave approximation, reads
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III. SLOWLY —VARYING OPERATORS

In the following we shall find it convenient to
describe the dynamics of the system in terms of
operators which in the Schrodinger picture have an
intrinsic time dependence. Specifically, the time
dependence of such operators is given by

B(t) = exp (-—tt't) tt exp (
—tt't),

(3 1)N

H'=gh~ aktak+gh(d
j=l

where , is a suitable reference frequency, which
we shall specify in the following, e.g. , ak(t)
=ak exp(i&a, t), r,'. (l) =r,'. exp(-i&u, .t); thenwe consider
"rotating" operators. The reason why we consider
such rotating operators is that the mean value of
B(t) varies in time much more slowly than the
mean value of B, since the rotation due to the ex-
ponential factors apparent in (3.1) counteracts the
fast "rotation" due to the unperturbed Hamiltonian
(cf. also footnote 17).

Let Ws(t) be the density operator in the Schro-
dinger picture; then (B)(t)=Tr[B(t)Ws(t)]. On the
other hand, it is convenient to use a picture in
which the operators B appear fixed in time; then
we shall write

1
exp[i(n —n') x,.] =6-„-„,

j
—Z exp[in (x, -x,)]=&;,

(4.2)

(4.3)

We define the collective dipole operators as
N

R'(n) =Jr,'ex p(+i n x,.); (4.4)

they obey the following commutation relations:

[R '(n), R (n')] = 2R, (n - n'),

[R,(n), R '(n')] = M ' (n' + n),

(4.5)

(4.6)

where

sume further that L„,L, , L, are much larger than
the soavelengths X,. = 2((c/& ', .

Let us consider the reciprocal lattice modes +:
n; = (2w/L, . )n, ,

n,. =0, 1, . . . , N,. —1, z =x, y, z (4.1)

and the N-dimensional vectors

(1/~N)exp(in x, ), j =1, 2, . . . , N,

which verify the following orthonormality and
completeness relations:

(B)(t) = Tr[BW(t)],

where

tp(t) = exp —tt't tp (t) ttxp ——8't) .

(3.2}

(3.3)

R, (n) =Jr„ex p(in x,.);

in particular, defining

R, =—R, (t})=Q r, ,

(4.7)

(4.6)

The density matrix W(f) obeys the time-evolution
equation:

we have from (4.6)

[R„R'(n)]= M'(n). (4.9)

dt
= ——[H(t), W(t)], (3.4) R„whose eigenvalues run from N/2 to N/2, i—s

the half-population difference of the whole atomic
system. We have from (4.5) and (4.6) that R'(n)
and A, obey angular-momentum. commutation rela-
tions for each &.

Relation (4.5) can be inverted by (4.3):

with

H(t) =Ho+Hi(&),

H, = Q h(ch —(d, )a-k "ak,
(3.5)

r)' —Q R'(n)—exp(+i n xi).

Then substituting (4.10) into (3.5}we get

(4.10)
~

@ N

H, (t) = g p g-„(a-kt~,. exp[i((d, —~,)t.
k

—ik x;] —H.c.}.
In the following, we shall drop the tilde every-
where.

IV. LATTICE MODEL AND COLLECTIVE
DIPOLE OPERATORS

We assume that the N atoms are arranged on a
rectangular regular lattice of volume v =I „L,I-, ;
then N =N„N, N, and the interatomic distances
along the three axes are d„=L„/N„, etc. We as-

N

f (q, t) = —g exp(iq x, ) exp[i (~, —&u, )t]N j ~

—(ei ((' xei(td- tdo) t) (4.12)

The average in (4.12) is taken over all atoms.

1fl
Hz(t) = gk [gktR (n)f*(k —n, t)-H.c.],

(x k

(4.11)
where



COOPERATIVE RADIATION PROCESSES IN TWO-LEVE L. . . 1511

V. CONTINUOUS LIMIT OVER THE FREQUENCY

AND THE ATOM DISTRIBUTIONS

We assume that (i) frequencies and positions are
uncorrelated, (ii} frequencies are symmetrically
distributed around a central frequency. We choose
0 to coincide with such a central frequency.
(iii) The center of the lattice lies in the origin of
the reference frame.

By (i) we have

f(n, t)=& p( n' )}( pb(" —",)t))

that the coupling between the field modes k and
the atomic modes n takes place through the dif-
fraction function E(k —o.'), i.e., mode (r is coupled
only to modes k lying in a diffraction angle around

Moreover, since (q; I; /2) ' sin(q, L;/2)
(i =x, y, z) becomes t)-like for L; of macroscopic
size and g~ varies slowly with &, we can replace
g„(t) by g„(t) in (5.4) obtaining

If, (t) =
Z Z Z g.(t)[a»'E (&)&(k —o') —H.c.).

