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We present a new series of calculations in the theory of spinodal decomposition. The computational
scheme is based on a simple ansatz for the two-point distribution function which leads to closure of
the hierarchy of equations of motion for the high-order correlation functions. The resulting theory is

accurate throughout the spinodal region of the phase diagram, including at the boundaries of this re-
gion where the spinodal mechanism is difficult to distinguish from nucleation and growth. The com-

putational scheme is worked out in detail for parameters approximating those of the three-dimen-

sional, kinetic, spin-exchange Ising model with nearest-neighbor interactions. Numerical agreement

with recent Monte Carlo data appears to be satisfactory.

I. INTRODUCTION

The term "spinodal decomposition"' refers to
the initial stage of phase separation which occurs
in a quenched„ thermodynamically unstable, solid
solution. Among the various kinetic mechanisms
associated with first-order phase transformations,
spinodal decomposition is distinguished from, say,
nucleation and growth in that it requires no ther-
mal activitation energy; that is, it occurs in the
unstable rather than in the metastable region of a
phase diagram. A second distinguishing charac-
teristic is that the order parameter which de-
scribes the system, usually a composition vari-
able, obeys a local conservation law. Thus the
decomposition is limited by diffusionlike processes
and, in its later stages, exhibits slow coarsening
rather than the rapid approach to completion which
occurs in magnetic or structural phase transfor-
mations. Also characteristic of the class of trans-
formations to be considered here is that the pro-
cess is assumed to occur isothermally. That is,
each point in the system is assumed to be in strong
contact with a heat reservoir, so that tempera-
ture fluctuations may be ignored and there is no
constraint of local energy conservation.

The most common experimental examples of
spinodal decomposition occur in metallic alloys'4
and glassy mixtures. ' ' For example, an Al-rich
Al-Zn alloy, when quenched rapidly from above
400'C and then annealed at temperatures in the
neighborhood of 100'C, is known to decompose
into Al- and Zn-rich regions via the spinodal
mechanism. ' A few other similar systems have
been investigated; and recently there has begun
to accumulate a small amount of accurate x-ray
and electron-microscope data. As seen through

the microscope, the reaction begins with the ap-
pearance of a fine, uniformly dispersed precipi-
tate, which subsequently coarsens and develops
into distinct regions of the equilibrium phases.
It is probable that spinodal decomposition occurs
in all alloy systems where there is a miscibility
gap, but the mechanism may often be obscured by
competing processes having to do with grain
boundaries, dislocations, etc. A spinodal reac-
tion has recently been observed in a two-compo-
nent fluid, but here the possibility of hydrody-
namic effects must complicate the process, es-
pecially during coarsening. In principle, the
spinodal mechanism should occur in condensation
or solidification; however, the unstable spinodal
states of pure fluids are experimentally inacces-
sible because one cannot quench rapidly enough to
avoid initiating transformations via nucleation.
Perhaps the most reliable "experimental" data to
date are those obtained recently by computer
simulation using the spin-exchange kinetic Ising
model. ""We shall refer to the latter model fre-
quently throughout this paper.

The basic theory of spinodal decomposition has
been developed, primarily from a metallurgical
point of view by Hillert, ""Cahn, ""Hilliard, '
and Cook. " The original work of Hillert"" was a
numerical investigation of a nonlinear, one-dimen-
sional model. Subsequently, Cahn"" developed a
more general linearized theory of the spinodal in-
stability. The role of thermal fluctuations was
later described by Cook, " still within the linear
approximation. Cahn, in an important paper, "
pointed out the essential role played by nonlinear
effects in determining the nature of the instability
and then in limiting its growth, but Cahn did not
attempt to formulate a statistical theory based on
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his nonlinear equations. This latter project has
subsequently been attempted by the present au-
thors. " ' The underlying statistical formulation,
along with a treatment of the later-stage coarsen-
ing problem, was presented in Ref. 1V. References
18 and 19 were devoted to the development of ap-
proximate methods for solving the general master
equation in Ref. 17.

In the present paper, we shall describe a new
computational technique which refines and extends
the methods introduced previously. Each of these
previous methods had serious limitations which
we believe are largely overcome by the new tech-
nique. Specifically, in using what we called the
"mean-field" approximation, "we were limited to
the very early stages of the spinodal reaction, that
is, to the stages preceding the occurrence of any
appreciable phase separation. On the other hand,
the longer-time computations based on a phase-
space cell analysis" gave the structure factor
at only a few values of the wave vector, and thus
were not really adequate for comparison with
experiment. Both approximation schemes had the
serious drawback of being unable to deal with the
asymmetric nonlinear instability which occurs
near the spinodal line (the classical limit of meta-
stability) and whose importance has been empha-
sized by Cahn. "

Our main purpose throughout this project has
been to develop a quantLtatlve theory of sp1nodal
decomposition which will be sufficiently accurate
to be used with confidence in the analysis of a po-
tentially rich body of experimental information,
and which will, at the same time, be flexible enough
to deal with real metallurgical effects not easily
studied by computer simulation. We want even-
tually, for example, to study the effects of co-
herency stresses on the spinodal reaction. It
might also be interesting to use the methods de-
veloped here to study the simultaneous phase
separation and ordering which occurs near the
tricritical point in the Fe-Al system. " Accord-
ingly, the present paper is devoted to the descrip-
tion of a computational technique which we hope
will be accurate throughout the spinodal region,
and to the preliminary testing of this technique
using parameters derived from the kinetic Ising
model.

