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We propose and analyze the use of quantum-beat phenomena to test neoclassical radiation theory
(NCT) and quantum electrodynamics (QED). For a beam-foil type of experiment with atoms having
one upper level and two closely spaced lower levels, all coherently excited, NCT predicts the presence
of quantum beats in the emitted radiation; beats are not expected in QED. QED predicts beats when
many atoms are present, in agreement with recent photon-echo experiments. An experiment to test
NCT and QED is suggested.

I. INTRODUCTION

At present, quantum electrodynamics (QED)
represents an apex of modern theoretical physics,
for it gives, with the help of certain renormaliza-
tion prescriptions, remarkable agreement with
experiments to many significant figures. Of
course it suffers from the presence of infinities.
In this regard the foundations of QED, for exam-
ple, the quantization of the electromagnetic field,
and the necessity of this quantization have been
subjects of recent discussion. ' For instance,
the self-consistent combination of Maxwell and
Schrodinger equations has been used successfully
to treat Inany effects which are often thought to
require QED.2 ' The procedure involves treating
the expectation value of the dipole moment opera-
tor as the electric dipole of an ensemble of radiat-
ing atoms. Neoclassical theory' (NCT) carries
this procedure further by associating the expecta-
tion value of the dipole moment operator with the
actual dipole of an atom, thus allowing one to con-
sider each atom individually. So far experiments
in areas where differences in the predictions of
NCT and QED exist support QED.' In this paper
we show that quantum-beat phenomena provide an
example in which the predictions of QED and NCT
are qualitatively different.

One difference' between the predictions of QED
and NCT concerns the shape of the spontaneous
emission pulse from an atom. Since NCT consid-
ers the expectation value of the dipole moment
operator as an actual dipole which radiates ac-.
cording to classical electrodynamics, it predicts
different pulse shapes for different degrees of
initial excitation of the atom. According to NCT,
an atom purely in Bn excited state will not decay.
An atom that is excited almost entirely to the ex-
cited state wiB decay with the emission of a
chirped hyperbolic-secant pulse that has peak in-
tensity at the time when this atom has equal prob-
ability of being in the excited and the ground

states. Furthermore, when the excitation leaves
an atom predominately in the ground state, then
NCT predicts the emission of an exponentially
decaying pulse. Contrary to NCT, QED predicts
the emission of an exponentially decaying pulse
for all degrees of initial excitation of the atom.
Consequently, to see the difference in the predic-
tions of QED and NCT, one requires atoms that
are predominately in the excited state; as pro-
ponents of NCT point out, this condition is exper-
imentally difficult to fulfill. In the present work
this difficulty is circumvented by using quantum
beats to test QED and NCT."

Quantum beats have been observed in beam-foil
experiments where each atom is impulsively ex-
cited by passage through a carbon foil to a super-
position of two closely spaced upper levels and a
lower level IFig. 1(a), henceforth referred to as
atom of type Ij." A typical experimental geometry
3nd apparatus is shown in Fig. 2. From this fig-
ure, one sees that the instant when an excited
atom radiates light is determined by the point in
space at which radiation occurred. Thus beam
images recorded on the photographic film in the
spectrograph show a decline in the blackening from
one end to the other because of the finite lives of
the excited levels. Time-dependent oscillations
(quantum beats) are transformed into spatial vari-
ations in the intensities of the beam images. The
sharply defined origin in space (time) required for
the observation of quantum beats is provided by
the exit surface of the foil. A point whose impor-
tance will become clear later is that at normal
beam current; the photographic film rarely re-
ceives light from more than one atom at a time.
For the above experiment the presence of quant:um
beats is predicted by both QED and NCT.

However, if for the above experiment the atom is
excited to a superposition of one upper and two
closely spaced lower states [Fig. 1(b), henceforth
referred to as atom of type II], then QED does not
predict quantum beats while NCT does. No serious
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search has been made for lower-state beats; how-
ever, an experiment designed to look for beats
from type-II atoms provides a straightforward
test of QED and NCT.