0( k (5.5)
—:F(j)g, (t). (5.1)

We evaluate g, (t) and &(q) in a continuous approxi-
mation. We get by (ii)

(5.2)

where g, (g —(v, ) is the normalized-to-one fre-
quency distribution, usually a Lorentzian or a
Gaussian. For the sake of simplicity we shall
assume that g, (t) is real. Further, assuming that
the interatomic distance is much smaller than the
wavelength &0=2((c/~, of the atomic transition, we

get in the continuous approximation by (iii)

f„d'x p exp(iq x.)
f„d'x p

Z'[ sin(q( L, , /2) (5.3)
n L;/2

where p =N/v We str.ess that &(q) is a diffraction
function. The exact expression for F(r() (i.e., with-
out the continuous approximation over the atomic
distribution) is

sin�(7}(

I;/2)
, '„"„', N, sin(rl; L(/2N()

'

VI. THE INTERNAL FIELD

u- -, (x) = g-(x)(1/vv ) exp(i o.'.x),

n, =(2n/L()n, , n, =0,+1,+2, . . . , i =x, y, a

(6.1)

is a complete orthonormal set in the Hilbert space
of square summable functions in the quantization
volume V. Let E(x) be the positive frequency part
of the field at time t=0, i.e.,

E(x)=
&
—g e'"'"ak.

k

We can expand E(x) in the series of the functions
u- -„(x):

(6.2)

E(x) = g X-(x)
&
—e'"'"A-(c(), (6.3)

Let us consider a subdivision of the quantization
volume V into regions of equal volume &, one of
which coincides with the active region . We indi-
cate by 0- the rectangle (m„——,') L„&x& (m„+ ,')L„-
etc. ; then 0-, coincides with the active region O.
Let g ~(x) be the characteristic function of the
region 0 m& i.e.,

x inside 0-
0, x outside 0-

The set of functions

This is a function periodic over a Brillouin zone.
Such a periodicity is relevant for x-ray transi-
tions; however, when ~, is an optical wavelength,
one can take the limit N;-~ (or equivalently d, -0},
obtaining (5.3). Accordingly, in such limit we let
the parameters n; in Eq. (4.1) run over the in-
tegers from -~ to +~. By (4.9), (4.10), (5.1}, and

(5.2) we have

where
m, a

A-(n) =
~l dye-(x) ~

—e'"'"E(x).
v v'v

From (6.4) and the orthonormality of u „(x),
one obtains immediately that A-(o.') obey Bose
commutation relations:

(6.4)

ff (t) =
~y Z 2 g-„(t)[ak tft (o') &(k —o') —H.c.],

(5.4)

with g, (t) =g„g, (t). In the limit case of homogeneous
broadening g(($) =5(F) so that g, (t) =1: therefoxe
the only comPlication brought by inhomogeneous
broadening in our treatment is the appearance
of a time dependent coupli-ng constant. We remark

lA-(~), A- (~')) =5-,= 6-. ,-. . (6.5)

$(x) = ~ Q e'"'"Ao(K).

Therefore Ao (o.') are the modes of the internal

(6.6}

Moreover, from definition (6.3) we have that the
field inside the active region $(x) which we shall
term "internal field, " is given by
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and conversely

sin[(k, —&, )I,/2]
(k,. —n~) L~/2

(6.7)

~ j2~
a-„= — M A -(n) ...[. exp[i (&~ —k, )m~ L,.].

rn, n X q3t yZ

sin[(k, . —&, ) L,/2]
(k,. —o, )L,/2.

(6.6)

field, whereas A (o') with mt tl are the modes of
the field outside Q. More precisely, A-(o.') are
quasimodes because they have an intrinsic line-
width; nonetheless, for simplicity we shall term
them "modes" in the following. Note that $(x)
is a periodic function with periodicity L which
coincides with E(x) only for x inside Qo. By (6.2)
and (6.4) we have

v 'i
A-(o.') = — Q a-„. exp[i(k,. — oq)m)L,].

tonian one. In fact, the internal field modes are
damped as a consequence of the irreversible
escape (propagation) of the total Maxwell field
from the active volume to the outside. Clearly
this damping will be of the order of magnitude
of the inverse transit times (L,/c) '. . One can
picture the situation as follows: by assumption
(i), the field outside Q can be considered as a
zero-temperature bath for the system internal-
field-plus-atoms; by (6.8) the free-field Hamilto-
nian Q ~ k(ck —&,) a-„at, introduces a linear cou-
pling between the system and the bath; if one elim-
inates the bath variables in the limit V-~, which
makes Poincare cycles disappear, one obtains a
damped evolution for the system.

Before making these arguments quantitative,
let us anticipate the result: let W'"'(t) be the den-
sity matrix for the internal-field-plus-atoms sys-
tem; then W'"'(t) obeys, for t) 0, the self-con-
tained evolution equation:

dW~"& —[H, +H, (t), w&"'(t)]+A,w'"'(t),

i/2
A-, (n) = — au F(k ~). (6.9)

In particular, for the modes A;(a) of the internal
field, we obtain where Hz(t) is given by Eq. (6.10) and

H~ =k g (cn —~,)At(o. )A(a), (7.2)

Then we get from (5.5)

H (t) = P Z (t)[A-, (n)R (Z)-H.c.]. (6.10)

A~w = p k(n)([A (o),WA t (o)]+H.c.},

with

(7.3)

We stress that in the interaction Hamiltonian only
the modes of the internal field appear. Such modes
are superpositions of modes k, such that only k
modes contained in a diffraction angle around &

contribute to the mode o'. By (6.10) the atomic
collective mode R"(&) is coupled only with the
diffraction mode A;(n) Since in th.e following we
shall not be concerned in the modes of the field
outside Q, we shall drop the index |l in Ao (o.').

VII. ELIMINATION OF THE FIELD OUTSIDE THE ACTIVE
VOLUME: THE ATOM -FIELD MASTER EQUATION

Let us (i) assume that at the initial time t =0 the
field outside the active region 0 is in the vacuum
state; (ii) perform the infinite volume limit V-~.
In such conditions one can describe in a self-
contained way the dynamics of the internal field
interacting with the atoms, neglecting the field
outside O. Such a dynamics is no longer a Hamil-

(ck —~0)a& a&, W~(t) .

