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The coherent scattering function is calculated for liquid rubidium at its melting point on the basis of
the theory developed in paper II of this series and using the static structure factor obtained by
Rahman from computer simulation with a potential determined by Price et at. It is noted that for q

0

up to 1 A ', the theory indicates the existence of propagating density waves unlike liquid argon, but

the shape of S(q, co) is found to disagree with the experimental observations. For intermediate values

of q, the agreement between the theoretical and experimental results is not so good, but the
0

disagreement is always less than 40%%uo. However, for q & 3 A ', the theoretical results for S(q, co) are

quantitatively in good agreement with the recent neutron inelastic-scattering measurements on liquid

rubidium.

I. INTRODUCTION

Recently, the coherent scattering function of
liquid rubidium has been extensively investigated
by both the neutron-scattering experiments' and
the molecular-dynamics calculations' within, the

0
range 0.174(q &5.5 A ', giving a clear indication
of the existence of propagating density waves for
q &1.2 A '. We analyze here these data on the
basis of the theory of Pathak and Singwi, ' developed
in paper II of this series. This theory has suc-
cessfully explained the behavior of S(q, &) in liquid

o
argon' for wave vector q) 0.5 A '. Neutron-scat-
tering results of Randolph' on liquid sodium have
also been analyzed fairly well by this theory.

Since the details of the theory have already been
discussed by Pathak and Singwi, we quote here only
relevant expressions. In the classical limit,
S(q, &u) is related to the imaginary part of the den-
sity response function X(q, (d} according to

S (q, ~}= —(an(d) 'kaT ImX(q, ~),

which in the generalized mean-field approach is
given by

x..(q, 4)
1-q(q) x..(q, ~) '

where ki (q) and X„(q, (d) are the effective mean
field and the screened response function, respec-
tively. In II, the imaginary part of the screened
response function was related to a dressed-par-
ticle response function in which the damping of
the free-particle motion has been taken into ac-
count. This can be written

2+cog2 ~~2 u'2

ImX„(q, (d) =-
kq'k + qr( m)(qkq'k 1'+mk'(q))

kq'k mq( l)I'q

Q2
F(q) = —nP, (q) —i,aT —1

m ' a S(q)

where

(5)

P, (q) =
Jt dr g(r), (q V)'v(r).

The second moment of S(q, &u) is automatically
satisfied in this theory. We have estimated' the
sixth and eighth frequency moments of S(q, (d} for
liquid argon using various models of S(q, ~). We
have also estimated' these moments using the
molecular-dynamics data of Rahman and we find
that for q) 0.5 A ', the results of the theory of
Pathak and Singwi are in favorably good agree-
ment with those obtained using molecular-dynamics
data. We feel that higher moments are not vio-
lated signif icantly,

The neutron-scattering results presented by
Copley and Rowe' are available for the symme-
trized scattering function S(q, ~) (for 0.3 &q &5.5
A '}which is defined as

S(q, ~) =e "'"a'S(q, ~).

II. CALCULATIONS AND RESULTS

We now describe the results of our calculations
for liquid rubidium at 319'K and for a density of
1.502 g/cm'. For this temperature and density,
the results for S(q) and P, (q) have been obtained by
Rahman from the molecular-dynamics calcula-

and the real part of x„(q, ~) can be obtained by
using Kramers-Kronig relation. The unknowns
kl(q) and I'(q) were determined by requiring that
the zeroth and fo-urth-moment sum rules of S(q, (d)

are exactly satisfied. These are given by

~(q)= 2' S
-1 --'P. (q)

3kr 1

2n Sq

and
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tions using the potential obtained by Price et al.'
Using these results we calculate q (q) and I (q)
from Eqs. (4) and (5). Like liquid argon, I'(q) is
found to be positive and has a damped oscillatory
behavior. On the other hand, q'(q), unlike liquid

0
argon, has been found to be positive for q&1.2 A '.
It is large for very small q and decreases with

q, so that at q =1.2 A ' it becomes negative.

Having calculated 4'(q) and I"(q), we have calcu-
lated S(q, &) and S(q, »d) as a function of »0 for q
in the range 0.174 &q &5.5 A '. lt has been found
that the theoretically calculated S(q, ~) has a peak
at finite up to q=1 A '. Thus the model also
indicates the existence of propagating density fluc-
tuations up to q =I A ', but the shape of S(q, »d)

is bad. After q =I A ', »I'(q) becomes negative and
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FIG. 1. Symmetrized scattering function S(q, ) as a function of frequency for nine values of the wave vector q (1.5
—q —5.5 A ~) . Solid circles: results from neutron-inelastic-scattering experiments.
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FIG. 2. (a) Full width at
half-maximum (FWHM) of
S( ~) vs wave vector q.q,

func-(b) Coherent scattering fu
tion S(q, u) at, co=0 vs wave
vector q. Circles: results

neutron-inelastic-rom n
scattering experiments;
open (solid) circles: neu-
tron energy Joss (gain);
crosses: results of the mo-
lecular-dynamics calcula-
tions of Rahman.
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function, which are the only inputs of the theory.
In the case of liquid sodium, ' 4'(q) was found to be
positive but small, and a bump in S(q, &o) for q0= 0.8 A ' was noted which was not conclusive.
However, for liquid argon, @(q) remained nega-
tive even up to q =0.23 A ', and no peak in S(q, ~)
was seen. This is consistent with the result of the
molecular-dynamics calculations of the Orsay
group' that the propagating density waves disappear
at wavelengths of about eight times the nearest-
neighbor distance.

It has been found that the calculated S(q, &}for
wave vector q &1.2 A ' is very bad. It does not
show a bowl which is present in the experimental
results. " This bowl is a consequence of the ther-
mal-conduction effects which are not at all built
in the model. It has already been mentioned in

paper II of this series that the theory is not appli-
cable in the hydrodynamic region. Also, the Kubo
limit, ' which relates the longitudinal viscosity
to S(q, ~), does not exist in this model. This is
why the shape of S(q, &}for small q values has not
been reproduced by this model. However, it has
been noted that the form of the dispersion curve
as predicted by the model is similar to the experi-
mental curves; but it always lies below the ex-
perimental curves.

For the intermediate values of q (1.5-2. 'I5 A ')

the various theoretical results have been found to
disagree with the experimental observations within
about 40/p. It seems that the dynamics of waves

O

around g -2 A ' contains more information than is
contained in the present model. It has been con-
jectured by Copley and Rowei that for q 2 A
"two-relaxation-time" approach is indicated from
the experimental observations. It may be that for
this region the conjecture of Copley and Rome is to
some extent substantiated by the failure of present
model which can be considered as a "one-relaxa-
tion-time" model.

It is hoped that, if the above-mentioned short-
comings of the model in the hydrodynamic and
intermediate q regions are removed, the results
could be improved. The failure of the model in
these regions might encourage further efforts to
try to make improvements.
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