The scheme of this paper is as follows. In Sec.
II, we summarize the underlying stochastic model
and review briefly the linear and mean-field ap-
proximations. Section III contains a complete
description of our new approximation scheme.
Scaling aspects of this theory are discussed in
Sec. IV. In Sec. V we consider a specific applica-
tion of our theory to the kinetic Ising model. Sec-
tion VI contains a summary and analysis of our

numerical results, and Sec. VII is a brief review
of our general conclusions.

H. SUMMARY DESCRIPTION OF THE MODEL

The statistical model of interest here has been
described in. detail in previous publications, ' '

and needs only to be summarized briefly in order
to fix notation.

We start by assuming that our system can be
described by a single scalar order parameter
c(r), which we can visualize as the average con-
centration of one of the components of a binary
solution in some region around the position r.
[Alternatively, c(r) might be the local magnetiza-
tion of an Ising ferromagnet. ] In terms of c(r),
we write a coarse-grained Helmholtz free energy
in the Ginzburg-Landau form:

z(e}=Jd~(-,'z(ve}'+f(c}} (2.1)

The meaning of the coarse-graining procedure has
been discussed in Ref. 21. What will be crucial
for the following analysis is that we shall take the
coarse-graining volume to be proportional to the
cube of the equilibrium correlation length g. That
is, at any given temperature, we shall assume
that c(r) is a smooth function on the scale of g,
and that E{c)has been computed by evaluating a
partition sum over all fluctuations with wave-
lengths shorter than $. This procedure permits
us to use c(r) to describe relatively large-scale
phase separation and coarsening, while still as-
suming that I", although nonconvex, is simply re-
lated to the true equilibrium properties of the sys-
tem. The significance of this choice of coarse-
graining size will become clearer when we come
to choosing system parameters in Sec. IV.

To describe the kinetics of this system, we
start with a continuity equation of the form

Q o jBt (2.2)

where j is a current density which describes the
interdiffusion of atomic species and is given by

5E -, sf 1
j (r) =-MV =-MV -KV'c+ —

~. (2.3)&c(r) sc]
Here, M is a phenomenological quantity which is
proportional to a mobility and which we shall take
to be a constant, independent of c(r). (But see
the discussion of M in Sec. V.) In order to con-
struct a statistical theory based on the equations
of motion (2.2) and (2.3), we formally add a Lange-
vin force to the right-hand side of (2.2). The latter
force describes the random part of the interaction
between the composition variations and the heat
bath. We then can derive a master equation for
the distribution-functional p{cj defined on the
space of functions c(r). This master equation has



NEW COMPUTATIONAL METHOD IN THE THEORY OF. . .

the form of a functional continuity equation:

(2.4)

where the probability current &(r) is given by

5pZ(F)=ere' -S
( )

prk T- )). (2.5)

Together with the specification of the coarse-
graining length (which plays the role of a cutoff),
Eqs. (2.4) and (2.5) constitute a mathematically
complete statement of the model upon which all
of our subsequent analysis will be based.

As in our previous work, we shall focus atten-
tion primarily on a calculation of the structure
factor 8(k), which is the Fourier transform of the
two-point correlation function S(r) S(k. ) is directly
proportional to the x-ray scattering intensity at
wave-vector transfer k. Let co denote the average
composition of the system, and define the fluctua-
tion variable u(r, t) to be

u(r, t) = c(r, t) —c,.
Then

S(lr —rol, t) = (u(r, t)u(—ro, t))

and

(2.6)

(2.7)

s(k, t)-=Jdjs(r, e)e'" (2.8)

Here, the angular brackets denote averages with
respect to the distribution functional p, and we
have assumed translational symmetry after aver-
aging.

The equation of motion for ~ is obtained by
multiplying the master equation by u(r) u(r, ) and
integrating over the space of functions u. The
resulting equation is best written in the Fourier
representation, where it takes the form

S.(lr -r.l)
=- &u" '(r)u(r. )& (2.10)

(We omit the subscript on S for the case n=2. )
Equation (2.9) is the first of a hierarchy of in-
creasingly complex equations of motion for high-
order multipoint correlation functions which one
may obtain by taking higher moments of the master
equation. Our problem is to devise a physically

=-2Mk' Kk +, S(k)+ — f S,(k)
8C0 2 8C0

1 94f-
+ ——S (k)+ +2Mk Tk2

6 Bc44 B
0

(2.9)

The quantities that we have denoted ~„are the
Fourier transforms of the higher-order two-point
correlation functions:

plausible and mathematically tractable scheme for
truncating this hierarchy.