By assumption (i) W„(0) has the structure

(7.5)

k(n)= — "+ ' + ', n i. (7.4)2 L„L~ L,
Equation (7.3) has the typical structure of the

damping term of an harmonic oscillator under the
influence of a zero-temperature bath, ""andk '(n)
has an obvious physical meaning: It is the transit
time in the active region 0 of a photon traveling
in the direction &. We shall call (7.1) the atom-
field master equation (AFME). Let us now prove
Eq. (7.1); the readers who are not interested in
the mathematical details can skip directly to the
following section.

Let us first neglect the interaction of the field
with the atoms. Let W~(t) be the density operator
of the field; it obeys the equation

W (0)=g p Q c„„(Z„n„.. . , o.„,~,', Z,', . . . , o.„')
I I

+y ~ +2 i ' ~ ~ ~ +f1 +] ~ +2 ~ ' ' i +m

x A'(o. , )At (o.,) ~ A (o.„)i 0)(0i A (n,')A(o.,') ~ ~ A (n' ).
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In fact, this is the most general density operator which gives zero probability of finding photons outside
the active region G. Since we are interested only in the internal field, we consider only the expectation
values of the variables

t2,.=A'(P. )A" (P.)" A'(P, )A(r, )A{y.) "A(y.).
By (7.6) and (6.9) we have that such expectation values are given at time t by

(7.6)

(8„,)(t) =g Q g g c„(a„.. . , a„,u,', . . . , a')6 „„„,
m~r n —s I I I

Cf] t I/2 J ~ ~ ~ sctgCI] t (y2s ~ ~ ~ t Cfm

x[K*(u', p„t)K*(a„' „p„t)~ ~ K*(a' „„,p„, t)

xK{y, , a„ t)K{y, „u„t) ~ ~ K{y„a,, t)6-„-„~~ ~ 6-„, -„

+ other terms],

where

(7 7)

K(a a' t)= —Q e "" P" E(k —a)E(k —a')- d'ke '"s &&" E(k —u)E{k —u'), V-
k

(7.8)

K(a, a', t) =6-„„re '&'" p&' I'(u t)
t

j=g tysZ

(7.9)

where I't(u, t) is the "triangle function. " This
approximation and the expression of F; are dis-
cussed in the Appendix.

Finally, let us remark that in this way we are
neglecting eventually a "geometrical" mode-mode
coupling due to a partial overlapping of diffraction
patterns of different modes of our finite interac-
tion volume. On the contrary, we are not neglect-
ing at this stage the nontrivial long-time scale
mode-mode coupling induced by the nonlinear in-
teraction with the atomic system described by Eqs.
(10.2) and (10.3):

t & -L, /cd(, ,

-L,/cu, &t &0, .

0~t ~L, /cu, , .

t & L&/cut .

i (ca, /L, )t+1, . .

t
(cu, /L(, )t+ I, -.

(7.9')0

Approximating the triangle by an exponential with

a decay time 2L&/cu&, "we get

and the "other terms" differ from the explicitly
given one only by a different association of 0.' and

p as arguments of K*; of y, a as arguments of
&; of &', & as arguments of &. Let us evaluate
K(n&u', t). Since E{k—u) is sharply peaked in
k = a, we approximate tt in the exponent in (7.8) by
the component of k in the + direction:

tt-k u, with a=a/~u~.

Furthermore, since the contribution of terms with
a& a' to E(ls. (7.7) and (7.18) is irrelevant, we
take

K (u ul t'& (r&~ i ( ccr rrrp) t &r( )()(t„.e e (7.10)

(8„,) (t) = Tr(S„,W("& (t)}

Tr(Q e i(I I +i A)'r) t W(tr& (Q}}

w&"'(o) = w, (o}.

(7.13)

From (7.13) one easily gets (7.11) taking into
account that I ~ and A~ commute and using the
identities

Tr(A('m(a)An(u)e- iI Irt W} e-i &n™)(ccr- rrrp& t

x Tr(A™(u)A"(u)W},

(7.14)

Tr(A™(u)A"(u)eAIrt W}= e

x Tr(A' (u)A,"(a)W}.

(7.15)

where t&(u) is given by (7.4). Then from (7.7) we

have for t ~ 0

(Z )(t) ei(CB( rrlp)tei &c&)s rrrp)
rs

( c8 r Q)O) t - i ( cys- ap )

X e $(c)ts &0) t -A,'(sy) t, ~ ~

Xe n&rst &-e&s))st. . . e s()' )t(sQ )(Q)

(7.11)

One verifies easily that (V.11) is precisely the time
evolution prescribed by the following equation for
the density matrix 8'~"' of the internal field alone:

dm (")
dt

—-iL W'"'(t)+A W'"'(t) t~o (7.12)E

where LzW =It '[Hz, W] and Hz and A); have been
defined in (7.2) and (7.3). In fact, one has
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Now we must prove that the "replacement" of
[Q), (ck —&0) a), a)„W] by I ~ + i A„holds also in the
presence of the interaction with the atoms. This
is clearly seen considering, e.g. , the equation
for the mean value of A(o). In fact, by (3.5) and
(4.11) we have

&a-) (t) = - t (ck —&,)&a-) (t)

+ ~y+ g (t)F%-c')&It (o")&(t)
(7.16)

