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The exact density of states for one particle in the field of an attractive 6 impurity center
is obtained from the system Green's function. The impurity is shown to introduce a bound
state in the free-particle energy spectrum without any further modification. This result is
then used to study the effects of the impurity on the thermodynamical properties of a gas of
noninteracting bosons. The "Bose-Einstein phase transition" is not destroyed by the im-
purity, but a true condensation in position space occurs due to the existence of the bound
state. The captured bosons form a cloud of well-localized particles modifying the macro-
scopic behavior of the gas for temperatures below a transition temperature T, . The constant-
volume specific heat, the entropy, and the pressure are evaluated as functions of the tem-
perature and of the energy of the bound state, E&. The transition temperature and the dis-
continuity of the specific heat at T are also obtained as a function of E&.

I. INTRODUCTION

&cry recently the problem of the existence of a
phase transition in a gas of noninteracting bosons
with impurity centers embedded in it has been
raised by Kac and Luttinger. ' They proved quite
generally that the Bose-Einstein condensation is
not destroyed by impurities with repulsive (short-
range) potential. Furthermore, it was verified
that the transition temperature is increased com-
pared to that of a completely free Bose gas, and
finally that the ground-state energy of the system
goes to zero in the thermodynamic limit. Unfor-
tunately, as the authors have pointed out, it was
impossible to analyze the physical details of the
condensation phenomenon, due mainly to the non-
specification of the form of the particle-impurity
interaction and to the formalism adopted to infer
the existence of the condensation. In this paper we
shall discuss the effects of an attractive 5 particle-
impurity interaction on the thermodynamic prop-
erties of a boson gas. With the choice of interac-
tion potential one can evaluate the exact expression
for the density of states of one particle in the im-
purity field of force, which in turn has allowed us
to evaluate in a workable form the exact grand
partition function of the system and all thermody-
namical functions of interest.

In Sec. II we formulate the particle-impurity dy-
namical problem through Dyson's equation for the
propagator in the coordinate-energy space. Be-
cause of the form of the potential the integral equa-
tion for G(r, r', E) is transformed into an algebraic
equation the solution of which requires a renormal-
ization procedure on the potential strength. The
single-particle density of states obtained from the
trace of Q reveals just the addition of a bound state
to the energy spectrum of a free particle. It is

the presence of this bound state which will modify
the very essence of the condensation phenomenon,
i.e., changing it from the ordinary Bose-Einstein
ordering in the momentum space to a real phase
separation in position space, with a fraction of the
particles aggregated around the impurity and a
higher density than that of the remaining particles
in the gas.
A review of some results for the grand canonical

ensemble needed in this paper as well as the basic
one-particle partition function is dealt with in Sec.
III. In Sec. IV we concentrate our attention on ob-
taining the logarithm of the grand partition function
of a spinless Bose gas and the system's thermo-
dynamic functions. The graphs have been evaluated
with the help of the tabulated values of the Bose-
Einstein function given by London. '

II. 5 POTENTIAL

The 5 potential is known to be a very convenient
choice for the study of the effect of localized im-
purities on a many-particle system. The one-di-
mensional 5 function is very easy to handle and all
its properties are very well understood. This is
not the case when one tries to generalize to di-
mensions larger than one. A scalar 5, 5(r) pro-
duces no effect, while a vector 6, 6(r) leads to di-
vergences and becomes, at first sight, untract-
able. There is, nevertheless, a simple procedure
which allows one to renormalize the potential by
the introduction of an effective interaction
strength. This is true in both two and three di-
mensions. The renormalized attractive three-di-
mensional 6 potential introduces a bound state in
the energy spectrum of free particles and does
not modify the finite-energy scattering states.
This does not, we must stress, violate the com-
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pleteness of the free-particle wave functions. The
above result is obtained by a limiting process in
which the scattering states corresponding to ener-
gies of the order h'/2ma2 (where a is the range of
the potential) are modified by the potential. Part
of this discussion has been published' and a more
detailed mathematical treatment will be presented
in a future paper.

