
PHYSICAL REVIE W A VOLUME 11, NUMBER 1 JANUARY 1976

Semiclassical normalization of a path integral for a multichannel scattering problem

A. P. Penner and R. Wallace
Department of Chemistry, University of Manitoba, 8'innipeg, Manitoba, Canada

(Received 21 May 1974)

The evaluation of a Feynman path integral is discussed for a scattering problem in which some
degrees of freedom of the system are treated classically, while others are treated quantum mechanically.
The path integral is of the type K(O, t";O,t'), and is of interest in a multichannel semiclassical colli-
sion theory previously developed by Pechukas. It is shown that this path integral can be evaluated pre-
cisely in practice, despite the presence of' noncausal terms in the integrand.

I, INTRODUCTION

The discussion of (electronically inelastic) atom-
ic collisions can often be simplified through the use
of impact-parameter theory or eikonal theory, es-
pecially in those cases where the impact energy is
so high that one does not have to worry too much
about the exact details of the nuclear motion during
the collision. ' For low-energy collisions, how-
ever, the situation is somewhat more complex. If
the impact energy is so low that an electronic re-
arrangement during the collision will significantly
perturb the nuclear motion, then it is quite diffi-
cult to derive a semiclassical theory for this pro-
cess. With regard to the validity of impact pa-
rameter and eikonal theories in this ease, the
statement has been made'. "There remains a gen-
eral collision problem which has not yet been sat-
isfactorily solved by either treatment: the prob-
lem of how to carry out calculations if the classi-
cal trajectories in the initial and final states differ
markedly. " In certain situations, such as resonant
charge exchange and I andau-Zener curve-crossing
problems, it has been possible to develop special-
ized techniques to overcome this problem at low
energies, '* but the general solution is still rather
elusive.

A significant step towards this general solution
has recently been formulated by Pechukas, ' using
a time-dependent semiclassical approximation to
the Feynman path integral which characterizes
this problem. ' The theory which results from this
procedure is, admittedly, rather difficult to work
with in practice, but it has considerable intuitive
appeal since the nuclear trajectories which it
yields automatically possess the appropriate long-
range behavior before and after the collision. In
addition to this, they satisfy a stationary-phase
constraint (analogous to the principle of least ac-
tion used in single-channel problems), which
means that the relationship between the semiclas-
sical theory and the original quantum-mechanical

theory can be spelled out quite clearly. It can also
be shown that the theory satisfies detailed balanc-
ing, ' and that the equations are invariant under a
transformation of the electronic basis set (e.g. ,
from diabatic to adiabatic). However, as noted by
Delos and Thorson, ' it is not yet clear just how
generally valid the equations are, because of the
complexity of the path-integral derivation which is
used. We would therefore like to discuss one as-
pect of this derivation in more detail than was
previously given.

The derivation of this theory consists of two dis-
tinct steps, the first of which concerns the classi-
cal nuclear trajectories themselves, while the
second deals with the normalization of the path in-
tegral assuming that these trajectories are known.
In a previous discussion of this theory we restrict-
ed our attention to the nuclear trajectories them-
selves and showed that these trajectories can be
calculated precisely in practice, even though the
classical equations of motion are "noncausal. "'
Concerning the normalization constant for that
problem, we simply borrowed a result derived by
Pechukas. We will now derive an expression for
this normalization constant which, to the best of
our knowledge, is new. The practical implications
of this result are probably not very great, but it
serves to put the formal theory on what we hope
will be a more solid footing.

II. THEORY

For the sake of simplicity we consider a one-di-
mensional problem. The path integral of interest
ls

This is a quantum-mechanical probability ampli-
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tude for an event in which the relative nuclear po-
sition moves from x' to x" while the electrons
make the transition from state n to P. The func-
tional S,[x(t)] is given by

t Ir

S,[x(t)] = —,'~ x' dt .

Within the diabatic representation, U (t, t ) satisfies
a matrix equation of the type

—U(t, t') = -l H(x(t))U(t, t') .

