Two-electron S and P term values with smooth Z dependence

Y. Accad and C. L. Pekeris

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

B. Schiff

Department of Mathematical Sciences, Tel-Aviv University, Ramat Aviv, Israel (Received 12 August 1974)

Perturbation and extrapolation techniques based on expansion in inverse powers of the atomic number Z have recently been used to estimate term values for S and P states of heliumlike atoms in the intermediate range of values of Z. The coefficients in these expansions are determined by utilizing the accurate data currently available for values of $Z \le 10$. In order to obtain optimum results from such techniques, the data for low values of Z should exhibit a smooth variation with atomic number. To meet this requirement, the paper lists smooth values for the nonrelativistic energy and the relativistic corrections for the ground state and the states n ${}^{1}S$, n ${}^{3}S$, n ${}^{1}P$, and n ${}^{3}P$, n = 2-5 for Z = 2-10. Smooth behavior with Z has been ensured by quoting, for a given state, values obtained using the same type and length of expansion for the wave function. Also, the effect of rounding errors has been minimized by quoting the original values obtained in atomic units, and by listing the numbers to one or two digits more than would be justified by convergence arguments.

Much experimental data, derived from both laboratory¹⁻⁸ and extraterrestrial⁹⁻¹¹ sources, has become available in recent years on the spectra of heliumlike ions for a wide range of the nuclear charge Z. On the theoretical side, accurate term values have been computed for the low-lying S and *P* states for atoms up to $Z = 10^{12,13}$ These values have been used,^{14,15} together with perturbation and extrapolation procedures based on expansions in powers of Z^{-1} , to estimate the values of the ionization energies for larger values of Z. For the low-lying D states up to Z = 10. Blanchard and Drake¹⁶ have computed term values and used them to estimate coefficients in the Z^{-1} expansion. As these authors point out, in order to obtain the best possible results from such extrapolation schemes, the data used should be of sufficient accuracy, and should also vary smoothly with Z.

The published data for the *S* and *P* states up to Z = 10, consisting as it does of the most accurate values obtained in each case, is not necessarily the most suitable for use in an extrapolation procedure, for the following reasons. First, three different types of wave-function expansions (which we refer to as types B,^{12,17} C,¹³ and D¹³) were used. Thus, the values quoted for a given state for various values of *Z* are sometimes based on different types of expansions, or on similar expansions containing differing numbers of terms. This introduces a certain lack of smoothness in the data. Secondly, the results are listed only to the number of digits which were felt to be significant (judging by the convergence of the value as the number of

terms in the wave-function expansion was increased), resulting in a possible loss of accuracy in the quoted values due to rounding off. Last, while the calculations were carried out in atomic units, the results are listed in cm⁻¹. The conversion to cm⁻¹ is performed by multiplying by $2R_M$, where R_M is the Rydberg constant for the given nuclear mass. The value of R_M does not vary smoothly with Z, depending as it does on the nuclear mass rather than the atomic number. The extrapolation should therefore be carried out on the data in atomic units, and rounding errors are again liable to be introduced on reconverting the published values to atomic units.

In order to remedy this deficiency, we list below values in atomic units for the nonrelativistic energy parameter $\epsilon = (-E)^{1/2}$ and the relativistic corrections E_J which fulfill the requirements mentioned above in the following way. For a given state, the value quoted for each Z is obtained from the same type of expansion containing an equal number of terms. The number of figures to which each value is listed is one or two more than would be justified on the ground of convergence with expansions of increasing length. Also, all of the values are given in atomic units as originally calculated. Thus the effect of rounding errors is minimized.

Table I contains values for ϵ for the 1¹S state and the states $n^{1}S$, $n^{3}S$, n=2-5. The values for the 1¹S and 2¹S states were obtained using a type-*B* expansion containing 1078 terms, for the 2³S state using a type-*C* expansion containing 120