Integrating, one gets

t

(a), & (t) = exp[ t(c-k —&,)t] (a-„&(0) + dt' exp[- t (ck —&,)(t —t')]E(k —o.")(8 (o.")&(t')g„(t'), (7.17)
n' 0

and by (6.9)

«(a))(()=&&(a))"'(r)+, Z J x(a, a', r-r')rr. &r')&x (a'))(r'),

where Z(o', n', t) is given by (7.8). (A(n)&(0)(t) is the contribution of the free motion of the field, which
has been analyzed previously. Then by (7.10) and (7.11)we have finally for t~ 0

(7.18)

(7.19)
or equivalently

t
&A(a))(r)=exp(-r(ca —rc )r — (a))rl&Ar( ))(a) ~ 0f exp(-((ca —rc —()r(a)](r —r'))(,'„(r )&X (a))('r ),

'

0

—&A (o')&(t) =-t(cn —",)&A(o')&(t)- k(o')&A(o')&(t)+
y
—g (t)&II (n)&(t). (7.20)

One verifies immediately that d(A(c()&/dt given by
Eq. (7.20) is precisely

be started only by quantum noise, which is ac-
counted for by ordinary spontaneous emission.

—„, (A(~)&(t) = Tr A(~), W(")(t), (7.21 ) IX. PENCIL - SHAPED GEOMETRY: NEGLECT OF
OFF - AXIAL MODES

which concludes the proof.
Thus we have obtained irreversibility by the

passage from the full description with the opera-
tors a-„associated with the large (-~) volume Vto
the contracted description with the operators A(o()
associated with the active volume v.

VIII. THE INITIAL CONDITION

In the following we shall drop the label (tr) in
the AFME (7.1). We consider (7.1) with the initial
condition that at t =0 the active region is uni-
formly excited with some positive population dif-
ference and no photons are present in the active re-
gion. For the sake of simplicity, we assume that
all the atoms are initially excited. Typically in
such initial state (i) the atoms are uncorrelated;
(ii) no macroscopic polarization is present in the
sample; (iii) no stimulated emission can initially
occur.

This initial state, which is characterized by a
negative temperature, can be obtained by inco-
herent pumping techniques like in a usual laser
system or by a m pulse excitation or by the tech-
nique of Ree. 8. Because of the initial absence of a
macroscopic dipole, the radiation emission can

L, =L, =D, L„=l with I oD o~0.

Then k(o.') in Eq. (7.4) takes the form:

c
f sin&)([ cosy[+ f sing)) ) cos6[-2 D L

(9 1)

(9.2)

where 3 and y are the polar and azimuthal angles
of & with respect to the polar axes x.

Let us see how k(n) changes as a function of 3.
For the axial modes (3=0, )T) we have

(9 8)

From the definition of e modes, we see that the
first off-axial modes are tilted by an angle 3-2n/
~o-'~D-&, /D fromthexdirection. Therefore since

D they have a damping K,«such that

c I D'
2L X ' L&0

(9.4)

where X is the well-known Fresnel number, de-
fined as the ratio between the "geometrical angle"
D/I and the "diffraction angle"ex&, /D. We assume

The treatment of superfluorescence is simplified
by assuming a pencil-shaped geometry for the
active region, i.e.,
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that 31-1; then by (9.3) and (9.4) we get

I|.,ff -2k. (9.5)

the carrier frequency „ it is reasonable to write
the internal field $(x, t) given by (6.6} in the fol-
lowing way:

This argument quantitatively substantiates Dicke's'
statement that off-axial modes are irrelevant for
describing cooperative radiation processes if
'R(1. In fact, if on the one hand all modes are
equally relevant to the description of normal iso-
tropic fluorescence, and on the other hand one
assumes that the cooperative and the normal pro-
cesses involve two largely separated time scales
7~ and &„ i.e.,

g (x, t) = e' oo"A„(x t) + e ' o"AL (x, t),

with

A~(x, t) = g e"" 'o&"A(n),
V o)o

A, (x, t) = ~ g e""'"&"A(a),
0 a&0

k = o&o/c,

(10.4)

(10.5)

(9.6)

we can neglect off-axial modes in the description
of superfluorescence. Then we redefine the AFME
(7.1) with only the axial modes:

where the labels R and L mean "right" and "left, "
respectively, and As i(x, t) are slowly varying in

time and space, i.e.,
"

[Hg +Hi(t), W(t)]+ AeW(t),
A„A, «A„A, . (10.6)

H = QI(cl nl —o& )At(a)A(a),
Equation (10.6) is the usual slowly-varying-en-
velope approximation (SVEA) (cf. Ref. 9). Similar-
ly, defining the macroscopic polarization field

Hz(t) = g gi„i(t)(A (n)R (a) —H.c,j,
iii t (9.7)

A&W = k Q ([A (n), WAt (n)]+ H.c.t, k = c/2L.

The superfluorescence pulse will consist of two
longitudinal diffraction modes.

8 (x, t) = —Pe'""R (a},
e

we can write in analogy to (10.4)

6t-( xt) =e'""6t„-(x,t)+e "~6t,(x, t),
-

where the envelopes (R„ i(x, t)

(10.7)

(10.6)

X. SEMICLASSICAL TREATMENT: GENERALIZED

MAXWELL - BLOCH EQUATIONS
(R„(x, t) = —Q e"" ~o&"R (n),

U N&0
(10.9)

In this and in the following sections we shall
discuss Eqs. (9.7) in a semiclassical approxima
tion; a fully quantum-mechanical treatment will
be given in Ref. 11. In the following, for reasons
of simplicity, we shall indicate the expectation
value of any observable by the same symbol which
denotes the quantum-mechanical observable.