When evaluating the response of U(t", t') to a
change in the nuclear trajectory it will be conven-
ient to use the representation

U(t", t') =lim][j [1 —ieH(x )], (2)
j=0

where x; = x(ti), Ne =t" —t', and t, (t„)equals t'
(t"). We reexpress Eq. (1) in the form

(tlr tr)
~

Si p[S( )&t]i+ t t(ttDX(t)

where ([) =ImlnUs„(t", t') . We now wish to develop
a second-order Volterra expansion of ([& about the
classical path given by x(t), ' where

We note that the semiclassical approximation, as
defined here, consists of ignoring all variations
in the magnitude of the integrand of Eq. (1) (and
taking account of variations in the phase only to
second order) as the path varies about the classi-
cal path. [It is perhaps worthwhile noting that
K(0, t"; 0, t') is actually a functional of the path
x(t), although the notation does not show this de-
pendence. ']

The problem is now one of calculating
K(0, t"; 0, t'). We a, ssume that the path x(t) is
known and concentrate instead on the independent
variable y(t). &f&

' [y(t)] is expressible as'
E .V

(((')[y(t)]=-,' g Q — [rmlnU, (t", t')]y, y„,
i =1 j=1

where the time interval (t" —t') has been broken up
into N steps of length e (with N arbitrarily large),
and where U(t", t') is given by Eq. (2). It is con-
venient to distinguish three cases in Eq. (6), name-
ly, j &i, j = i, and j& i, in order to avoid confusion
in the time ordering of operators. After some
manipulation we obtain

4'"[y(t)]=a'(0 t"'0 t')

where g (0, t"; 0, t') is a special case of the func-
tional

i))it", t)i elecit)) H(x) p(tt &le),'

mx(t)=-Re
U -(t" t')Bn

—
~ Im1 ds

' dr Fs„(s,r)y(s)y(r)
U cl (trr tr )

and x(t') =x', x(t")=x".' We ignore variations in

~
Us„(t",t')

~

as the path varies about x(t), a,nd

factor
~

Ucs&„(t",t')
~

out of the path integral, where

~
Us'„(t",t')

~
is evaluated along the path x(t). The

phase Q is approximated by

p-ImlnUs„(t", t')+it&(' [y(t)]+/ ')[y(t)],

where Q
' [y(t)] and ((& '[y(t)] are linear and qua-

dratic iny(t) =x(t) —x(t). From the definition of
x(t) in Eq. (3) we can readily show that tt&(' [y(t)]
will cancel with a term linear in y(t) which comes
from S,[x(t)+y(t)]. The semiclassical approxima-
tion to the path integral in Eq. (1) is now given by

Kcl (X
re trr. x r tt) U cl (trr tr)ei Sp[ tt (i) ]K (p ter. p tr)

(4)

t
——,

' Im ds
t I

' «Fs (r, s)y(s)y(r)
Ucl (trr

' ds FdI'~(s)y(s)
U .(t", t )

F (') (t) = U' (t", t) U"(t t')
ax (t)—
~HxF (S) (t) Ucl(trr t) H(X) Ucl(t
ax(t) '—

F(s, t) = U"(t", s) U "(s, t )
sHx
Bx(s)—

The notation g (y, t; 0, t') implies that the pa. th y(s)
has end points y(t) =y, y(t') =0. The F matrices
are given by

where K(0, t"; 0, t') is the "normalization constant": x U'(t, t'),SH(x)
(s& t).

ot"
K(p t . p t )

— e'sp[ (i)]+'c&( )[»(&)]~ (t)
ot'