Let us now calculate the change of the density of
states of a free particle in the presence of an at-
tractive 5 function of strength A. . We shall follow
closely the procedure followed in Ref. 3.

We shall be interested, in this section, in the
change of the density of states produced by the
impurity

gp(z) = (-1/m) Im d'r [G(r, r, E) —GG(r, r, E)] .

the integral and

N(z)=, (2™n) z'r' (2.6)

is the free one-particle density of states per unit
of volume. Using the renormalized interaction
strength at, we can rewrite

aG(r, r, Z)
G, (r, O, z)G, (0, r, z)

(1/o. ) -P jdz;[EN(Z-)/E-(E -E-)]+i'(E)

(2.'f)

The calculation of p(z) is carried out for the
two situations E &0 and E&0. For that purpose we
write down the expression for G, (r, o, z),

In order to obtain Q, we first write down Dyson's
equation for the exact one-particle Green's func-
tion, ~

G(r, r', Z) =G (r, r', Z)r jd'r" G, (r, r", Z)

G (r 0 E) =-G (0 r E)= e'l""( )
0 t t 0 t t (2pl)3

for E &0. (2.8)

For E & 0 the integrations are st:raight-forward,
leading in the limit of arbitrary large volume to

X A6(r")G(r", r', Z). p(z) = p.(z) = ~(Z); (2.9)

Here G, is the free-particle Green's function

(2.1) i.e., the density of scattering states is unaffected.
For E &0

+(&/h) P ( 1'-.r')
G, (r, r', Z) =(2 @, d'P — . , (2.2)

P

where E- =p'/2m and ))-0, positively. Both G and

G p satisf y the b ound ary cond iti on of vani shing at
infinity.

Dyson's equation may be solved formally for G,

) ~, )
AG, (r, O, z)G, (0, r', E)

(2 8)

Since we shall be interested in the trace of G, we
look to the change in the diagonal part of b, G,

(r 0 E) e r(2)zlsl) /)) -(2 10)
(27(8)' y.

and the change on the density of states is given by

w N(Z) 1 "
~Z (N(Z;)

p E = 5 P dz

(2.11)

Therefore, the one-particle density of states can
be written in the thermodynamic limit as

G, (r, 0, E)G, (0, r, E)
1/A —GG(0, 0, E) (2.4)

Vm g2 S/2
p(z) = (2~E) '+5 E+ 4))-2, S 2m

The denominator of ~G is not well defined since
G, (0, O, E) diverges. We shall treat it as a limit
process, namely,

——G, (0, 0, E) —= lim —+

dZ;ZN(Z-. )—P I -') +iwN{E),
p p

(2 6)

where the limit is made to be equal to e ', a posi-
tive and finite quantity, P is the principal value of

(2.12)

At this point we may state that in this work, and
to make it physically sound, we shall be looking
only for finite negative energies. This implies that
the 6 potential may be understood as, for instance,
the limit of a spherical square well with just one
bound energy kept fixed in the entire limit process.
It is easy to verify that in the limit of the square
well with V,- and a-0, such that Voa' remains
finite, only one bound-state energy can remain
finite, all others going to -. This is the reason
why we keep just one finite bound state.
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III. THERMODYNAMIC FUNCTIONS

We start from the known equation for the loga-
rithm of the grand partition function Z for an ideal
quantum gas which contains the thermodynamic in-
formation about the system, '

1nz(p, V, p, ) =-e g ln(1 —ee8&" e))&), (3.1)

lnZ =
2rg

m[cos()) t)]"t ' csc(wt) e 8'"

where P
' =ST is the product of the Boltzmann con-

stant 0 times the absolute temperature T, V is the
system volume, p, is the chemical potential, e
takes the value of (+1) for particles obeying Bose-
Einstein statistics and (-1) for Fermi-Dirac sta-
tistics, and, finally, E~ is the jth single-particle-
state energy. We shall recall here the restriction
upon the chemical potential for boson systems. In
order to avoid negative average occupation number
of the single-particle state j we must have p, &E&
for all j, which is tantamount to g&E]]l]fl]]]]t]]]].