Before turning to the new computational scheme
to be introduced here, it will be useful to review
two simpler approximations which have been
studied previously. First, if we neglect all of the
higher-order terms in (2.9), we obtain Cook' s"
linear equation of motion for S:

=2R(k)S(k) y2Mk~Tk' (2.11)

where the amplification factor, R(k), is given by

smS (k) = -Mk' (Kk' r
BC0

(2.12)

For negative values of 8'f/sc2O, that is, for values
of c, within the classical spinodal region, R(k)
will be positive for & &0„where

(2.13)

(e') = S,jdk S (k). (2.15)

The resulting equation of motion for 8 has the
same form as in the linear theory, but the pre-
viously constant quantity S2f/8c20 is now replaced
by the time-dependent expression

, + —,(u'(t)).
8'f 1 s'f

Co o

[We have dropped higher terms in the expansion
of f(c).j Because (u') is a positive, increasing
function of time, the characteristic wave number
4, must decrease. That is, the mean-square fluc-
tuations, via the nonlinear part of ef/ec, cause

and will have a maximum at k =k„=k,/v2. Fluc-
tuation modes with 4' near 4', in this approxima-
tion, are expected to grow exponentially in time,
resulting in a precipitation pattern with near-
periodicity at wavelength &„=2m/k„. The standard
metallurgical analysis of x-ray data, as described
in Ref. 2 for example, has been to identify R(k)
as the logarithmic time derivative of the scattering
intensity, and to plot R(k)/k' versus k' with the
expectation of finding a straight line for spinodal
systems. For reasons which will become ap-
parent, the resulting plot often turns out to be
strongly nonlinear. '

The "mean-field" approximation" can be ob-
tained from (2.9) by assuming that p(cj is always
a Gaussian distribution on the function u(r), cen-
tered at u =0. Then all odd correlation functions
vanish, and

S~(k) = 3(u')S(k), (2.14)

with
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a qualitatively correct coarsening of the precipita-
tion pattern. But there are obviously serious de-
fects in this scheme. The fluctuations u(r) cannot
be expected to remain small for any appreciable
time during the decomposition. On the contrary,
one expects the distribution on u eventually to
become peaked near those values of u such that
co+@ is equal to one or the other of the equilib-
rium concentrations. An equally serious defect
of this approximation is its neglect of the third-
order term in (2.9}. Near the classical spinodal,
the quantity 8'f/Scmo is small, and it is the third-
order term, proportional to 8'f/ Sc 03, which charac-
terizes the instability. As has been emphasized
by Cahn, "the resulting decomposition occurs via
fluctuations in u which are not at all symmetric
about u =0 (rather like the motion of a particle in
a cubic potential). Because it is unable to take
account of these asymmetric fluctuations, the
mean-field approximation gives a poor picture of
phase separation near the boundaries of the spino-
dal region. The approximation scheme to be in-
troduced in the following section has been developed
specifically for the purpose of overcoming the
above limitations of the mean-field method.

in the subsequent analysis.
The function p, (u} must be normalized in such a

way that

p, (u) du =1 (3.2)

p, (u)udu =0.
~ 00

(3.3)

p2(u, uo) du duo = 1, (3 4)

and that

p, (u)=f p, (u u, )du, . (3.6)

The correlation function is

S(r) =(u') y(r)

Using (3.6) to identify the function y(r) in (3.1),
we now can write:

The second of these conditions follows from the
definition of the variable u in Eq. (2.6). From Eqs.
(3.2} and (3.3}, it follows that p, is automatically
normalized:

HI. GENERAL SCHEME OF APPROXIMATIONS

Returning to Eqs. (2.9) and (2.10), we note that
each of the higher-order correlation functions that
we need involves on1.y two spatial positions, r and

ro. Thus, a knowledge of the two-point distribu-
tion function, p, [u(r},u(r, )], would be sufficient
to determine the right-hand side of (2.9). By p„
we mean the normalized distribution function ob-
tained from the full functional p [u} by integrating
over u space while holding the values of u fixed
at points r and r, . Of course, an attempt to write
exact equations of motion for p, would lead to a
hierarchy of p„equations even less tractable than
the correlation-function hierarchy with which we
started. What we shall do instead is guess a rea-
sonable form for p, which we can compute in terms
of known functions.

The ansatz for p, that we have found most use-
ful is the following. Let p, (u) be the single-point
distribution function, and write

p, [u(r), u(r, )]= p, [u(r)] p, [u(r,)]
&& [1+y(~ r —rJ)u(r) u(r, )].

(3.1)

One may think of the quantity in curly brackets as
the first two terms in a power series expansion in
the two variables u(r) and u(r, ). Cutting off this
expansion after the first nontrivial term, however,
turns out to produce very important simplifications

s„(r)=, s(r).

Therefore, within the approximation suggested
here, the higher-order correlation functions of
the form (2.10) all have the same r dependence as
S. This is not unreasonable, especially for the
Iong-range correlations that are of interest. The
resulting form of Eq. (2.9) is

' (" =-2M~ (K~ A)S(~), 2M' TI (3.6)

1 sf (u)~ (n —1)! sc" (u')

1 af(c, +u))
(u') su (3.9)

Note that the k dependence of this equation has
become mathematically trivial, and the only two-
point function which appears explicitly is S itself.