The definition of &f&
' [y(t)] in Eq. (']) is to be com-

pared with Eq. (3.5) of Pechukas. '
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There are two distinct types of contributions to
g(@[y(t)]. The first type is contained within a
single integral in Eq. (8), and has been taken ac-
count of in the previous normalization of this path
integral. ' This type of term has a fairly well-de-
fined single-channel analog. " The second type is
due to double integrals in Eq. (8) and has no sin-
gle-channel analog. It represents coupling between
two first-order deviations from classical motion,
occurring at different times, and is a reflection of
the noncausal nature of the theory. This type of
coupling is due to the fact that the potential energy
which controls the nuclear motion cannot be ex-
pressed in the form V(x, f), but must instead be
regarded as a, functional of the entire path x(s).
The presence of such coupling terms in a closely
related problem has been noted by Feynman and the
remarks made at the end of Sec. 3-10 of Ref. 6

apply here. In particular, we note that it is not
possible to define a WEB-type wave function for
the translational motion of the nuclei, and that we
are therefore quite unable to observe the "classi-
cal nature" of the nuclei during the course of the
collision. It should, however, be possible to de-
fine this type of wave function long before, or long
after, the collision if the net effect of the noncausal
terms is constant in these regions.

Despite the conceptual difficulties associated
with the double-integral contributions, it is possi-
ble to evaluate the normalizing integral exactly in
practice. One possible approach would be to try
to find a change of variable from y(t) to z(r) such
that the definition of P('~ [z(T)] in terms of z(w)
would contain only single integrals. The relation-
ship between z(T) and y(&) would have to be of the

type

t t/

z(r) = A(7, t)y(t)dt.
t /

In this way the noncausal contributions would be
temporarily hidden within the definition of z(r) and
the treatment of them could be postponed until later
in the derivation. An approach similar to this has

been used by Friedrichs and Shapiro, "and is
probably more amenable to a rigorous treatment
than our approach. We use a method similar to
that of Pechukas. "

Consider the quantity K(0, f; 0, t'), sa.tisfying the
constraint that K(0, f; 0, f')- K(0, t"; 0, t') as f - f" .
K(0, f; 0, f') is not uniquely specified by this con-
straint and we arbitrarily choose a definition which
yields the simplest possible dependence on t. De-
fine K(0, t; 0, f') as the limit as y -0 of

yt
f. 0 fI) ei S (y, t; Ot')+iOg(y, t;O, t')g„&()fr 3' 7

ot'

(9)

where g (y, t; 0, f') is defined by Eq. (8) and where

S,(y, f; 0, t') = ptplp N . (10)

F s(2J(s)z(s)] ~ F s„(s,r)z(r) dr
f[z(s)]=Re „.i (,~~ &i) (+™

~8~ ~ ) t' Bn

+Im
i FS„(r,s)z(r) dr

U l.'I (f II t I
)

Fs(„~(s) i Fs„(r)z(r)Crk
Im U, ]

g g/ U )
g

/
g

11

Because K(y, t; 0, t') has an ' action" which is qua-
dratic in y(s) we can perform an exact quadratic
expansion of K(y, t; 0, t') about the pa. th y(s) in
terms of the variable ii(s) =y(s) -y(s) to obtain

K(y, t; 0, t') =K(0, t; 0, f')e'o, (12)

where 8 =S,(y, t; 0, t')+ g (y, f; 0, t'), and 9 is evalu-
ated using the path y(s) in Eqs. (8) and (10). In Eq.
(12), K(0, t; 0, t') is defined using the variable q(s),
but is identical to K(0, t; 0, t') defined as the limit
of Eq. (9) as y(&) -0. Furthermore, K(0, t; 0, t')
has no dependence on the path y(s). Because 8 is
evaluated along a path of stationary phase, we have

The quantity S'9/&y'(t) is also of interest and can
be reexpressed as

8 0 d,
( )

= m
d Inu(t),

where

and where u(t) is a, solution of the equation

pygu (s) = -f[u(s)],
which is solved between the times t' and t, with
f[u(s)] given by Eq. (11) and with u(t') =0, u(t') =1.