It should be emphasized that the recent photon-
echo experiments seem to indicate the presence of
beats from atomic ensembles of type II."'" How-
ever, one must be careful in the analysis of these
experiments, for they are different from the beam-
foil experiments in that here one looks at emissions
from many atoms simultaneously. In this situation
we show that there is essentially no difference be-
tween the QED and NCT predictions.

In Sec. II we present the QED and NCT treat-
ments of quantum beats from a single type-I atom.
We show that both QED and NCT predict the pres-
ence of beats in this case. We show in Sec. III
that QED and NCT differ in their predictions of
quantum beats from a single type-II atom. In Sec.
IV we present results of calculations which indi-
cate that QED distinguishes between single-atom
beats and many-atom beats, a detail that is not
present in NCT. Finally, in Sec. V we propose
an experiment, using type-II atoms, that would
serve as a test for NCT and QED.

II. QUANTUM BEATS FROM A SINGLE TYPE-I ATOM

Quantum beats have been observed when an atom
is excited to a coherent superposition of closely
spaced upper levels [Fig. 1(a)]." "4 NCT describes
the modulation of the radiated intensity as a result
of two dipoles created between i a& and i c&, and be-
tween i b& and i c&. That is, an atom excited at
time t, has at time t the state vector

i y(t, t, )& =A(t)e ' & ' '0
i a&

+B(t)e '"8~' 'oui b&+C(t)i c&.

(p(t, t.)i ri p(t, t.)& =A*(t)C(t)c " '(ai ri c&

~a+(t)C(t)c' 8&'-'o'(bi ri c&+c.c.

la)

Treating the expectation value of the dipole mo-
ment operator as an actual dipole which radiates
according to classical electrodynamics, we have
the radiated intensity as being proportional to

i A'(t)C(t)(ai ri c&i'+i B*(t)C(t)(bl rl c&l
'

+2Re[A. *(t)B(t)i C(t)i'(ai ri c&

&&( ci ri b& e" -"Bl&'-'0&]

However, each measurement for the radiation
involves an atom which is excited at a time differ-
ent from the others. Hence, the beat intensity is
actually proportional to

2Re A*tBt Ct 'ax c cr 6

sin[(rd„—ro, )r/2I;(, , ),
)((u„—(u 8)~/2

where v is the range of excitation times. We note
that for beats to be seen the necessary coherence
in the wave function is achieved by limiting the
range of excitation times to T&1/(+„—~8). In
foil excitation" and in optical excitation'

sin[(u) —(u~) v/2]
((u —(u ~)7/2

where in foil excitation 7 is the foil thickness per
average velocity of the atoms.

That QED also predicts quantum beats may
readily be seen. Initially, the atom is in a co-
herent superposition of the upper states shown in
Fig. 1(a), and the electromagnetic field is in the
vacuum state. Then,

I y(t, )& =a, l ao&+a, l bo&+C, l cO&,

where i g(t)& is the total wave function, i j 0& means
atomic state i j& and the vacuum electromagnetic
field, and Ap Bp and C, are constants. Since di-
pole transitions are allowed between i a& and i c&

and between i b& and i c&, i ((t,)& evolves into

i tp(t)& =A(t)i aO&+It(t)i bO&+C(t)i c0&

+Ai(t ) i cl„& +Bi(t )i c1
& & .

Writing the electric field operator as

@( t ) gg (
jQ. g j(g g g -k'x IQ)yt )+

k

Nt Nt (c)
Ib
I c)

ATOMIC BEAM

LJ

["t
FP I L SPECTROGRAPH

FIG. 1. Fnergy levels for {a}an atom {type I}with
two upper and one lower state; {b}an atom {type II} with
two lower and one upper state.

FIG. 2. Exper. '.mental geometry and apparatus for a
beam-foil type of quantum beat experiment.
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where g„ is the electric field per photon, we see
that the presence of beats is indicated by the mat-
rix element

& tt(t }I a'asl 0(t)& =A*,(t }&,(t),
which is nonzero.

III. QUANTUM BEATS FROM A SINGLE TYPE-II ATOM

Application of NCT to treating an analogous
problem with a type-II atom again leads to the pre-
diction of quantum beats. In this case it is the di-
poles created between [ a) and

~ b) and ) a) and [ c)
that interfere to produce a beat. That is, an atom
excited at time t, has at time t the state vector

( (t(t, t, )) =A(t)e ' s ' 'o)( a)

+E(t)e-'( s )(' 'o)( b)+C(t}( c) .