There remains only the evaluation of the time-
dependent quantity A(t) in order to complete the
approximation scheme. A(t) is a one-point func-
tion which is easily evaluated once p, is known. In
fact, p, is completely determined by the ansatz
(3.1). The equation of motion for p„obtained by
integrating the master equation over u space while
holding u fixed at just one position r, involves only
''he distribution functions p, and p, . But p, is given
by (3.1); thus, the hierarchy of p„equations is
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closed at n=1.
To derive the equation which determines p„ it

is necessary to use a formalism that takes explicit
account of the smoothness of u(r) implied by the
coarse-graining assumption. A simple way to do
this is to replace the continuous position variable
r by a denumerable set of sites r on a lattice
whose spacing is the coarse-graining length a.
The function u(r) is then replaced by a set of
variables u~. The point here is that quantities of
the form (u(r)") have meaning only in terms of
the coarse-graining assumption. For example, if
u were to represent an average of Ising spins
whose values are +I, then (u') would be unity for
the special case of a coarse-graining length equal
to just one microscopic lattice spacing, but would
be some smaller, temperature- and time-depen-
dent quantity otherwise. Another way of seeing
this is to note that (u'), as given by the Fourier
integral in (2.15) for example, is strongly cutoff

Bt ~ Buff

where

(s.io)

J„=J(r~) = —, h„g p+ksT
M BE Bp
a'

~ Bus Bus

(3.11}

BE , Bf(u8)= —Ka ~688 Q8 +a
BQS BQS

(3.12)

is the finite-difference representation of the quan-
tity a'6E/&u(r). The matrix &„s represents the
operator V' appearing in Eq. (2.5). Integrating
over all but one of the u„, we obtain

dependent.
In the coarse-grained cellular notation suggested

above, the master equation has the form

&a, (M.) &

( I „)z~~
s sf (u„) sf (u8)=-M -Kky~u~+6y~ p~(u~} —~ du8 -K+ys u8 +5 ps p2(u~ bus)
Q Bug

Mk TA Bp
Bu of

(3.13)

As mentioned above, we now may use (3.1) to
eliminate p, in this equation. The result is an

equation of the form W=, k4(Kk'+A) S(k) dk.2' p

(3.19)

Bp B Bp
Bt Bu

' =M G(u) p ik~T a' Bu
(3.14)

W=-+4„8(-Kbgy+A&s~)Sy„.
y, 8

(3.16)

In (3.15), as in (3.9), f is always to be evaluated
at &p +u. Finally, we can eliminate the fictitious
lattice sums by returning to a Fourier represen-
tation. Let 0„., be the radius of the Wigner-Seitz
sphere in Fourier space corresponding to the
coarse-graining length a:

k'.„=6 m '/a'.

Then

(3.17)

2 w p

(s.is)

where 6 denotes the &-independent constant ~&„„~,

~.~=". "(:.-(:.)-: ('.))
(3.15)

and

a (u -b, )'""'=.(2') ~""P—

a, (u+ b, )'
(2 )'" 2&t'

(3.2o)

Together, Eqs. (3.6) and (3.14) constitute a
closed mathematical system which can be solved
numerically by straightforward computational
methods. Equation (3.14}, however, has the form
of a diffusion equation for a particle whose posi-
tion is u and which is subject to a time-dependent
force, —G(u}. Available numerical techniques for
solving such an equation are time consuming and
subject to unpredictable instabilities. In order to
avoid this difficulty, we have resorted to an ap-
proximation which we have used for a similar
equation in Ref. 18. The idea is to assume a sim-
ple, parametrized, functional form for p, (u), and
then to derive and solve a small set of ordinary
differential equations for these parameters in-
stead of solving the full partial differential equation
(s.i4).

The form we choose for p, is a sum of displaced
Gaussians:
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The normalization conditions (3.2) and (3.3) re-
quire that

a, = b2/(b, +b2), a2 =b, /(b, +b ). (3.21)

Thus, there remain three time-dependent param-
eters, o, b„and b, to be determined. These pa-
rameters have been chosen to convey some quali-
tative information about the state of the system.
For an undecomposed system, b, and b, will be
small compared to o, indicating a fluctuation dis-
tribution with a single peak at u =0. As the spino-
dal reaction nears completion, on the other hand,
we expect to see a well-defined, doubly peaked
distribution for which 0 is appreciably smaller
than the separation between the peaks, i.e. , o

«b, +b, . Note also that the ansatz for p, is set up
to deal with asymmetric situations in which 6, & 6,.

The calculation of the above three parameters
can be based on the solution of three moment
equations derived from (3.14). That is, we multi-
ply (3.14) by u', u', and u', and then integrate over
u to obtain equations for (u'), (u'), and (u') . In
this way, we find

—(u') =2M [ W+k T-(A/a')]
d
dt (3.22)

d, (u') "
1—(u')= 3M W, —+&

dt (u') „, (n —1)!

u"" — u' u" '—

8 &If

9 c()

(u')(M"))
(u')

(3.23)

For numerical accuracy at early times, when the
fluctuations are still small, it is better to com-
pute

(u4), -=(u4) —S(u') ' (3.24)

rather than to compute (u4) directly. The relevant
equation is

~ ( "'*&-("&&"- »- '"'""")
u')

(s.25)

The next step is to express the right-hand sides
of Eqs. (3.22), (3.23), and (3.25) in terms of the
three basic parameters of Eq. (3.20). We have

and o' via Eq. (3.20}. For example, if we cut off
the expansion of f after the fourth term, as we
shall do for the specific calculations to be de-
scribed in Secs. V and VI, then we shall need
(u') and (u'), which are given by

(u') =b,b, (b, —b, )(10m'+b', +b', ), (3.29)

(u') =15@'+45o b, b, +15(Pb,b, (b2, —bP, +b', )

+b, b, (b4 —b,'b, +b', b', —b,b,'+b4} . (3.30)

Our numerical procedure is as follows. Given
values of b„b„and 0 at a time t, we compute
new values of (u'), (u'), (u'), at time t+bt using
Eqs. (3.22)-(3.25) along with (3.29) and (3.30). We
also compute new values of S(k) from Eq. (3.8).
Then we invert Eqs. (3.26)-(3.28) to obtain new

values of b„b„and O'. This inversion is per-
formed by noticing that the quantity b,&, satisfies
the cubic equation:

(b,b, )'+ —,
'
(b, b, )(u~), ——,

' (u') ' = 0, (3.31)

which is solved by successive approximations.
Given (b,b, ), we easily obtain each of the three
parameters separately from (3.26} and (3.27}.
Finally, we recompute A from (3.9) and Wfrom
(3.19), thus completing the iteration cycle.

