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From Maxwell to paraxial wave optics
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In this paper we are concerned with the propagation of a light beam through an inhomogeneous,
isotropic medium with a possibly nonlinear index of refraction. The customary paraxial approximations
of neglecting graddiv8 and seeking a plane-polarized solution are shown to be incompatible with the
exact Maxwell equations, By starting from Maxwell s equations, and scaling transverse and longitudinal
distances by the beam waist wo and diffraction length l, respectively, an expansion procedure in powers
of wo/I is developed. The exact equations obeyed by the zeroth-order fields are not Maxwell's equations
but the customary paraxial approximation to Maxwell's equations. Equations for the first-, second-, and
third-order fields are developed, The first-order field is found to be a longitudinal field. It is solved for
explicitly in terms of the zeroth-order field which is transverse. Thus a precise knowledge of the meaning
and accuracy of paraxial wave optics is obtained.

I. INTRODUCTION diving =p, (2.3)

In the study of the propagation of light in an in-
homogeneous isotropic medium with variable (non-
linear) index of refraction' as well as in the study
of modes in spherical laser resonators, ' several
approximations are made which lead to an appar-
ent paradox. The first assumption is that the elec-
tric field is plane polarized in the x direction, for
example. As we shall show below, it then follows
from the exact Maxwell equations that the electric
field must then be independent of the x coordinate.
Then a paraxial approximation is made and the re-
sulting equations are solved. Gaussian solutions
are found in the transverse direction in spite of
the fact that Sg„/Sx must be zero from the exact
equations.

In this paper we analyze the paraxial approxima-
tion in order to resolve this apparent paradox and
present a systematic procedure for obtaining cor-
rections when they are needed. The resulting
equations have been solved numerically in an am-
plifying medium to display the combined effects of
focusing (defocusing), gain, and diffraction.
These numerical results will be presented in a
separate paper. For simplicity we shall consider
only monochromatic waves of frequency ~.

divH =0, (2.4)

where

K =—(E/Eo) + $ (0'/(df o) . (2 6)

curl curlÃ = (e/c)'vg .

From (2.2) or (2.6) it follows that

(2.6)

div]cS =0. (2 'I)

If we look for a solution of (2.6) in which 7
=[8„,0, 0], it follows immediately from (2.1) that
V„=O. From (2.2), it; follows then that BH,/ex=0
and BH,/Sx =0. Thus g„must also be independent
of x. This is quite satisfactory for a plane-wave
solution of course. Under the present assumed
form of solution it follows that divh = 0 so that
(2.6) reduces to the one-component wave equation

This definition for I(. ensures that the right-hand
side of (2.2) includes conduction as well as dis-
placement current. Here e contains a linear (non-
resonant) contribution due - the host background
as well as a local nonlinear (resonant) contribu-
tion which has a real and imaginary part in gen-
eral. From (2.1) and (2.2), it follows that

II. AN APPARENT PARADOX
V'Sx= -(m/c)'zg„. (2.8)

Cur lg = 24lp 0 H,

cur lH = —i &ue, v g,
(2.1)

(2.2)

The Maxwell equations for the complex fields
h and H for a monochromatic wave varying as
e -fQJ t

g ye'lZz (2.9)

However, in the usual treatment of such prob-
lems, one assumes 8„=g„(x, y, z) so that divg
=s8„/ex' 0. Nevertheless, grad divh is neglected.
For solutions propagating mainly in the z direc-
tion, the ansatz is next made that

11



LAX, LOUISE LL, AND McKNIGHT

Then it is customary to make the approximation
that

I 82$ 8$« k
~8z2

i

(2.10)

which is essentially a paraxial approximation. At
this stage, however, various authors" appropri-
ately (as we shall show) forget that &g/Bx should
equal zero. They then write (2.8) as

&„g+2ik ——k g=—
8z c (2.11)

8 8
Vl= + —2 ~

2 ==

8 8$
(2.12)

In the case of the empty spherical laser resonator
for which x =1 and &u =ck, (2.11) is solved subject
to boundary conditions and the modes are found.
The lowest mode is Gaussian' in x and y and not
independent of x as the starting approximations
suggest. Experimentally, the laser -oscillator
modes found in this apparently inconsistent way
agree extremely well with those predicted by this
theory.