Thus

( q(t, to)( r[ y(t, t, )) =A+(t)a(t }e'"~ '-'"(a[ r( b)

+A*(t )C (t )e' s(' 'o'( a-[ r [ c) + c.c.
According to NCT, we have the radiated intensity
as being proportional to

I A+(t)a(t }& al rl b&l'+I A&(t }C(t)&al rl c&l'

+2He[l A(t)l'B(t }C*(t}( [ra[ b&(a( r( a&

i(ul~ les)(t--to)
]

Since there is a range of excitation times, the beat
intensity is actually proportional to

2Re At Bt C*t ay b cy a

sUir(ro„—res)T/~l;r i,
)(o)„—o) s) v/2

where again, in foil excitation and in optical exci-
tation,

~ « i/((d „—(d s)

sin[((o„- (o s)7'/2]

((d„—(o s)7'/2

However, the result derived by using QED is
that quantum beats are not to be expected. To see
this, we start with the initial state

( t/r(t, })=AJ ao) +B,[ bo) + CJ co),
which at a later time becomes

[ y(t })=A(t }( aO&+a(t )[ bO) +C(t )[ cO)

+A, (t }i bl„) +A, (t )i cl s) .

Consequently, the matrix element

(y(t)[ a„asj tet(t)) =(&„Iatas) is)( b[ c)A~/(t}A, (t)
is zero since ) c) is orthogonal to ( b). This ab-
sence of coherent beats was noted by Breit."

The following argument based on the "quantum
theory of measurement" provides some physical
insight concerning the "missing" beats. A type-I
atom when coherently excited will decay via the
emission of a photon with frequency u or &8.
Since both transitions lead to the same atomic
state, one cannot determine the emitted photon's
frequency. Analogous to the Young's double-slit
problem, this uncertainty in the photon's fre-
quency leads to an interference of photons with
frequencies co„and (d &, giving rise to quantum
beats. A coherently excited type-II atom will also
decay via the emission of a photon with frequency
co„or ~8. However, after the emission is long
past, an observation of the atom would now tell us
which decay channel (n or P} was taken. Conse-
quently, we expect no beats in this case.

However, recent experiments involving photon
echo showed sinusoidal modulations in the intensi-
ty of echos involving atoms with nearly degenerate
ground states. "' To see that the results of these
experiments do not conflict with QED, we have to
look at beats resulting from many atoms.

IV. MANY-ATOM BEATS

If instead of one atom there are two atoms sep-
arated by a distance small compared to an optical
wavelength, then

I y(0}& =A.I aao&+&.I abo&+C, I aco&+Dol bao&

+Eoi bbo) +Iso[ bco) +Goi cao)

+II) cbo)+Io) cco) .

The interaction gives rise to states with nonzero
photon occupation number, in particular, the
states ( bcl „) and ( bcl s&, with probability am-
plitudes C(t } and D(t), respectively. This time
the matrix element

(()(t}ia.'a J q(t}& =C&(t)D(t}

is nonzero, and QED predicts beats. Thus no con-
tradiction exists between QED and the photon-echo
observations.

In line with the physical argument given at the
end of Sec. III, we see that if two of these atoms
are present, one possible final state has both
atoms in different lower levels. For this atomic
state it is impossible to determine the photon fre-
quency since one does not know which atom emitted
the photon. Hence quantum beats will be present.
Extension to the many-atom case leads to a pre-
diction in agreement with the photon-echo observa-
tions.
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Using QED, we have calculated, in the appen-
dices, the beat intensity from an arbitrary num-
ber of type-II atoms. We present the results in
the remainder of this section. First, we treat the
atoms as being effectively stationary, for example,
as in a crystal. Then, we will treat them as be-
ing nonstationary, for example, as in an atomic
beam.