The evaluation of the sum over all single-particle
states j can be carried out in a simplified way af-
ter the use of Me11in transform representation for
the logarithm function, ' that is,

I' c+ I'I
ln(1 -«"" '~') = . m[cos(7)t)]"t 'csc(vt)2' Z

&e'~~- '~d~, (3.2)

which allows us to rewrite the expression for lnZ
as follows:

C+ Coo

E =pN—8 lnZ energy (3.6)

g= ~ " ), entropy
p, v

(3.7)

~=p-), pressure.8 lng
BV

(3.8)

To proceed further in the detailed analysis of the
effects due to the presence of impurities (with at-
tractive 5-function potential) on the macroscopic
behavior of a quantum gas, in particular a boson
gas, the first step to be taken is the evaluation of
Z, (P). By combining Eqs. (2.12) and (3.4) we ob-
tain after a straightforward calculation

3/2
~@) ~(

I „si,i

where

(3.9)

ing terms together with the integration in the com-
plex t plane are responsible for transforming the
single-particle function into a (many-particle)
thermodynamic expression.

It is also known from the theory of the grand
canonical ensemble that other thermodynamic func-
tions of the system can be calculated from lnZ us-
ing the following expressions':

, & lnZx = (p)-' average particle number
Bp,

xge ' &dt (3 3) E, = — 4w

z, (8)=Z & ' '=f p(&) ed& (3 .4)

where p(E) is the density-of-states function. The
energy range has been taken from -~ to +~ to in-
clude all possible bound states that might exist.
There is no convergence problem at the lower lim-
it due to the conditions imposed on p(E). Effects
of the statistics obeyed by the particles are taken
into account by the term e[cos(mt)]'; the remain-

wher e e ' =-,' (e + 1), 0 & c & 1, and we have inter-
changed the order of integration and summation.

The advantage of writing lnZ in this way is the
appearance of the always-desirable separation of
the statistics effects from the quantum-mechanical
problem. Therefore, the consequences of finite
size, geometry, and dimensionality of the contain-
er of the gas, as well as the presence of external
fields on the bulk properties of the system, are
solely incorporated in the single-particle partition
function Z, Q),

Clearly, the first term comes from the excited
states and the last one from the bound state.

The problem of an ideal Bose gas with an analo-
gous density of states, which can be obtained from
Eq. (2.12), shifting it rigidly to the right along the
energy axis until the 5 term sits- on the origin, is
discussed by London. Therefore, the single-par-
ticle partition functions satisfy the simple rela-
tionship

Z, (6),„„„„„=e-'~ Z, (]3). (3.10)

Consequently, a11 mathematical calculations
presented here are essentially the same as Lon-
don's calculations; for instance, his equations can
be obtained from ours if we set p, = p, „.„,.„—~E, (

and call ~E, ~
=g, the width of the gap in the spec-

trum.
Furthermore, we expect that the properties

which are related to energy differences will have
the same form in both cases, e.g., the heat capac-
ities. However, there are some basic differences
which are worthy of mention at this stage. First,
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the existence of an energy gap in the spectral den-
sity functions is due to different mechanisms; in
one case, the presence of interaction with the ex-
ternal field of the impurity is responsible —which,
by the way, appeared as an exact result as shown
in Sec. II. In the other case the gap in the energy
spectrum is introduced somewhat phenomenologic-
ally to take care of interparticle interaction. A
second major difference is related to the wave
functions of the lowest energy states. In the pres-
ent problem the wave function' of the bound state

Z/2

g(r) = exp(-2wk'~r~ /mo. )

is centered at the impurity and well localized in
space, by contrast to the zero-momentum wave
function, which spreads over the entire available
volume of the system. These distinct physical
situations will manifest themselves on a large
scale when the conditions for the macroscopic
occupation of the lower-energy states occur, mak-
ing the thermodynamical behavior of these sys-
tems sufficiently different to motivate the discus-
sion presented here.

The monotonically decreasing character of the
F,($)'s (which are also bounded for o& 1) together
with the upper-limit value of the chemical potential
determine the maximum number of particles which
can be accomodated outside the bound state, i.e.,

¹Lii=N = V(mkT, /2m@')'~'F, g, (E~/&T, ) . (4 5)

in all forthcoming equations in order to obtain the
corresponding free-case limits.