From Eq. (9.7) we have in the self-consistent-
field approximation:

A(a) =-i(clnj- ~.)A(a) -kA(n)

+(gi„i(t)/vu )R (n), (10.1)

R (n) = Q gi~ i(t)iA( ')Rn, (
' —an), (10.2)

V ~r

R,(a) = —
&
—g gi ii(t)[A (a')R (a'- n)

+A (a ')R '(n'+ a)],

6i, (x, t) = —pe '~R, (n).
V

(10.10)

Also (R, (x, t) is a real and slowly varying field and,
like 8 and S, is a function periodic in space with
periodicity L. Let us assume that the length I
is such that two & modes exist satisfying the reso-
nance condition in~ =k, . Since gi„i(t) varies slowly
with in', we replace it by the constant value

g(t) =gi„i (t). (10.11)

Then from Eqs. (4.5), (4.6), (6.6), and (10.1)—(10.10),
we derive by easy calculations the following equa-
tions:

S.i(x, t) = —Q e'&"" &"Ro(n)
V 0&0

are slowly varying in space and time. Finally, let
us define a field for inversion of population:

(10.3)

where we have taken into account Eqs. (4.5)—(4.9).
Assuming that the duration of the superfluores-
cence pulse is much longer that the inverse of

(
9 8—+c +k Ae(x, t) =g(t)$„(x, t),

——c +k A i(x, t) =g(t)(R~(x, t),(
8 8

(10.12)

(10.13)
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8(R
(x, t) = 2g(t) 8 (x, t) (R,(x, t),

8$,' (x, t) =-g(t) 8(x, t)$'(x, t)+c.c.

(10.14)

(10.15)

the time evolution. In such a situation we have
from (10.5), (10.8), and (10.10)

A„(x, t) = — dx A„(x, t) = A(k ),
1 1

From (10.12) and (10.13) we see that Aa and Az
propagate in the right and left directions, respec-
tively.

Using Eqs. (10.4), (10.8), (10.14), and (10.15)
and neglecting, consistently with the SVEA, terms
rapidly varying on a space scale A'0', one obtains

A ~(x, t) = (1/Vv )A (-k,),

6t„(x, t) = (1/v) R (k,),

6ii (x, t) = (1/v) R (-ko),

$.,(x, t) = (1/v)R, .

BS~" (x, t) =2g(t)A„(x, t)(R, (x, t),

B(Ri (x, t) = 2g(t) Ai(x, t) (R,(x, t),

o(R,' (x, t) = -g(t)[A„(x, t) Sa (x, t)

(10.16)

(10.17)
(11.2)

Then the GMBE reduce to the following equations
for the resonant modes A(M, ) and R(&0):

A(N, ) =-kA(+k ) +[g(t)/vv ]R (M, ),
R- (+k,) = 2[g(t}/W&]A(~.)R,

R, = —[g(t)/vv ][At(k, )R (k,)

yAt(-k, )R (-k,}+c.c.].
+Ai(x, t) fti(x, t) + c.c.].

(10.18)

We call the set of equations (10.12), (10.13), and
(10.16)-(10.18) the "generalized Maxwell-Bloch
equations" (GMBE). In fact, they are quite similar
to the equations derived in Ref. 9. However, the
derivation given here starts from first principles
and furthermore the present equations give ac-
count of both directions of propagation as well as
of inhomogeneous broadening.

The field outside the active volume is the solu-
tion of the Maxwell equations in the vacuum which
continuously matches the internal field on the
boundary of the active volume. We stress that
even when A.„and A~ depend only on time, the
external field will be a pulse varying in space and
time. Finally, let us remark that our simple rep-
resentation of inhomogeneous broadening via a
time-dependent coupling constant g(t) clearly con-
tains the assumption that all the atoms start de-
phasing at some "preferred" time t =0. However
we do not find any inconsistency in using it with
our initial situation and for times shorter or com-
parable to T*, as long as the system radiates as N'.
On the contrary, as we shall see, our results gen-
eralize to the non-Markovian case, results al-
ready obtained in the Markovian case.

XI. HOMOGENEOUS ENUELOPES: EQUATIONS FOR
RESONANT MODES. THE PENDULUM EQUATION FOR

THE BLOCH ANGLE

With the initial condition described in Sec. VIII,
the field and polarization envelopes appearing in
the GMBE, as well as $,(x), are initially homo-
geneous. Owing to the structure of these equa-
tions, the envelopes remain homogeneous during

Let us assume for definiteness that the frequency
density g, ($) in Eq. (5.2) is Lorentzian, so that

g, (t) =exp(-It I/».*), (11.3)

where T2* is the reciprocal of the inhomogeneous
linewidth. We assume that T,* is the smallest
atomic relaxation time. We have for t~0

g(t) =g. exp(-t/2~, *), g. =g~, ~

Let us define the total quantities:

R =[R'(k, )R (k,)+R'(-k, )R (-k,)]'~2,

Ar =[At(ko)A(k, )+At(-k, )A(—k,)]'~'.