We begin by looking at two identical atoms, lo-

cated (e.g. , in a crystal) at polar coordinates
(r„(P„8,) and (r„(P„82). These atoms are excited
by a laser pulse that is incident in the y direction.
This pulse is polarized in the x direction, and it
has a duration that is much less than the beat pe-
riod. Assuming that all level. s are equally popu-
lated by the excitation, the radiated intensity from
these two atoms at the detector is derived in Ap-
pendix A. The result is

(@(t)I E(0, t )'I +(t )) = (e'/4ii2e, 'r2) ', [2e—4~ eb'(X', bk„+X'„k»8) + e '& eb'[4(X2bk» +X'„k42)+ 2X'„,k'„cosk„(r, -r, + y, —y, )

+2X'.,k»ecosk2(r, —r, +y, —y, )]

+ 2e '&eb'X, bX„k' k22[cos(a 8(t r, /c—) —(d (t r, /—c) + k„(y, —y2))

+ cos(u2(t —r, /c) —(d„(t —r2/c) + k„(y, —y, ))]],
which describes an exponential curve modulated by a sinusoidal function with periodicity 2'/((d 8

—(sr„).
Here,

~., =(e2/62'. k )(X'., k2+ X.2, k,),
~ is the average distance of atoms from detector;

y; =r; sin(P; sin8;; X,b =(a) X[ b), X„=(a)X( c); k =(a)„/c,

The beat signal for n atoms is (from Appendix B)

k8=(d8/C ~

e2X .v k2k2 1
"-2 1 (n 2 f

22'e2r2 3" ~ i! (n —2 —i )!
»~-ee ss 2 '2i -2&„i(i+i& ' '

— 2&"-2 '& V' cos[(d (t —r /c) —(d (t r./c—)+(d (y —y )] .8 l n j n j l
0 i=0 . l =1 j=l

l&j

If the positions of the atoms are not fixed (e.g. , in an atomic beam), then it is necessary to average
the intensity over all positions occupied by each atom before it decays. If each atom is confined in a cube
of volume 5', then

(n
(i(t)la(a t)'I (it))

--' ' - " ' —~ s-'s '""'— ' '' S"-'-')
beats 2&2e2r2 2 ~ &! (n 2 & ) !

4=0

4
&&

/ » p g cos[+2(t —R, /c) —(d (t -R, /c)],
l =1 j=1

where A; is the distance between the detector and
the center of the cube for the ith atom. This
means that in order to see an appreciable beat
signal at each wavelength A. each atom must be lo-
calized in a volume of A.'.

If the n atoms are in a flask, then 5', the volume
of the flask, must be less than A.

' for beats to be
seen. It would be difficult to see quantum beats
with such an experimental setup. However, with
an atomic beam, it is possible to select a velocity
distribution such that each atom maintains its po-
sition relative to its neighbors within a distance
A. during the time it is in an excited state. With
such a velocity distribution QED predicts quantum
beats for a density of at least 1 atom/A. '. NCT
predicts beats for any density greater than 1 atom/
(ke —k„) '. This is because, according to NCT,
the electric field from n atoms is

n lit r i 0

k'„p„- + k'2 p 2

l =1

where p„and ps are the dipole moments. Thus
the beat signal is

e'" ' i (0 -0 ~))rl
2k'„k', p„pg p ' '

+ g '
l l

If the positions of the atoms are not fixed so that
each atom can be anywhere inside a volume 5', the
beat signal becomes

2k2k2Petpg ~ i)s~ii)-i)a s slQ (ktsb/ )

l~j

i()t -)t &s sin[(kn k ())~/21
(k„—k 2) 5/2
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which is small only when 1/(ks —k ) & 5. [A; is
the average distance between the detector and the
ith atom and R = (I/n)Q, R, .] Hence, in nonlocalized
atoms, we have another difference between the
predictions of QED and NCT. We note that this
difference arises because in QED quantum beats
from type-II atoms occur only as a cooperative
effect, while in NCT they occur also as a single-
atom phenomena. Next we propose an experiment
that may serve as a test for NCT and QED.