Using Eq. (3.6) in combination with Eq. (4.2') we
obtain for the average particle number

N VX ~F3P~( pp)+ (e 8&"'s» —1)-' =N„., +N„,

(4.3)

where N, is the average number of bosons captured
by the impurity and¹.~ is the average number of
the remaining particles in the gas. As usual, this
equation determines the chemical potential as
function of the temperature, particle density, and
strength of the binding energy (Fig. 1). In deriving
Eq. (4.3) we have made use of the following proper-
ty of the Bose-Einstein function F, ($):—F.(() = -F. , (&).

d
(4 .4)

IV. BOSE GAS

We will now particularize Eq. (3.3) for a boson
system (e =e' =1):

c+ i
lnZ =-,' f cot(~f) f 'e""-

Q ~ )00

x (VX 't ' '+ea"s&~)dt, (4.1)

where we have used Eq. (3.9) and X = (2nk'P/m)' '
is the thermal de Broglie wavelength; from now on
as a notational convenience we will drop the bars
of the modulus ~Z„~. The evaluation of Ing is final-
ly complete if we close the straight-line contour
with the arc of a circle, such that the integrand
satisfies all the conditions for the application of
the residue theorem. The requirement for the
vanishing of the integral taken along the arc in the
limit of infinite radius is assured by the restric-
tion on the chemical potential of the boson system.

Hence

The above equation defines a critical temperature
T, (E,). We see immediately that T, (E,) is always
larger than T, (0), the free-Bose-gas critical tem-
perature, as a direct consequence of the steady-
decreasing behavior of F,~, . Moreover, the de-
riviative of T, with respect to the binding energy
diverges at F., = 0, indicating that the "turning on"
of the bound state introduces abrupt changes in the
properties of the system (see Fig. 2).

The expression for the average number of par-

-p /kTc

ense en/( P+ E&) .

Ing=VX 'g, &, +g
n= l. n n= 1 n

(4.2)

= V~ 'F„,( Pq)-+F, [ P-(q+Z, )],-(4.2')

where F, ($) are the so-called Bose-Einstein func-
tions. '

%e also observe that lng for the free Bose gas
(absence of impurity) is recovered from Eq. (4.2')
if we setE, =O and let p, run again from -~ up to
zero. This is the general procedure to be followed

FIG. 1. Chemical potential for the Bose gas with the
5-function impurity vs temperature for different values
of E&. The curve branches for T & T~ are obtained from
Eq. (4.7). T~(0) = (27(A~/mk)[N/VE3y2(0)] 3 is the critical
temperature for the ideal Bose gas.
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FIG. 2. Reduced critical temperature T,/T, (0) as a
function of the reduced binding energy E~/0 T~(0) obtained
from Eg. (4.5).

(4 .8)

comparing the above equation for the number of
condensed bosons with that of a free boson gas,
both systems with the same particle density and
temperature T lower than T, (0), we see once more
an enhancement effect created by the existence of
the bound state (see Fig. 8). By contrast to both
free gas and London's system there will now be a
true condensation in Position sPace. The impurity
behaves as a nucleation center and some bosons
will "condense, " forming a cloud of localized par-
ticles around it with increasing density as the tem-
perature goes to zero.

tieles can be rewritten in a more convenient form
after using the definition for T,:

T 3/2 "'( P~) +(8 '&~'s~&-l)-'
T, F,g, (E,/kT, )

(4.6)

Now for T&T, we can neglect the contributions,
to the total average number of particles and the
chemical potential is determined by the relation

F~g, (-pp) = (T,/T)3~2F~(2(E~/kT, ), T&T, .

(4.7)

If, on the other hand, T&T„ the first term in
Eq. (4.6) will be only a fraction of N and conse-
quently the last one has to make up for the rest of
the particles, implying that

I
p,

I

= E, (see Fig. l).
Therefore

0.5

FIG. 3. Average occupation number of the bound state
as a function of the temperature for different values of
the binding energy E&.