We proceed to study the paraxial approximation
in an effort to resolve this paradox and present
a systematic procedure to obtain higher order
corrections when needed.

III. THE PARAXIAL APPROXIMATION

The assumptions discussed in the previous sec-
tion are discarded. We shall start afresh with the
full Maxwell equations and show how an appropri-
ate scaling of Maxwell's equations leads in a na-
tural way to the usual approximations. The ad-
vantage of a systematic procedure, however, is
that we shall be expanding in terms of a small
parameter, and the corrections to the standard
paraxial results are readily obtained. The usual
discussion merely makes the uncontrolled approxi-
mation of dropping grad divF and S'g/&z' terms.

Since we shall be interested in waves propagat-
ing mainly in the z direction, we write our field
as

g =Sr+a, B,—= e"'(Fr+a, E,), (3.1)

where a, is a unit vector in the z direction and T
stands for the transverse part of the field. Also
we let

8V=V +aT z 8z 7 (3.2)

where V~ is the transverse gradient. When we
use these in (2.6) we obtain for the transverse
and longitudinal components

f =kobu', =2mo', /X (3.5)

which is a characteristic length in the longitudinal
direction associated naturally with such a beam.
Accordingly, we proceed to scale (3.3) and (3.4)
and let

X = 1$ pg, y = Ko'g; (3.6)

Since it is anticipated that for all problems of
interest wp« l, we shall let

Kp
I kw, (3 'f)

When we use (3.6) and (3.7) in (3.3) and (3.4) we
obtain with no approximations as yet

V, V, F+ '+ikFz V F,8z

82F 8F——2ik +k F = —KF8z2 8z ~ c
(3.3)

8 4)

8z
—(&r Fr)+ik&r Fr —&2r E = —zE .Z c Z '

(3.4)

If we are considering Gaussian-like beams, then
there is some characteristic width wp in the trans-
verse dimension. For such a beam, there is also
a diffraction length

F + +sE& — V F — ' ' —2s = co — z —kw, ' F, , (3 6)

8 2f' —(&, F,)+if&, P, fv', f'q=f'((a~ af'(, - (3.9)

where we have let

Fr(rr, ~)"F, (p, t),

E,(rr, z)- Eq(p, K)

(3.10)

Also
8 ~ 8

V =a„—+a~ —.'81
where a„and a, are unit vectors in the x and y

(3.11)
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directions.
Before we can proceed to make the paraxial ap-

proximation, we must know the size of the non-
linear part of ~. Let us consider the case of a
homogeneously broadened laser amplifier medium
in which we let 0 =0.

The dielectric response of a medium with n

atoms per unit volume, and a homogeneous line-
width y, a can be written'

K = Kg + K@I + KgL,

(0 —i )[Wici(cg/v))
] + g2+ I

are found necessary:

F =F'+f'F' + ~ ~
7 7' 7

—fE(&) +f& Eh) +. . .
(3.18)

That E& has no zero-order term follows from
(3.17). Before equating various powers of f in
(3.16) and (3.17), we must take into account the
fact that m is a function of i

F)' and it must be
expanded in powers of f . When we use (3.18);
then from (3.17) it follows for terms of order f
that

= Kg + [W~, (cg/p))] ni(p), I F I '), (3.12) y (z) iv .p(o) (3.19)

a ~aa

Ya Ya
(3.14)

where A., and Ab are the pump rates (per atom)
into the upper and lower states, respectively, y,
and y, are the corresponding decay rates (due to
spontaneous emission), ~,b

= ~, —&ub is the atomic
frequency difference and y„ is the associated
homogeneous broadening linewidth. In the above
equation P is the transition atomic dipole moment
and F, =ky„/P is the saturation electric field. We
also choose

k' = (&o/c)' Ki . (3.15)