V. PROPOSED EXPERIMENT

W'e propose this illustrative experiment in order
to emphasize the features that must be present in
an experiment using &luantum beats to test QED and
NCT. In Fig. 3 we sketch a possible experimental
setup wherein laser radiation is used to put atoms
in a coherent superposition of states. " The atoms
will interact with the laser field E(t ) and ac&luire
off-diagonal contributions to the density matrix
p„(t) and p„(t). If we have a thermal distribution
initially, then these two off-diagonal density-ma-
trix elements arise from the first-order process
involving the interaction of the atom with the two
applied fields. That is,

t
p„(t ) = — dt, E(t, )e' s'&[p..(t o) —p„(t o)]

to

and

p
rt

P. (t) = g" dt E(t )e' ""[P-(to)-P»(to)I
jt

where P„and pe are the dipole matrix elements,
and E(t) is the applied electric field. It is to be
noted that atoms excited at different times would
see slightly different electromagnetic fields due
to the finite laser linewidth. Consequently, one has
to limit each measurement to times less than the
coherence time of the light, which may be of order
of 10 ' sec. However, with an atomic lifetime of
10 ' sec we may repeat the (single-atom) experi-
ment many times during the coherence time. An
experiment of this type should provide a rather
direct test of NCT vs QED. Furthermore, one
can extend this experiment to look for beats at
higher atomic densities. The presence of beats

,
Screen

Atomic beam

Laser radiation

Shutter

Detector

FIG. 3. Experimental geometry and apparatus for
proposed experiment. A screen is used to shield the
detector from scattered laser radiation. The shutter
limits the measurement to less than the laser coherence
time.

at these higher densities will confirm that the ex-
citation mechanism coherently excites the atoms.
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APPENDIX A: CALCULATION FOR BEAT
INTENSITY FROM TWO TYPE-II ATOMS

The atoms are located by the spherical coordi-
nates (r„&t&„8,) and (r„g„8,). Each atom has the
energy levels shown in Fig. 1(b), and the upper
state can decay to either lower states via electric
dipole transition. In the interaction picture the
Hamiltonian is

2 gV(t)=g g '(eX., eg~( a&,.(b~ ~„e' o- »"' ''~

+eX„ek~( a&,.(c~ a-„~e' "s "& "' ' 'i)+H. c. ,

where g„=h &d,/L'eo
The atoms are excited by a laser pulse with its

electric field polarized in the x direction and a
pulse duration that is much less than I/(&de —o&„).
With the pulse incident in the y-direction, the state
of the atom-field system after the pulse has
reached both atoms is

(P(0)&=(A,e-"e&"o-'& 'o&~ aa)+Boe "s&'o '& 's "o&&'o-'o&[ ab)+C, e "s&'o '~&~ ac)

~D,e-&'e-'~&&'o-'~&e-'"e&'o-'»( ba&+Foe ' s&'o 'o&( ca) +G,e '&'s 'o&&"o '~ 'o&) bb) +H J cc)

+foe '& s-'o&&'o '~') bc&+Joe '
e 'o 'o "'I cb&)l(0a&)&

where y, is the position of the wave front of the pulse along the y axis at time t=0. Since the volume
looked at by the detector is small, the probability that the first atom that is excited has decayed before
the second atom is excited is negligible.

To first order the state vector at a later time is
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[ g(t)&=(A[ aa&+B) ab&+Cl ac&+D[ ba&+Fl ca&)l [0»)]& + Q (Gg~l ab&+Hg~[ ba&+Ig), ) bb&+Zg~[ cb&

+KT~I cc&+Lg~l bc&+My& I ac&+titrql ca&)I I» q(0»q}&,

where the coefficients on the right-hand side satisfy differential equations obtained from

ik „=V(t)(q(t)& .

The equations for A to F can be solved by the
method used in Weisskopf-signer decay:

A(t ) =A e 2va-»t +i»e{&'1-& 2)

0

[B(t)/B ]
' ( o- )+ ( - )( —,)

=[c(t)/c, ] *e' &8"-'i&

=[D(t)/D ]e't»8» &&'o "i~+'»8&'0»&

=[F(t)/Fo]e'"8 '0 "» =e &~»',

where

y„=(e'/6«, II)(X,»k„+X„k8) .

The signal at the detector is proportional to

2

&q(t)IE'(0t)I y(t)&=2 g S„er, e '" 'JT, (I)

plus similar terms withBT, „,Ip~, Gp~, LT, ~, Mg.„,
and Ng„ in place of Jgz.