It has been shown' ' that the existence of the Bose
condensation in infinite systems of one and two
dimensions is related to the occurrence of un-
bounded particle density somewhere in the system.
Equation (4.8) shows that this behavior is also
present here For. T & T, the particle density
around the impurity becomes infinite in the thermo-
dynamic limit. This fact is responsible for the
change in the nature of the condensate.

The other particles which remain in the gas are
essentially unaffected by the presence of the im-
purity center and by which degeneracy state can
be inferred from the relation between the average
interparticle distance E and the small thermal
wavelength:

X/l = (N„,t/V)'~'A. =F',(~~(E~/kT), T &T, . (4.9)

The average particle density p-N, /u' at the con-
densation region can also be changed by a combined
variation of temperature and binding energy as,
for instance, along the interrupted dotted line OP
in Fig. 4. At T =0 all particles are trapped at the
impurity site with a minimum spreading. As the
temperature increases some particles will gain
sufficient energy to evaporate from the cloud,
which simultaneously is swelling in size. This
situation will continue until all particles have de-
parted and no vestige of the particle lump is left;
i.e., we have reached point P. In more poetic
language, we can describe this situation as a
blooming flower which loses its petals as it grows.

The 6 potential acts as an ideal source/sink of
particles, which allows for the nondegenerate be-
havior of the remainder gas. If one considers a
saturation effect of the potential due to a repulsion
interaction between the particles, the density
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around the impurity will now be bounded. In this
situation the number of impurities in the system
will play a more decisive role in determining the
degeneracy state of the gas. Two ranges of
strength of F., naturally arise; for strong binding
energies the particles in the gas always form a
classical system, even at extremely low temper-
atures. On the other hand, in the weakly-bound-
state limit the gas will be classical only at high
and low temperatures, having a degenerate be-
havior at intermediate temperatures.

As an intermediary step in the calculation of the
heat capacity at constant volume we evaluate the

system energy F. We obtain after a direct calcula-
tion

T " F„.(-J31)E = 2 (Vk)T — '
g / )

—Eb N„
C 3/2 b c

(4.10)

which gives a finite ground-state energy for the
system instead of zero, as for the free Bose gas.
Of course it is the possibility of a macroscopic
occupation of the bound state which will make it
relevant to the thermodynamics of the system,

T '' E„,( ai)-. T '' E.&, ( ui) -6( el )-
(4.11)

where we have made use again of Eq. (4.4). For
all T & T, the chemical potential has its maximum
value —p, =E„hence

(4.12)

T '~' F,g, (Eb/kT) (Nk)(Eb/kT)
T, E,i, (Eb/kT, ) E,i, (E,/kT, )

x — Sy' ~ + ~ E /

and a simple expression for C~ is obtained: T & T, . (4.13)

By taking the derivative of Eq. (4.7) with respect
to -P p, we obtain

s ( Pu) -(3/2T)+3/9( PP)'
+y y p ( PP )- (4.14)

FIG. 4. Schematic plotting for degeneracy state of the
gas as a function of T and &~. The full curve E&(T)
starting at T~(0) divides the quadrant of. the E&T plane
into two regions. In the unprimed region there is no
condensation phenomenon and in the primed region the
condensation is present. The broken curves are obtained
choosing arbitrarily the ratio A/l equal to 10 ~ and 1 in
Eq. (4.9) for T&T, and in Eq. (4.5) for T&T, . A, classi-
cal region for the gas; B, region of mild degeneracy;
C, degenerate region for the gas. A', classical region
for the noncondensed particles in the gas; B', region of
mild degeneracy for the particles in the depleted gas;
C', degenerate region for the depleted gas. The particle
density in the unprimed region is higher than in the cor-
responding primed region.