(11.4)

From Eqs. (11.2) we derive the following closed
set of equations in R~, A~, and R, :

(R2r+R', ) =0, (11.6)

—(A2:yR ) = 2kA2 (11.7)

R, + (i+I/2T,*)R,= —(g'/v)e '~r2 (2R2r+4A2r R,),

(11.8}

The interest in the system (11.6)—(11.8) is that
all the quantities are phase independent; one can
even assume the phases are random, as must be
the case (see following discussions). With the
initial condition described in Sec. VIII, the con-
stant of motion (11.6) has the value

R~~+R2 = ~N2. (11„9)

This conservation law is characteristic of cooper-
ative radiation processes and in particular of
superradiance and superfluorescence. In fact,
Eq. (11.9) shows that if R, decays from N/2 to

N/2, the system de-velops a macroscopic polar-
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ization R~ proportional to N when &,=0, even
if initially Rr =0. [If not all the atoms are ini-
tially excited our initial condition and Eq. (19)
show that N has to be intended everywhere as the
"effective number of active atoms, " i.e., the ini-
tial value of the population difference 2 (R, ).]

By (11.9) we can introduce the Bloch angle y(t)
as follows:

R, (t) = (N/2) cosy(t),

Rr(t) = (N/2) sing(t).
(11.10)

Substituting Eqs. (11.10) into Eqs. (11.7) and
(11.8), we see that such equations are equivalent
to

A (t) = (vv/2g )jo(t) exp(t/2T, *), (11.11)

I (t) = 2kA', (t)

= (kv/2g, ')j'(t)e'~ "2 (11.13)

A few comments are in order.
(i) Because of the symmetry in the exchange of

A(k, ), R (k, ) with A(—k, ), R (-k, ) in Eqs. (11.2)
and in the initial condition, one has

At(k, )A(ko) =At(-k, )A(-k, ) =-,'A2r,

R'(k }R (k ) =R'(-ko)R (-k, ) =2R2r.
(11.14)

Then the left and right diffraction lobes of the
radiation output have equal intensity.

(ii) As we said, Eqs. (11.6)-(11.8) hold also when
the phases of A(k, ), A. (—k, ), R (k, ), and R (-k, )
are completely random. In such a case, the ra-
diation field has a vanishing mean value. As we
shall see in the fully quantum-mechanical treat-
ment of Ref. 11, our initial condition prescribes
precisely that these phases are random, giving
therefore a vanishing field amplitude at all times. In

fact, the density operator for the radiation field
turns out to be diagonal in the photon number rep-
resentation.

(iii} As we shall see in Sec. XII, in Eq. (11.8)
the term with R~ is responsible for cooperative
spontaneous emission (hence for superfluores-
cence), whereas the term with A2rR, is respon-
sible for stimulated emission and absorption.

p(t) + k+ p(t}— e 2 sin(p(t) =0.
2

(11.12)

Equation (11.12) represents a pendulum with a
friction k+ (21',*) ' and with a frequency which de-
creases exponentially in time. Equation (11.11)
links the radiation output to the motion of the
pendulum. In fact, Eq. (11.7) is an energy balance
equation, giving the following expression for the
radiation intensity:

(iv) For T,*=~the pendulum equation (11.12)
coincides with that derived in Appendix B of Ref.
3(c) from the single-mode master equation, which
is the starting point of the analysis of Ref. 3. We
shall elaborate on this point in Ref. 11.

(v) The initial condition given in Sec. VIII corre-
sponds to y(0) = y(0) =0; i.e., to the unstable equi-
librium point of the pendulum. This would imply
that the system does not radiate. This drawback
is due to the fact that our semiclassical treatment
does not take into account the quantum noise which
initially starts the pendulum. In Hef. 11, neglect-
ing fluctuations, i.e., within the approximation

(R', )= (R,)', (11.15)

we shall rederive the pendulum equation (11.12);
it will turn out that, as a result of the quantum
noise, the correct initial condition is"

q (o) = (2/N)' ',
&t

(o) = o.i/2 dg (11.16)

XII. DESCRIPTION OF SUPERFLUORESCENCE

In the description of superfluorescence four
time scales are involved: the "dephasing" time
&,*, the decay time & ', and the two times ~, and

&~ defined as

7c = (go~P)

r~ = kr', = k/g,' p, p = N/v.
(12.1)

7, is the characteristic time by which the field

In other words, the quantum treatment modifies
the present classical analysis associating to the
initial fully excited state a quantum-noise polar-
ization Rr = (N/2)' ', which by (11.13) leads to
y(0) =(2/N)' '. Therefore the Bloch vector is no

longer pointing exactly to the north pole, but is
very near to it; this slight displacement from the
north pole makes the pendulum move in a finite
time.

In conclusion the motion of the Bloch vector
during superfluorescent decay is the following.
It moves on a sphere of radius N/2, and its polar
angle y obeys a pendulum equation. On the other
hand, since we do not have any information on the
phase of the initial noise polarization the azi-
muthal angle is completely random giving (R'(~o))
=0 [as well as (A'(N, ))=0]. This randomness of
the phases characterizes superfluorescence with
respect to superradiance, in which the phases are
fixed by the phase of the coherent classical field
which excites the system.
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and the atomic system exchange energy: this
follows from the analysis of Ref. 19, in which the
case T,*=~,k =0 is considered (cf. also Sec. XIIC).
&, coincides with the Arecchi-Courtens coopera-
tion time. The pendulum equation (11.12) can be
rewritten in terms of v, as follows:

d' pp(t) 1 dpp(t) 1
+ k+ 2T~ d

——,e ' 2 sing(t) =0.