Looking at the first term on the right-hand side,
we have, from the Schrodinger equation,

~ yt
8»e»~e

' »'JT~ = QS»eT~e ' » — dt, e &»»'&~FoeX„eg„~ exp[-ik8(y, —y, ) —ik r, —i(&u„—&y»)t, ]
+p

kX ky

1
+B,eX„eg„~~ exp[-ik8(y, —y, ) —i (k~ —k„)(y, —y, )

—ik r, —i(vs —~, )i,lI .

Integrations involving the first term of Eg. (2)
can easily be done in a frame where r, is along the
z axis. In this frame the atomic polarization vec-
tor is no longer in the g direction, but is along

1 P„cos8,cos,
0 -=P, =' sing,

0 P g sln8, cos

Furthermore, the summation on k is replaced by
an integral,

3 i o r 1T

dm &u' d8 sin8
2 7TC ~p

dp.

Choosing the field polarization vectors to be

eg, =(sing, -cosP, 0)

eg, = (cos8 cosP, cos8 sing, -sin8),

where 8 and p define the direction of the wave
vector k, the polarization sum and the angular in-
tegrations are straightforward. Dropping terms
which go as I/(kr, )', we are left with the following
t, and u integrals:

E ex
2p dt, e- &'~-"6~'p-~~~

oc

(2wc)'e, &2 Jp

3 fat i(idix-id)tl--(ei»r2 —e-i»r2)

4o)
Replacing the slowly varying quantities in (d by their average, we have

o», dt -y»t -i»8 (P -v )k» -iw t

(2m)'c'e, v 2
dn '"t'i -'~ .)

Since ro„» I, the 0 integral may be approximated by two Dirac b functions with arguments (t, —t +r, /c)
and (t, —t -r, /c). Integrating over t„one gets
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Fpex, b k~' —exp[-y„t —i(o„(t r—,/c) —ik8(y, -y, )] P,
2mpV2 r2

0

Finally, we have to transform back to the original frame, thus obtaining the expression

cos'8, con*8, + sin*8,)eX,b k~—E, exp[-ik8(y, —y, ) —) „t—i~„(t r-,/c)] 2
— -~ sin t), sin2$,1 ~ 2

0 2

l ——, sin28, cos8

Application of the same procedure in the evaluation of the second term in Eq. (2) gives

eos's, cos'8, +sin 8,)2eX„-B,exp[-ik8(y, —y, }—i(k8 —k„)(y, —y, )] 2 2
exp[-y„t —iu&))(t r, /c-)], —~ sin 8, sin28I),

1 . 2 ~

0 1

1
1--, sin28, cosy,

If the detector is placed far from the two atoms compared to the separation between the atoms, then the
above terms are essentially in the x direction. Hence

2

2 Q 82m»)&»~ = 2, e ' 2'{X,2k„S()+X',psBO4m-ey
k},

+2X„X„k'ksE+,cos[&us(t-r, /c) —+ (t r,/c)—+k (ym- y, )]j .

The remaining terms of Eq. (1) may be evaluated similarly. Upon combining these terms, we have, for
the radiated intensity,

( g(t )~ Z(Ot )'~ )t)(t )) =4»{2e ~)'2&'Ao(X~„&~+X«k~z) + e '&2) '[ (B', +D2 )(Xo22k~ +X~«k48)+ (C', + Po)(X2,k~z+X22)g)4 cora

+ 2X'„k4 B+ocos(k~(r, r, ) + k„(y-, —y2)}

+ 2X'„k~&COFo cos(k 8(r, -r, )+ k z(y, —y, )}]

+2e &'~'X,2X„k'„ks[C+ocos(u&(t r2/c) ——&o„(t r, /c)—+k„(y, —y, ))

+ FQ, cos(+6(t -r, /c) —&u„(t r, /c)+k (-y, —y, )}]j .