IV. SCALING ANALYSIS

Before starting a numerical study of the approxi-
mation scheme outlined in the preceding section,
it is necessary to reduce the equations to dimen-
sionless forms in order to find out how various
physical parameters enter into the theory. We
shall see that, if one is close enough to a critical
point that simple scaling laws become valid, only
one model-dependent parameter is needed to de-
scribe the decomposition process at all tempera-
tures. Away from the critical point, this param-
eter will become weakly temperature dependent,
but the scaled form of the theory will continue to be
useful.

To begin this analysis, we shall have to assume
that the free energy f (c), apart from linear terms
in c, is symmetric about some value of composi-
tion, say, c„.We can then work with the vari-
able X=-c —c„.The coexistence curve, or mis-
cibility gap, is"

X,(T) =+BLAB, e =1 —T/T . (4.1)

The appropriate scaling form for f (X}is

(u') =o'+b b (3.26) (4.2)

(u') =b, b, (b, —b, ),

(u'), =b,b, [(b, —b, )' —2b, b, ].
(3.27)

(3.2S}

Any higher moments which appear in (3.23) and

(3.25) can also be expressed in terms of b„b„

where a is the coarse-graining length defined pre-
viously, Q is a dimensionless function, and fo is
a constant defined by the normalization of P,
chosen here to be

4(0) = 0'(0) =o, 0"(o) = -1
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If f is the coarse-grained free energy computed
as described at the beginning of Sec. II, then we
must have

k =qk, . (4.i3)

We now make the following scaling transforma-
tions. We introduce a dimensionless time variable

(t('(+1) =0; (4 4)

that is, f(X) must have its minima at X =+X,.
To evaluate, f„we examine the differential

susceptibility

2Mk~Tk', f„2Mk~Te ~ "'
a3X2 a3t2Cy&/(1}2

and a dimensionless structure factor 8:

(4.14)

y, = (1/a,') S (k = 0) = Ce (4.5)

where a, is the underlying lattice spacing, and C
is a constant defined by Fisher. " The coarse-
graining assumption requires that f contain all of
the thermodynamically important fluctuations,
i.e., those with wavelengths up to the correlation
length $; thus, a simple, mean-field approximation
ought to be adequate for S(0):

S(q, ~)=,', S(k, t)=, „)S(k, t). (4.15)

Then Eq. (3.8) reduces to the form

(4.16)

where

(4.17)

S (0) = ks
s' f a'X'
BX'

~ f Q"(1) ' (4.6) and

Combining (4.1), (4.5}, and (4.6), we find y =u/X„x, =X,/X, . (4.18)

a, g, " 1 a C " 1
(4.7)

Equation (3.14) transforms into an equation of
motion for the distribution over the reduced fluc-
tuation variable p. After some algebra, we find

Finally, and most important, if we choose a such
that the cutoff k,„.,„ in (3.17) is proportional to the
inverse correlation length, say, k»m. „=o.'/$ where
& is a constant of order unity, then

sp, 3n'(t (1) s Bp,
10fo,9y

g(y)p, 9

where

(4.19)

a = [(67r')' '/&] (
and

6x'
n3 a, Cy" (i)

is independent of e. Here we have used

(4.8)

(4.9)

(4.10)

(4.20)

(4.21)

along with the scaling relation 2P+y' =3v'. Note
that if we choose the standard Ginzburg-Landau
polynomial for Q (quadratic plus quartic}, then

Eqs. (4.3) and (4.4) require Q"(1)=2.
Within the same mean-field approximation used

in (4.6}, we have

In analogy with (3.15), Q in (4.20} denotes P(x, +y).
Given a functional form for Q, the only input pa-
rameters which are needed in Eqs. (4.16}and
(4.19) are xo and fo. It is fo which is the only non-
trivial system-dependent parameter remaining
in the scaled form of the theory.

k',„„,„1 1 s'f ksTfo
c(' p lf sX' Ka'X' ~ ( (4.ii)

V. KINETIC ISING MODEL

It will turn out to be useful to define a wave num

ber &, such that

o.'P"(1) Ka'X2 P"(1)P~
' (4.i2)

This ~, may be identified as the largest wave num-

ber for which the linear approximation (2.11}pre-
dicts an instability when Xp cp c y 0. We shall
use k, ' as a natural unit of length, and shall de-
fine the reduced wave number q by

Throughout the rest of this paper, we shall
couch our numerical results in terms of the kinetic
Ising model as used by Bortz et al. ' We shall see
immediately that, because of certain further ap-
proximations that we have made, our calculations
are not yet realistic enough to permit reliable
quantitative comparisons with three-dimensional
Monte Carlo data. " Nevertheless, the Ising model
does provide us with a useful conceptual basis for
discussion, and our information about it is com-
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piete enough that semiquantitative comparisons
will be meaningful.