We are interested in the time dependence of
K(0, t; 0, f'), but it is convenient to first consider
the dependence of K(y, f; 0, f') on y. To determine
this dependence we consider the particular path
which makes the phase of the integrand of Eq. (9)
stationary with respect to first-order variations
in the path. This path [denoted by y(s)] will move
between the space-time points (0, f') a.nd (y, t), and
can be shown to satisfy the integro-differential
equation

my(s) = -f[y(s)], t'( s ( f

where
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We note that ~(t) does not depend on the path y(s)
and that 0 is therefore a quadratic function of the
end pointy(t). We consider a Taylor-series ex-
pansion of 9 about the point y(t) =0 and note that it
can be truncated to second order without introduc-
ing any error. In order to determine the zeroth-
and first-order coefficients in the expansion it is
necessary to find the path y(s) between the points
(0, t') and (0, t). A solution of the equation of mo-
tion for y(s), subject to these end-point con-
straints, is the path y(s) =0. The "action" devel-
oped along this path and the momentum my(t) are
both zero. Therefore, the first two terms of the
expansion do not contribute and we find

8=-,'m
d lnu(t) y'. (14)

The dependence of K(y, t; 0, t') on y is therefore
known exactly.

Given this result, it is now possible to relate
K(0, t+e; 0, t') and K(0, t; 0, t'):

where 4 = (2mic/m)'t'. ~ From Eq. (10) we find

So(0, t+e; 0, t') = So(z, t; 0, t')+m z2/2e . (16)

The relationship between g (0, t+e; 0, t') and

g (z, t; 0, t') is not as simple as Eq. (16), because
the difference of these two quantities is itself a
functional of the path y(s) between (0, t') and (z, t).
However, it is possible to show that

g(0, t+e; 0, t') =g(z, t; 0, t') e+/zz[ (ys)], (17)

where h[y(s)] is a linear functional of the path
y(s). Because the second term in Eq. (17) is of
order e (and because it is linear in z), one might
expect it to contribute only negligibly. We substi-
tute Eqs. (16) and (1'7) into Eq. (15) and make use
of the definition of K(z, t; 0, t') in Eq (9) to ob.tain

K(0, t+c; 0, t')

6z zi so(0, t+ E;0, t ') + ig(0, t+f;0, t ')~ y (s)
0~

(Is)

In the limit as e -0 this becomes

K(0, t; 0, t') = ——,'K(0, t; 0, t') Inu—(t)I 1

(
sx (t") sy (t")
sx (t'),—(, , ) sy (t') —,(, ,

)

(18)

The left-hand side of Eq. (18) is obtained by dif-
ferentiating Eq. (3) with respect to x(t') and de-
riving an integro-differential equation of motion
for [Bx(t)/Sx(t')] —„«&,taking account of the fact
that U(t", t), U(t, t'), and U(t", t'), as well as
BH(x)/sx(t), are all functions of x(t'); for exam-
ple,

ail(t, t') . '„,eH(x)„,aX(s)

A comparison of the resulting equation for
[sx(t")/sx(t')] „—«, ~

with Eq. (13) will yield the
equality in Eq. (18). We therefore find that

sx (t")
K(0, t"; 0, t') = m 2wi sx t' -„(„)

where the proportionality constant is determined
by the free-particle limit, and where the phase
may undergo discontinuous changes at turning
points of the nuclear motion. " For a scattering
problem this result can be rewritten as"

and integration yields

K(o, t; o, t') = cu-'t'(t),

where C is a constant. The expression obtained
here for K(0, t; 0, t') is comparable to Eq. (A4) of
Pechukas, "except that in our case u(t) is deter-
mined by an integro-differential equation, Eq. (13),
instead of an initial-value differential equation.

We now consider the limit as t- t". In the limit
we find that K(0, t"; 0, t') is determined by
[sy(t")/&y(t')] —,«.&. Since this quantity is known to
be independent of the path y(t), we anticipate that it
may be uniquely determined bv the path x(t). In
particular, it can be shown that

K(0, t+~; o, t')= [K(z, t; 0, t')+ezh(z, t)]

imz /'2&~

where h(z, t) is the leading term due to h[y(s)] in
Eq. (17). Using Eqs. (12) and (14) to specify the
z dependence of K(z, t; 0, t'), and integrating over
z, we obtain

d '/'
K(0; t+e; 0, t') =K(0, t; 0, t') 1+ ainu(t)

+ O(c '~')

(19)

where t" is a time just after the scattering has
occurred and t' is a time in the far past. With t"
and t' defined in this way it can be seen that the
partial derivative in Eq. (19) is given by the ratio
of the final momentum over the initial momentum.