APPENDIX B: CALCULATION OF BEAT INTENSITY FROM n ATOMS

We will obtain the n-atom beat intensity by deriving the three-atom result and then generalizing it to the
n-atom case. The three-atom problem has the initial state

[ $(0)) =(Aoexp[-iks(3yo —y, —y, —y, )] ( aaa) B+,e px[-ik&(2 y y, —y, ) —i (k8 —k )(y, —y, )]] aha)

+C, exp[- ik &(2yo —y, —y2) ] ( aac) +D, exp[-i (k &
—k„)(yo —y, ) —i k &(2yo —y2 —ys) ] ( baa)

+@,exp[-iks(2y, —y, —y3)] [ aca) + ~ ~ )[{O,~j) .

At a later time t, the state vector contains eigenstates with one photon present. Some of these states
contribute to the beat signal. One such state is ( abc&»),{02,~j), and if it has a probability amplitude P»„
then its contribution to the beat signal, (g(t)(E'(Gt)( g(t)), is 2[ p»~P»~e &'g2, e»~['. From the Schroding-
er equation,

t
g «» P» e-i2888 g e» g e- 2 dt {sX (l/~2)(P ~ g» )e-'»g' '2-'( n- 28)'2C e-()' )'8)282-i 88(»o-2'2-222)

~JP

+ eX (1/&2)(P, «» )e '"& '3 't

a+7b}t& -ik 8(2&0-&& -~3} -i{k g-k~ }{~0-X2}Q
0 j ~
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The integrals, when evaluated in a manner similar to that used in Appendix A, result in

e & bat(C e-tk 8(k)'p-at -ak )X kk c t (c(ct(- kr/ )a+B e -tkt)(kap-at -ak)-i(ka -kc(){ap-9k )X k ke-t(c t](t -rk /c))
2&2tte r0 0 ab oP 0 ac Qe

Thus the contribution to the beat signal is

~e
~a

~I!a

G 2
~

2 ~~ t
Q 0

~

I

3

~

~ ~ ~
2

~

~ ~
~

3
II

ekX kX"IPk'8 }e " 'C a cos[ra s(t —r /c) —ra„(t —r /c)+ k„()t —y )] .
oy

All remaining terms may be evaluated similarly, but there is a less tedious method. Note that the factors
inside {) will be the same for all terms. What remains is to find the states that will give a nonzero ma-
trix element for the operator a~~as. For example, a nonzero matrix element is

(heal [ a(a J heals) .
The bra comes from the initial states ( (tea{0»,)), while the ket comes from [ haa{0k~j). So the exponential
factors associated with this matrix element should be e xp[-ik„r, + i&a t + ika r, —i(tt et]. Also, the excita-
tion process imparts the phase factors exp[ik8(yp —y, ) —i(k 8

—k„)(y, —y, ) —ik s(y, —y, )], and the states
with 2 particles in the excited states decay at the rate 2y„. Therefore another term in the beat signal is

2'+", ," pe 4~at tE+pcos[&oe(t -r, /c) —(t)„(t r, /c-)+k„(y, —y, )] .
0

The final result is obvious. However, we will not need the general expression for the beat intensity, but
rather the expression where all states of the three atoms are equally populated by the excitation. For
this case the beat intensity reduces to

2 3 3
(8')k„t = +'»c kk~kk8 ~~(e 4)'ak'+2e '&at ') g g cos[pts(t rt/c—) —&op(t —r, /c)+k~(y, —y;)] . .

i=1 j=l

Generalizing the above derivation, we see that the n-atom beat signal is

e XakXackc(kt) 1 ~ -ky kt(t+t] 1 (s —2)! 2(n-k-t)"
2t]kekr 2c ~ i ! (n —2 —t)!0 s =0

x Q Q cos[tpt](t rt/c) —(—o„(t-r,/c)+k„(y, —y, )]. , .

1=1 j =1
f~j

where the 3 " comes from the normalization of the initial state, and the quantity in square brackets con-
taining the decay rates comes from the following argument. Initial states that contribute to the beat are
of the form

Let i +1 be the number of excited particles. The state with i +1 particles in ( a) will decay with the rate
y„(1+i) The num. ber of these states is

(n —2)(n —1) ~ ~ [n-2 —(i —1)]*2" k '

if
since two of the particles are fixed, and we are only allowed to distribute the remaining i( a) states among
n —2 particles. Also, there are n —2 —i particles that can be in [ b) or ) c).
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