1479

11

TABLE type and n	I. Values for the nou umber of terms in th	nrelativistic energ	y parameter ∈ = (rpansion.	$(-E)^{1/2}$ (where	E is the ener	gy in atomic unit	s) for the S states.	Each column hea	ding includes the
State	1 ¹ S (B 1078)	2 ¹ S (B 1078)	3 ¹ S (C 364)	4 ¹ S (C 364)	5 ¹ S (C 364)	2 ³ S (C 120)	3 ³ S (C 364)	4 ³ S (C 364)	5 ³ S (C 364)
2	$1.704\ 031\ 799\ 83$	1.46491434745	1.4357109	1.4260350	1.4216762	1.47486585	1.438293792	1.427 064 129	1.422188042
က	2.69813146646	2.24518969002	2.1757187	2.1516911	2.1406575	2.260691777	2.179925787	2.153401156	2.1415164267
4	3.69534385897	3.03065568704	2.9184429	2.8789731	2.8607133	3.049125537	2.9235204897	2.881051112	2.8617607825
D	4.69371617994	3.81818386548	3.66223885	3.6068988	3.5811953	3.838475909	3.6678473614	3.609201700	3.5823584566
9	5.69264846970	4.60673612211	4.40656387	4.3351430	4.3018889	4.628256244	4.4125279609	4.337596813	4.3031296966
7	6.69189398798	5.39587024610	5.15118814	5.0635679	5.0227026	5.418272944	5.1574065324	5.0661296942	5.0239990693
8	7.69133246715	6.18536638403	5.89599799	5.7921050	5.7435911	6.208433561	5.9024071126	5.7947478652	5.7449293387
6	8.69089824825	6.97510298391	6.64093080	6.5207166	6.4645292	6.998688326	6.6474882114	6.5234225066	6.4658999976
10	9.69055243588	$7.765\ 007\ 407\ 80$	7.38594926	7.2493801	7.1855019	7.789 008 059	$7.392\ 625\ 242\ 1$	7.2521364724	7.1868988195
TABLE containing	II. Values for the nc the number of terms	nrelativistic energ i indicated in the o	y parameter ∈ = olumn heading.	$(-E)^{1/2}$ (where	E is the ener	rgy in atomic uni	ts) for the P states.	. Type-D expansi	ons were used,
Ctoto									
Z plate	2 ¹ <i>P</i> (364)	3 ¹ <i>P</i> (364)	$4 {}^{1}P$ (364)	5 ¹ <i>P</i> (56	(0) 2	^{3}P (364)	$3 {}^{3}P (364)$	$4^{3}P(364)$	$5^{3}P(560)$
5	1.4573411003	1.433578155	1.42515591	1.421 23:	387 1.40	30 535 583 1	$1.434\ 601\ 362\ 9$	1.425596077	1.42146088
က	2.2345807380	2.172603705	2.15038396	2.139.99.	212 2.24	122568274	2.1749619927	2.151386412	2.140506567
4	3.0184054763	2.914784662	2.87742765	2.85992.	316 3.02	29 021 812 7	2.9179795021	2.878778146	2.860614666
ດ	3.8049025299	3.658239315	3.60520345	3.58032	675 3.8	174779228	3.6619760377	3.606777801	3.581131862
9	4.5927477951	$4.402\ 331\ 348$	4.33334545	4.30096	678 4.60	067 0 280085	4.4064424553	4.335073776	4.301849907
7	5.3813675191	5.146786963	5.06169635	5.02174	1758 5.39	9634151474	5.1511708196	5.063536520	5.022681486
80	6.1704728532	5.891469277	5.79017755	5.742 60	0 935 6.18	3622847260	5.8960602000	5.792102440	5.743583515
6	6.9599026051	6.636302363	6.51874543	6.46351	6158 6.9'	7627603326	6.6410556455	6.520736642	6.464532268
10	7.749 559 776 9	7.381240757	7.24737387	7.18447	0 556 7.7	5643346843	7.3861246671	7.249418379	7.185513600
TABLE heading.	III. Values of $-E_{J}/\epsilon$	${}^{\prime ^{2}}\left(E_{J} ight.$ in atomic ${}^{\mathrm{ur}}$	its) for the S st i	ites. Type-C	expansions we	ere used, contair	ung the number of t	erms indicated in	the column
State	2 ¹ S (220)	3 ¹ S (364)	4 ¹ S (364)	5 ¹ S (3	(64)	2 ³ S (120)	3 ³ S (220)	4 ³ S (364)	5 ³ S (364)
6	0.034.989.9	0 011 096	0 005 498	600 0	QUE	0 164 A60	0.045.001.5	0 010 000 5	6 1 1 1 000 0
10		0 100 00	001000					0.0102010	7 111 000 0
2 4	9 809 05	16 VVU 1	00 TEN.0	0.040		1.440 04 5 799 9	0.430 1104 1 019 940	0.130202	250 660.0
÷ در	9 301 3	70 570 5	101150	0.04.0	ء د و	0.1400	L.010 070 5 190 070	0.100411 9 95419	1 170190
9	22.9868	8.30524	3.80577	2.040		35.4886	11.71376	5.176.51	2.719.347
7	48.0879	17.35713	7.95352	4.264	, , ,	39.4274	23.173.98	10.29334	5.42332
8	89.6813	32.3358	14.8154	7.943	4 15	23.2674	41.48644	18.496 66	9.766 66
6	153.7815	55.3924	25.3756	13.604	6 2(3.5782	68.95199	30.8309	16.30656
10	247.3404	89.0113	40.7705	21.857	0 31	17.8669	108.20481	48.4927	25.68181