7~ coincides with the duration time of the pure
superfluorescence pulses described in Ref. 3 and
with the "characteristic time" of the experiments
of Ref. 8. In terms of the lifetime 70 of an iso-
lated atom, &~ is expressed as

Ts =8' /PX L.

According to the relative magnitudes of 7, and

, different pictures of the cooperative emis-
sion process are obtained.

A. Pure superfluorescence: kr &) 1

d(p t) 1
e ' 'sing(t).

dt (12.2)

We stress that the neglect of the term y in Eq.
(11.12) is equivalent to the neglect of both R, and
A2rR, in Eq. (11.8). As we shall show in Ref. 11,
the neglect of R, is a Markov approximation. We
see therefore that the Markov approximation and
the approximation of neglecting the stimulated
processes must be made together; it is meaning-
less to make only one of them.

Equation (12.2) can be exactly solved as follows.
Define the reduced time 7 as

Ts (1 et/r ).2 (12.3)

In this case the photons escape so fast from the
active volume that they cannot react on the atomic
system; i.e., they cannot give rise to stimulated
absorption and emission. In this condition, the
radiation process is due completely to cooperative
spontaneous emission. Mathematically, we find
that the pendulum is ovexdanzPed; i.e., the Bloch
vector swings down monotonically from the vicinity
of the north pole to the south pole, where it stops
at t =~. It does not show oscillations around the
south pole, because they might originate only
from a partial reabsorption of the radiation, which
cannot happen because of the fast escape of the
photons. The equation for the overdamped pen-
dulum is (11.12) without the term d'y(t)/dt'; ne-
glecting in Eq. (11.12) 1/2T, in(k+1/2T, *)andtaking
(12.1) into account, we get

dy 1= —sing.
dT 7g

With the initial condition y(0) = (2/N) ' ', (12.2')
has the solution

(12.2')

sincp(&) = sech[(l/&„)(& —&~)], ~~ =-,'ws lnN.

(12.4)

The "reduced delay time" ~D is the reduced time
at which the radiation intensity reaches its maxi-
mum. In fact, the radiation intensity is given,
with (11.13), (12.1), and (12.4) by

t(v)= p~ exp(- „)eeee'(—(x —xe)).

(12.5)

T2
tg T ln

T g 1 g~ +g
2 B

(12.8)

Finally, when T,* becomes smaller than &„ in&'E,
the peak in the reduced time is reached at a time
&) T2*; in this case the picture in the real time
is completely different from that in the reduced
time and is dominated by the time-decaying ex-
ponential exp( t/T,*) apparen-t in Eq. (12.5).

From this discussion we can conclude that for
k7, »1 a superfluorescent pulse can be built only
if the following condition is satisfied

(12.7)

We stress that condition &&,»1 implies &,«w„,
so that from (12.7) it follows that also

7', «T,*/lnvN. (12.7')

Equation (12.7) gives a lower bound for the length
L of the active volume when the density p is fixed;
in fact, by (12.1) we have

We have obtained then a typical superfluorescent
pulse with peak intensity proportional to N2.

Let us now first vary T,*, keeping the other
parameters fixed. When T2* is so large with re-
spect to 7~ =7+ InvN that it can be safely replaced
by infinity, one has practically &=t, so that the
picture in the reduced time coincides with the
one in the real time. In this case one regains the
results of Ref. 3; &„and &~ are the real width and
delay time of the pulse, which has a characteristic
hyperbolic-secant shape. We call such situation
"pure superfluorescence. " Let us now decrease
T,* to values which remain larger than vz InvN.
Then, as T,* decreases, the pulse broadens in
time, and the delay time tD at which the pulse
reaches its maximum is larger than 7~:

& runs from 0 to T,*when

orgoes

from 0 to+~„one has
&) t. Equation (12.2) can be rewritten as follows:

c lnv'N
T 2g2 pT+ (12.8)
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Let us now fix I',* and increase the length L from
the threshold value I ~, keeping the density p con-
stant, so that v', remains constant. As L increases,
the pulse shrinks and the delay time, t~, decreas-
es. Of course, approaching the critical length
(cooperative length)

I.,=c/2g, vp

condition k7, »1 is violated and the system exhibits
a new behavior which is described in Sec. XIIB.
The situation described by Eq. (12.2) is the one
considered in Ref. 20. These authors pointed out
the increase of the delay time t~ with respect to
&~ due to the finiteness of T,*, i.e., inhomogeneous
broadening. An increase is actually observed in
the experiments of Ref. 8, but it is still larger
than the one given by Eq. (12.6). Moreover, in
Ref. 20 is discussed an equation equivalent to
(12.2), which holds only for kr, »1 and cannot give
account of the oscillations iri the radiation intensity
found in the experiments, ' in which one has kv, =1.

B. Oscillatory superfluorescence: kr, - 1

This is the case in the experiment of Ref. 8.
For such a condition, one has by (12.1) that Y„=v,.
Now the emitted photons can. react on the atoms,
so that the pulse is due not only to cooperative
spontaneous emission but also to stimulated ab-
sorption and emission. The pendulum is no longer
overdamped, and exhibits oscillations around the
south pole. As we shall see in Ref. 11, these
oscillations are a non-Markovian effect. The
radiation intensity, which is proportional to y',
also exhibits oscillations. We have to consider
the full pendulum equation (11.12). The numerical
solution of Eq. (11.12) with the initial condition
(11.16) and its comparison with the experimental
data will be given elsewhere"; we shall limit our-
selves here to a qualitative illustration of the
results.