Perhaps the most serious assumption that we
shall make is that Q has the Ginzburg-Landau
form.

y(x) =--,'x'+-,'x', x =X/X, . (5 1)

B =1.57, P =0.339 (assuming scaling),

C =0.193, y' = 4,

$0/ao =0.248, v' =+, .
(5.2)

The quantities B, C, and Eo are defined in Eqs.
(4.1), (4.5), and (4.10}respectively. Given these
quantities, and using P"(I)=2 and o.'=1, we have

f, = 5.77. —

We also have

(5.3)

In the scaling region near the critical point, how-
ever, P must be identified as the fixed-point
Hamiltonian which has been defined and computed
by Wilson, '4 and for which a sixth-order term is
known to be important. Our neglect of this term
means that we are going to overestimate the mag-
nitude of the fluctuations during the later stages
of the decomposition, and that even our early-
stage results will be quantitatively incorrect for
values of X, near the spinodal.

A second limitation comes from our use of the
conventional power-law approximations for the
e dependence of the quantities $, X, , and y, . This
will limit the accurate applicability of our results
to values of & not much larger than 10 '. Because
of critical slowing down [note the factor c ~ "'
in (4.14)], Monte Carlo experiments take a very
long time and are essentially impossible in this
region. On the other hand, accurate calculations
at larger &'s will require separate evaluations
of all of the relevant parameters [as well as P(x)]
at each temperature. To achieve some degree
of generality, therefore, we shall simply use
available data from the scaling region.

The specific data that we shall use are the fol-
lowing numerical estimates for the simple-cubic
Is jng model

00 g2X
&t 12 (5.6)

where a0 is the lattice spacing. To make contact
with the definition of M in Eq. (2.3), we must
equate the diffusion constants:

noninteracting
(5.7)

For the free energy in (5.7), we need only the
entropy of a system of noninteracting Ising spins
(+1) with magnetization S; that is,

8'f ksT 1
BX2 a3 1 -X~

0

Thus,

M = (a'/12ksT)(1 -X').

(5.8)

(5.9}

Note that, in contradiction to our original assump-
tion, M does turn out to have a composition de-
pendence. This X dependence of M might be quite
important for late-stage spinodal decomposition
at low temperatures, where the values of X will
fluctuate between +1. For present purposes, how-
ever, we shall simply set X =Xo in (5.9). Finally,
returning to (4.14), we have

quantity, i.e., that it depends on the frequency of
attempted exchanges and on geometrical properties
of the system, but not on any dynamical quantities
such as interaction energies. Thus, we can eval-
uate M by looking at the purely noninteracting
spin-diffusion problem.

Let X, (t) denote the average spin at a site i on
a simple cubic lattice at time t. Suppose that
there are no interactions between these spins,
but that a spin-conserving stochastic process is
defined, in accord with Bortz et al. ,

' ' as fol-
lows. A site is chosen at random; then a nearest
neighbor to thi5 site is chosen, also at random.
If the spins on these sites have opposite signs,
then these spins are exchanged with probability 2.
This process is considered to be a single "trial, "
and time t is measured in "trials" per lattice site.
The resulting motion of the average spin X(r, t)
is described by a diffusion equation of the form

k, —= 2.85~'"4/a, (5.4)
1 ~a

' (1-X',)
24

and

S(k) =0.386a,'e '~'S(q) (5.5)

In order to evaluate the ratio ~/t from Eq.
(4.14), we must first make some estimate of the
rate factor M. This problem has been studied by
Kawasaki, "who has obtained the same scaling
law for spin diffusion that we have found in (4.14).
To make a simple estimate of the magnitude of
I, we assume that M is a purely kinematical

= 3.51(l -X')e"" (5.10)

The last quantity that we must compute in order
to complete the connection between our theory and
kinetic Ising results is the initial value of the re-
duced structure factor, S(q, v =0). The standard
Monte Carlo experiment ' "simulates a rapid
quench from high temperature into the two-phase
region. That is, one starts at t =0 with a completely
uncorrelated array of Ising spins. In a coarse-
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graining cell containing (a/ao)' lattice sites, the
mean-square order parameter will be (&')=(ao/a)'.
Thus, from Eqs. (2.7) and (2.8),

(5.11)

and, from Eq. (4.15),

8(q, f =0) = I/y, P"(1)=-2.59~'~'. (5.12)

This result has the unfortunate effect of destroying
the temperature independence of our scaled theory.
In all of the calculations described in Sec. VI,
we have started with 8(q, t = 0) = 0. This choice
of initial condition is going to have an effect on
our calculations only for very small reduced times
~ or for large values of &.

VI. RESULTS AND INTERPRETATION

The computational scheme described in the pre-
vious three sections has been carried out numer-
ically, and selected results are shown in the ac-
companying figures. We have used the simplest
possible finite-difference method for integration
of all of the differential equations. In order not
to have our & intervals limited by the short relaxa-
tion times implied by the 8 equation (4.16), for
large q, we have built into the program a check
to see where 8 is well approximated by (q' —p) ',
and have inserted that formula for increasingly
large pieces of the high-q tail at later times ~. In
this way the & intervals can, be increased gradually
throughout the computation and stability can be
maintained.