1480

<u>11</u>

TABLE IV. Values of $-E_J/\alpha^2$ (E_J in atomic units) for the P states. Type-D expansions containing 220 terms were used.

z State	$2 {}^1\!P$	3 P	$4^1\!P$	$5^1\!P$	$2^{3}P$	$3^{3}\!P$	$4^{3}\!P$	5 ³ P
2	0.040017	0.01484	0.006 95	0.0039	-0.026934	-0.004 850	-0.001 51	-0.000 68
3	0.482271	0.18045	0.08411	0.04513	0.129772	0.090125	0.04739	0.02717
4	2.106768	0.803 93	0.37737	0.2033	1.41115	0.65971	0.3233	0.1793
5	6.116702	2.37247	1.1208	0.6071	5.44296	2.33571	1.1229	0.6166
6	14.14982	5.557 98	2.6382	1.435	14.53689	6.00876	2.8640	1.566
7	28.280 55	11.2175	5.343	2.914	31.69181	12.8287	6.0853	3.319
8	51.02053	20.3932	9.739	5.322	60.59397	24.2047	11.447	6.234
9	85.3188	34.3126	16.418	8.985	105.617 10	41.8049	19.729	10.733
10	134.5617	54.3881	26.065	14.281	171.82241	67.5571	31.835	17.307

terms, and for the remaining states using a type-C expansion containing 364 terms. In Table II we list ϵ for the states $n^{1}P$, $n^{3}P$, n=2-5. They were obtained using type-D expansions containing 364 terms for n=2, 3, and 4, and 560 terms for n=5. Table III contains the values of $-E_{J}/\alpha^{2}$ for the states $n^{1}S$, $n^{3}S$, n=2-5. They were obtained using type-C expansions containing 120 terms in the case of 2³S, 220 terms in the case of 2¹S and 3³S, and 364 terms in the case of the remaining states. In Table IV, we list $-E_J/\alpha^2$ for the *P* states, the results listed all having been obtained from type-*D* expansions containing 220 terms.

On differencing the values given in Tables I to IV, we see that the results behave smoothly with Z. In fact, the values of ϵ can be almost exactly reproduced by an expression of the form $Z(a_0+a_1/Z+\cdots+a_6/Z^6)$, while the values of $-E_J/\alpha^2$ fit almost exactly to an expression of the form $Z^4(a_0+a_1/Z+\cdots+a_4/Z^4)$.

- ¹B. C. Fawcett and F. E. Irons, Proc. Phys. Soc. Lond. 89, 1063 (1966).
- ²R. C. Elton, Astrophys. J. <u>148</u>, 573 (1967).
- ³L. Cohen, U. Feldman, M. Swartz, and J. H. Underwood, J. Opt. Soc. Am. <u>58</u>, 843 (1968).
- ⁴B. Eldén and B. Löfstrand, J. Phys. B <u>3</u>, 1380 (1970).
- ⁵L. Å. Svennson, Phys. Script. <u>1</u>, 246 (1970).
- ⁶T. N. Lie and R. C. Elton, Phys. Rev. A <u>3</u>, 865 (1971).
- ⁷W. Engelhardt and J. Sommer, Astrophys. J. <u>167</u>, 201 (1971).
- ⁸B. S. Fraenkel and J. L. Schwob, Phys. Lett. <u>40A</u>, 83 (1972).
- ⁹G. Fritz, R. W. Kreplin, J. F. Meekins, A. E. Unzicker, and H. Friedman, Astrophys. J. <u>148</u>, L133 (1967).

- ¹⁰W. M. Neupert and M. Swartz, Astrophys. J. <u>160</u>, L189 (1970).
- ¹¹W. M. Neupert, Sol. Phys. <u>18</u>, 474 (1971).
- ¹²C. L. Pekeris, Phys. Rev. <u>112</u>, 1649 (1958).
- ¹³Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).
- ¹⁴A. M. Ermolaev, M. Jones, and K. J. H. Phillips, Astrophys. Lett. 12, 53 (1972).
- ¹⁵A. M. Ermolaev and M. Jones, J. Phys. B <u>7</u>, 199 (1974).
- ¹⁶P. Blanchard and G. W. F. Drake, J. Phys. B <u>6</u>, 2495 (1973).
- ¹⁷C. L. Pekeris, Phys. Rev. 126, 1470 (1962).