A generalization to three dimensions is also
possible, "in which case the partial derivative in
Eq. (19) becomes a Jacobian determinant of a final
position with respect to an initial position. The
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expression for K(0t", Ot') in a three-dimensional
problem will therefore contain the quantity dQ/do,
which yields the classical expression for the dif-
ferential cross section.

III. DISCUSSION

The form of the result we have obtained for the
normalization constant is identical to that obtained
in Eq. (3.9) of Pechukas' in the sense that both
normalizations are determined by the response of
the end point of a classical trajectory to a change
in the initial position, but the way in which this
response is calculated in practice in the two cases
is quite different. To evaluate the normalization
constant derived by Pechukas' one must perform a
single trajectory calculation with a particular set
of initial conditions, parametrize the resulting
energy surface to have the form V(x, f), and sub-
sequently constrain the energy surface to retain
this form as the response of the trajectory to a
change in the initial conditions is evaluated. To
evaluate our result for the normalization we would

perform two entirely independent classical trajec-
tory calculations, with slightly different initial
conditions, and the partial derivative which is re-
quired would be evaluated numerically using these
two trajectories. In this case it is clear that no
constraints are being imposed on the "response"
of the energy surface to a change in initial condi-
tions. The difference between these two methods
of determining the normalization is due precisely
to the presence of double integrals in the expres-
sion for P@'[y(t)] in Eq. (7). To some extent, this
result has been anticipated by Pechukas, ' but we
are not aware of any previous derivation of it.

It is of some interest to consider situations in
which the two definitions of the normalization yield
different numerical results. To do this, it is nec-
essary, to consider a three-dimensional problem
since the normalization for a one-dimensional
problem is determined entirely by the long-range
behavior of the energy surface and will therefore
be the same regardless of which definition is used.
In a three-dimensional calculation we find that

K(0, t"; 0, t') is related to dQ/do'=sin8d8/b db. The
quantity d8/db is of particular interest, since the
two procedures described above for the calculation
of this type of derivative will yield different an-
swers. The actual energy surface for the collision
can be put into the form V8„(R,t, E, 6), where E
and b are the total impact energy and impact pa-
rameter, respectively. The difference between the
two methods of evaluating d8/db will be due to the
dependence of the energy surface on the impact
parameter b. (For an example of a situation in
which this dependence is rather pronounced, see
Fig. 2 of Penner and Wallace. ')

The present discussion of the "normalizing inte-
gral" was undertaken in order to define more pre-
cisely how the differential cross section should be
calculated, after the trajectory problem has been
solved. Previously, we were not sure that the pro-
cedure used by Penner and Wallace' to define the
cross section was the correct one. We now find
that it is, provided that d8/db is evaluated numeri-
cally with no constraints imposed on the response
of the energy surface to a change in b. (We there-
fore believe that the lack of agreement between the
elastic differential cross section of Penner and
Wallace' and the experimental results is due pre-
dominantly to the fact that a single-trajectory theo-
ry does not adequately describe nuclear motion in-
side the interaction region for this type of curve-
crossing problem; the success achieved by Olson
and Smith4 using a multitrajectory theory seems to
support this statement. This failure of our theory
is closely related to the breakdown of the assump-
tion that

~ UB (f", f')
~

does not change significantly
as the path varies about the classical path. ) If im-
provements in the theory were desired it would
probably be necessary to consider the effects of
variations in

~
U8„(&",t')

~
or, possibly, to develop

more specialized versions of this theory instead
of the general theory discussed here.
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