In Fig. 1, we show 8(q) curves for selected
times 7 for x, =0. Note that the peak in 8 moves
toward smaller q as w increases. There is no
hint of exponential behavior of 8 for any value of
q. The linear theory does predict fairly accurately

30—

20—

.2 4 .6 .8 1.0 1.2 1.4
q

FIG. 2. Same as Fig. 1 but- for xp=~/"K The dashed
line indicates the envelope 1/q2.

the position of the peak at very early times (v =—10).
This position, q,„,, = I/W2 is indicated below the
graph. In the inset in Fig. 1 we show the functions
p, (y) corresponding to two of the 8(q) curves on
the left. As expected, p, is initially peaked at
y =0, but this peak splits symmetrically and even-
tually develops into two distinct peaks which are
slowly separating from one another.

Figure 2 is drawn in analogy to Fig. 1, but this
time for x, =i/vS. This value of x, places us
exactly at the classical spinodal where 8'f/Bx2O

vanishes. Thus, the linear theory would predict
g„,„,= 0 and no decomposition at all. Instead, we
see that a broad but well-defined peak does de-
velop, albeit with considerably less intensity than
for x0=0. This peak shifts to the left with in-

creasingg

&, but the cross -over phenomenon, that
is, the leftward shift of the large-q tail of 8, does
not occur. The inset in Fig. 2 shows two corre-
sponding p, curves. There is, of course, an asym-
metry here, reflecting the fact that the fluctua-
tions are developing in accord with the lever rule.
More interesting is the fact that two distinct peaks
have appeared by the time ~ = 80, indicating that
a true phase separation is taking place.

Some further insight into what is happening here
can be obtained by examining the function p, (v),
defined in Eq. (4.1V). For the specific function Q
that we have chosen in Eq. (5.1), we have

10— p. = 1 —Sx', —Sx, (y')/(y') —(y')/(y'). (6 1)

0 .2 .4 .6 t .8 1.0 1.2 1.4
Qinax Q

FIG. 1. Structure factor S(q) for fp =5.8, xp =0 com-
puted at various times 7'. The inset depicts the distri-
bution function p&(y) at two of these times.

Note that, in Eq. (4.16), it is p. which determines
the instantaneous stability of the Fourier modes
whose intensities are represented by 8(q). Modes
with q'& p. will be growing unstably. Those with
g & p, may also be growing; but these modes are
relaxing toward (q' —p) ', which may, of course,
be quite large. This verbal picture is complicated
by the fact that p. itself is a function of ~, as shown
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1.0-
behavior of the kind predicted by Eqs. (2.11) and

(2.12). In Fig. 4, we have plotted

.8 1 BS
(R(q') =- (6.4)

.2

.O2'-+

I I I I I

10 20 50 40 50 60 T

I I I

10 20 50 40 50 60 T
(

I

I

—,02 (-

I
(b)

I04r
I

I(
I(

FIG. 3. Function p, (7) for fp ——5.8 and (a) xp ——0, (b) xp
=1/v3. The dashed portion of curve (b) is only schematic
because the computer program printed values of p only
at time intervals Av =2.

in Fig. 3 for the two cases depicted in Figs. 1 and
2. For xo =0, p. decreases monotonically from
unity. The inst, ability always shifts toward smaller
q, and the tail at large q drops appreciably. For
xo =1/v'3, on the other hand, the first two terms
in (6.1) cancel, and the initial instability is domi-
nated by the cubic term as predicted by Cahn. "
For positive x„(y') must be negative; thus p
starts at zero, initially goes negative, but quickly
changes sign and then stays roughly constant at a
small positive value. This value of p, is so small,
however, that it has essentially no effect on the
8 equation. That is, one can simply set p. =0 in

(4.16), which, as far as S is concerned, returns
us to Cook's linear fluctuation theory. " As seen
in Fig. 2, S(q) rises toward the envelope,

as a function of q' at the times 7 =20 and 7 =100.
The results are reminiscent of the experimental
data reported in Ref. V. The curves show no no-
ticeable straight sections, even for values of q
in the neighborhood of the peak in S(q). At the
peak positions q~, however, both 6I(q') curves are
very nearly tangent to the lines ILL,

—q', as long as
I(, is chosen here to be the instantaneous p(7),
rather than p(0) as required by the linear theory.
This last observation suggests that experimental
data might usefully be analyzed by looking at such
tangent lines, as has, in fact, been done in several
cases. (See Figs. 22 and 23 in Ref. 2.) To rein-
force this suggestion, we mention that we have
also computed S(q, t) for the case fo =26, which is
appropriate for the alloy Al-Zn according to the
thermodynamic data used by deFontaine" in his
analysis of spinodal decomposition in that system.
In this case, although S(q, t) still does not increase
exponentially with time, there is a significant
straight section in 6t(q') near q~. We shall return
to the significance of large f, in some later com-
ments.

As a further part of our numerical analysis, we

have looked at coarsening as a function of time.
Wagner, "and Lifshitz and Slyozov" have pre-
dicted that the coarseness of the decomposition
will increase like t"', and this prediction appears
to have been verified experimentally in certain
cases. 4 On the other hand, the Monte Carlo simu-
lations for kinetic Ising models'" produce much
slower behavior. Binder and Stauffer' recently
have suggested a theoretical coarsening law of the

0.5
S (q, ~) = 1/q', x, = 1/v 3 . (6.2)

0.4—

8SR(k') —= (6.3)

as a function of k' and looking for straight-line

In this sense, the system is undergoing critical
fluctuations during decomposition near the spino-
dal. It is only at much later times, when the peak
reaches the neighborhood of v p, ~ 0.1, that the be-
havior of g will become important in (4.16). For
the earlier times which we can consider here, it
is only the p, function which gives us an indication
that phase separation may be occurring.