Again one gets a superfluorescent pulse with
peak proportional to A', provided

7 «T,* or equivalently &~ «T, . (12.9)

Apart from the factor lnvN, condition (12.9) coin-
cides with (12.7) and prescribes again that the
dephasing time T,* must be much larger than the
times which characterize the pulse. Condition
(12.9) is well satisfied in the experiment. ' With
respect to the solution of the overdamped pendulum
equation (12.2), the solution of Eq. (11.12) shows
in the range k7, =1 the following differences: (i)
oscillations are present; (ii) the pulse is broader
and lower; (iii) the delay time to is greater than
(12.6). This increase adds to that due to inhomo-
geneous broadening.

As k is decreased (e.g. , increasing the length
L with p fixed, or enclosing the active volume be-
tween two mirrors and increasing the ref lectivity
from zero to one), these differences become more
and more spectacular. When k becomes such that
k7, «1, the pulse height becomes more and more
depressed, until it completely loses its N' charac-
ter. This is clearly seen considering the following
limit case.

XIII. CONCLUSIONS: CONDITIONS FOR
SUPERFLUORESCENCE

From the analysis of Sec. XII we conclude that
the conditions for superfluorescence are '

k

The right-hand side of the bound (13.1) is due to
(12.7) and (12.9) and holds up to a factor in&'N;

the left-hand side stems from the fact that super-
fluorescence disappears when k '» z~. We re-
mark that bounds k ' & v, and k ' & v ~ coincide.

Limitations (13.1) imply the expressive bound
k '«T2*, or equivalently

I./c «T,"/2; (12.2)

i.e., the time the emitted photons take to get from
one point of the active volume to another must be
much shorter than the dephasing time T2. This
is clearly a necessary condition for the rise of
cooperation.

Condition &~ «T,* means that the superfluores-
cent system is a laser well above threshold. It
corresponds to the condition of high gain +L» 1
of Ref. 8. On the other hand, condition k ' & v„
is never satisfied in usual lasers, because the
presence of mirrors has the effect of increasing
the effective length of the sample. In fact, one has

C. No damping: homogeneous line (k =0, Tg =~)

This case, in which the pendulum has no fric-
tion, has been analyzed in Ref. 19. I(t} is a peri-
odic elliptic function of time which for N»1 gives
a train of pulses each with time duration 7, ; the
time delay t~, at which I(t) has its first maxi-
mum, is tp = z7' lnN. Each pulse has within a good
approximation a hyperbolic-secant shape; the
atomic system and the field continuously and co-
herently exchange energy in a time &, . The height
of the pulse is proportional to N, so that see have
no more suPevfluorescence. We stress that in
this case stimulated processes and cooperative
spontaneous emission are equally important. We
see that for T,*=~the transition from the case
presented in Sec. XIIA to that of XGC entails the
transition from &~ to &, as the characteristic time
of the pulse.
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k '=2L/c(1 —R), O~R~1, (13.3)

where A is the ref lectivity coefficient of the mir-
rors F. ixing the density p, the bounds (13.1)
can be expressed as bounds on the length L of the
sample

c , =L,«L&L, =
c

2go pT2* 2g p
(13.4)
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APPENDIX

Let us study K(n, n', t) defined by (7.8) in the
approximation &-k &. Changing the integration
variable from k to (k —n), we find that K(n, n', t)
becomes the product of three one-dimensional
Fourier transforms:

K(n, n', t) = e '"" ""' ..j. F;(n, n', t),
f=&o9 s&

I;.(e, e', e)= ' f dk ek.,
"(k")'d(k,. ,.— ), k

sinx
x (Al )

where we have taken into account the fact that
b, =2n, z/L. Let us comment on Eq. (A3). We
observe the following.

(i} Only the n" s which are nearest neighbors to
n(n, . = +1) can be important with respect to the tri-
angle function &(n, n, t). Furthermore, the con-
tributions for n,. even or odd have opposite signs.

(ii) &,.'s are zero for t =0, whereas the triangle
function is 1.

(iii) The real part of (A3) has a maximum value
1/2v and has zero area, so that its contribution
averages to zero after a transit time. This is par-
ticularly evident in Eq. (7.18) in which K appears
under a time integral. Hence I"s will eventually
contribute via their imaginary part, which has a
maximum value 1/l). However, from Eq. (A3) we
see that the imaginary part is an odd function of
4&, i.e., n, , so that contributions for n,. =+1 cancel
out in Eqs. (7.7} and (7.18}provided the preparation

These integrals can be very easy to calculate using
the convolution theorem and observing that the
Fourier transform of I" is the characteristic func-
tion X,. The final result for each component j is

1

F(, ) k pc .d)2 lspn(t(kL —cn t)
L;4; 2

for 0 ~ t ~L;/cn, (A2).
and

I; =0 for t~L, /cn, .

This expression for ~,.-0 leads to the real "tri-
angle" function (7.9'). For b.; 40, I; is a complex
function given by

isntc)n, t . si n'( t,.)cn,.t /2)

2n n' Sf 7T
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of the system does not introduce strong asym-
metries. (See the initial condition in Sec. VIII. )
(Note that the real part also changes sign: 6,.- —o.', .) On the basis of these considerations we

conclude that terms with & 4 G' play an absolutely
irrelevant role, if they play any, both in Eq. (7.7)
and in Eq. (7.18), and in this sense we use from
now on the approximation (7.9).
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