E,($)=e ~ for t»1. (4.16)

The low-temperature behavior of C~, on the other
hand, will differ from the T' ' law for the free
Bose gas, as can be seen from Eqs. (4.13) and
(4.16),

(4.17)

By all means the most interesting feature of C~ is
the finite discontinuity at T, (see Figs. 5 and 6).
Let us examine now the entropy. Using Eq. (3.7)
after a little algebra we obtain

which is then put back in Eq. (4.11) to give the
other branch of the heat capacity,

» )»,&.(-v~)»». ( ui )-
2 E,q, ( PV) 2 E',-q, ( Pu)-

(4.15)
where we have neglected the changing of average
occupation number of the bound state with the tem-
perature. p. can be eliminated from C„(T& T, )
with the help of Eq. (4.7). The Dulong-Petit value
for C» is obtained from Eq. (4.15) after approx-
imating E, ($) for larger values of $,
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Tc(0)
= 0.8

When writing the above expression we have
dropped the negligible contribution from the last
two terms of the general expression given by Eq.
(4.18).

Finally we derive the expression for the pressure
using Eq. (3.8),

lngz =p-' -- =p '& '&,i, ( pv-).
8 P' (4.21)

0.5 I.O 1.5 2.0
T/Tc

This expression is identical to that of the free
Bose gas, except for the new upper limit of the
chemical potential. The two branches for the pres-
sure are

FIG. 5. Specific heat at constant volume as a function
of temperature for an arbitrary value of the binding en-
ergy E&.

f =P-'x 'z„,(z-,/aT), T &T,

I'=P 'X 'E,i, (-p, /kT), T) T, .
(4.22)

I

0 I

j

2
Eb/ kTC (0)

FIG. 6. Binding energy dependence of the specific-
heat gap at T = T, given by {AC„/Nk)& T

= (-)[F&/2(E~/
k Tc)/Ef/2(Ey/0 Tc)i + (Ey/k Tc) IEg/2(Ey/k Tc)/I' 3/2(Eb/
k T )] +3 (Ea/k Tc) .

s= .'» '-v&, i, ( PI )-l(pv-)~ 'v&.i.( P~)-
-yp(iJ. +z,)N, +k ln(1+%, ) . (4.18)

We notice the vanishing contribution of the last
two terms in the thermodynamic limit. Again we

have to study the two branches of S. For T( T,
we substitute p, =-Z, and use Eq. (4.8), which
gives us the right value for N, in

s = ,'».-'vz, „—(pz,)+I (pz, )~-'z;, ,(pz, )

(4.19)

Now for T) T,
s=2» 'vz, i, ( pl ) -&(pu)-~ '&, i. ( pi ). -

(4.20)

Therefore, the presence of the bound state has not
destroyed the volume-independent relationship of
the pressure below the critical temperature. It
has, however, made it lower compared to the free
Bose gas.

As in the case for the heat capacity and entropy,
the p, dependence of the pressure for T& T, can be
eliminated by means of Eq. (4.7). One can do it
in the way suggested by London, i.e., developing
the I,'s in terms of E,/, or numerically, as we
have done when it applied in all figures presented
in this paper.

V. DISCUSSION

The effect of a 5 attractive potential on the Bose
gas can be calculated exactly, this being the main
reason for the model interaction proposed. The
most interesting results seem to be (a) the dis-
continuity of the specific heat at the transition
temperature, which could be expected if one just
recalls I,ondon's work where a similar result is
obtained in a different context; (b) the classical
behavior of the gas in a region of temperature, for
which the pure boson system would be degenerate.
This behavior is probably existent for any system
of weakly interacting bosons in the presence of
impurities which trap particles from the system
in some way. In spite of the fact that real bosons
are expected to exhibit a repulsive interaction of
sufficiently close distances, a cluster formation
around the impurity (such as positive ion clusters
in liquid He) may lead to a similar phenomenon,
namely, the transition to a classical gas with a
smaller density than the original Bose system plus
a cluster of bosons around the impurities. (c) The
attractive 5 function does not inhibit condensation,
but induces a spatial condensation around it. This
result can be understood from the fact that the 6
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potential possesses only one bound state in the lim-
it discussed previously in Sec. II, and thus the
density of states corresponding to negative ener-
gies is integrable, being a function 5 in energy.

It has been shown' that short-range repulsive im-
purities do not prevent condensation. In our case
an attractive 5 potential, i.e., an extremely short
attractive potential, does not prevent it either.
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