As was mentioned in Sec. II, a standard metal-
lurgical analysis of x-ray scattering data involves
plotting the quantity

0.3-
cT

0.2 -~

-0.1
I I I I I I' 0 0.1 0.2 0,3 0.4 0.5 0.6 0.7

q

FIG. 4. Reduced amplification factor $(q )/q for
fp=5.8 xp=0 and (a) T=20 (b) 7=100~ The dashed
lines are tangents to these curves at the peak positions
qp(7') .
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q~ = 1.09m' ', a'= 0.212 (6.5)

throughout the interval 4 & r & 100. (We have no
results for 7&100.) Our uncertainty in a' appears
to be at most +0.005. In the case f, = 26.4,
x, = 0, we find an even slower coarsening for
r~ 50. Here, a' is roughly —,', perhaps corres-
ponding to a period in which the linear theory is
nearly valid and the peak is almost stationary.
At v = 50 however, there occurs a break in the
lnq~-vs-lnv. curve, and the later coarsening
(50&7&200) is again described by a' =—0.21. Thus,
there seems to be some sort of universality of
the coarsening predicted by our theory, but, at
present, we can offer no way of understanding
how this comes about, nor do we know whether
the result has any physical significance.

We turn finally to a comparison of our computed
structure factor S(q, r) with the most recent Monte
Carlo data obtained by Marro etal." At the time
that this report is being written, the only avail-
able Monte Carlo data with which we can attempt
a meaningful comparison are those for x, =0 and
T/T, = 0.8. This temperature is quite a. bit too
low to be in the scaling region, but, as explained
in Sec. 7, it is very hard to get to long enough
times at higher temperatures. For these param-
eters, the specific conversion factors that we
need are

7 = 0.0593t, q = 0.988ka~.

We also have

S(q, f) = 0.3468„(k, t),

(6.6)

(6.7)

where 0„ is the structure factor which has been
normalized by Marro etal. so that S„=1 at t= 0.
Note that there are no adjustable parameters
whatsoever in these formulas.

In Fig. 5 we show S(q) at five different times r
(solid curves) along with Monte Carlo values (open
circles) scaled according to Eqs. (6.6) and (6.7).
The crosses in Fig. 5(a) are Monte Carlo points
obtained at T/T, =0.91 and appropriately re-
scaled. Apart from the fact that our theoretical
S(q) lies consistently below the "experimental"
values on the high-q side of the peak, the agree-

form t', where a' = I/(d + 3) and d is the dimen-
sionality. This prediction seems to be accurately
verified in two dimensions. " Although there is
little reason to believe that our present theory
will be valid for coarsening beyond the stage where
clusters are two or three correlation lengths in
size, it is interesting to note that our data do in-
dicate a slow coarsening with a' appreciably
smaller than —,'. For the Ising case, f, =—5.8 and

x, = 0, our data are extremely well represented
by the function

ment is quite satisfactory. The excellent agree-
ment at small values of q indicates to us that we
have not made any serious mistake in our evalua-
tion of the mobility M in Sec. V. What is particu-
larly encouraging is the fact that the position and
height of the peak are accurately predicted by our
theory all the way out to the latest times for which
data is available.

There are at least two possible explanations for
the high-q discrepancy. The first is that it is just
a departure from scaling, and would go away if
we could do the simulation experiments at higher
temperatures. The fact that the discrepancy is
reduced at T/T, = 0.91, as seen in Fig. 5(a), in-
dicates that this is at least a part of the answer.
It is also likely that the missing higher powers of
x in Q(x) are playing some role here. A positive
x' term in Q would tend to increase f, via the
factor Q "(1)in Eq. (4.7). This, in turn, would
lead to larger values of p, and, thus, larger values
of S(q) for large q. These higher powers of x in

Q must also play an important role in slowing
down the growth of the peak in S(q) at late times.
This effect shows up, for example, in the Monte
Carlo data at T/T, = 0.6, a temperature so low
that we must expect strong departures from the
scaling version of P(x) in the form of large coef-
ficients of x', x', etc. Here the theoretical S(q)
catches up to the "experimental" at about v = 20
and grows much too rapidly thereafter. At pre-
sent, we do not know whether this discrepancy
can be cured by using a nonscaling Q in the for-
malism developed here, or whether our computa-
tional scheme is breaking down in some more
serious way. This point is of considerable inter-
est because a very similar late-time discrepancy
occurs in trying to fit actual x-ray spectra from
the Al-Zn system. ' '

VII. CONCLUSIONS

The following general conclusions emerge from
the preceding analysis.

(i) The Cshn-Hilliard-Cook linearized theory of
spinodal decomposition will be accurate only for
very early stages of the decomposition in systems
for which the parameter f„defined in (4.7), is
sufficiently large. Note that, when f, becomes in-
finite, p, remains sharply peaked in (4.19) and
(4.20), and p, remains constant. The simplest
way to achieve large f, is for the range of inter-
actions to be much larger than the lattice spacing,
that is, for the system to be one which is accurate-
ly described by mean-field theory. When f~ is
small, as it is for short-range Ising systems, the
thermally induced fluctuations are large enough
to cause appreciable nonlinear effects even at
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