For this model (3.8) and (3.9) reduce to

v, v, p+ ' "+zE,
B$

82F BP-fV, F, f', ' —2—if ' = (fglm} F, ,

(3.16)

f' —(V, ~ F, )+ ifV, ~ F, -f'V', E~ [1+(f2glm)] E~ . ——

(3.17)

We note that f'g l =g/k =the gain in a distance k '
is always small even when gl»1. Thus we can
always obtain a consistent solution if we expand
the field in powers of f. Only alternate powers

where 0 = (&u —p),b)/y, b, Ki is the background lin-
ear dielectric constant (assumed real), g is the
on-resonance small signal gain per meter, and
I =

i F i'/F,' is the field intensity in units of the
saturation intensity. The gain g should be taken
from experiment. In our calculation the gain is
defined by

&u K"(u& =u&„, F =0) np'D„p)
C ~Ki ~Ki SypbfpC

where D is the unsaturated population inversion
(called 3I by Lamb'}, n is the concentration of ac-
tive atoms

while from (3.17), the lowest-order nonvanishing
terms are

BP (o)
(3.20)

where

(3.21)

is the form appropriate to homogeneous broaden-
ing.

We have thus resolved the paradox, since to lowest
order the field is purely transverse and may de-
pend on the transverse coordinate. However, in
next order a small longitudinal component of the
field must be present and its s ize depends on

(N)p/1) =f. Furthermore, we have a procedure to
obtain the next-order correction to the transverse
components.

When we use (3.19), the terms of order f' in

(3.16) and (3.17) become, respectively,

V, V, ~ F,"+i—(V ~ E'")+iFg"

and

B2P (o) B P (a)

B$ Bf

(3.22)

(3.24)

= E&' + (gl)m, iV„F, (3.23)

where m, is the term of order f' in the expansion
of m. If we solve (3.23) for E&' and substitute
into (3.22) and use (3.20), we obtain

,F (.) B2P (o)
V'„F~" + 2i ' +glm, F,' = —(gl)m, F,'—

B$
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while

gF (0)E'"= V F"' V ~
~F

7

in the last term. If we next take the scalar product
of both sides of (4.3) with E, it may be rewritten

(z)
=iV, F, +i~ .- (2) ~ ~+& (3.25)

QQ2
V, (E' V,s) + = —(gl} (ImmR) E' .

Bf
(4 5)

t'Z(') =iV, F'," . (3.27)

For numerical calculations, as usual, the scaled
version seems generally preferable. (Note that
y' (2) —fF ( l)S

One surprising result is that the longitudinal
component of the field is out of phase with the
transverse components.

Equation (3.24) shows that if gl~ 1, then our
original expansion parameter f' = (w, /l)' is de-
scriptive of the ratio of (s ' /h ' =f'F ' /E"
When gl»1, our theory remains valid, but the
presence of a factor gl on the right-hand side
shows that (s(rE)/(s(r') f'gl=g/k. Since g/k is the
gain in a distance X/2m, this ratio is a.lways small,
and our theory is clearly still valid even if g l » 1.

The ratio of (s,2 /b(r' is of order f=(kw, )
' re-

gardless of the size of gl. By (3.25) we see that
$(R)/(s(r') -f'gt-f(g/k) since h(r') is of order
glS~' . We therefore see that 8,' is completely
negligible regardless of the size of gl.

In our original urscaled variables, (3.18) and

(3.17) yield in the two lowest orders

gF (o)

VrRF ~~) +2ik r = —g2)')(z —m, F &gl, (3.26)
az ~ c

This is an energy transport equation.
Rays normal to surfaces of constant phase obey

the equations

dr 2 V~S
ds i V(s+kz) i

(4 6)

dz k+(sS/sz)
ds iv(s+kz) i

so that dividing (4.6) by (4.7) we obtain

dr~ V~S
dz k + (&S/&z)

(4 7)

(4.8)

In the scaled variables r~ =zv, p and z = gl, this be-
comes

dp VTS

dg 1+f '(&S/sg)
' (4.9)

dp—=v S .
dg

(4.10)

If U is any function of p and g, we have by (4.10)

However, we are talking about the surfaces of con-
stant phase to lowest order in f so that

IV. RAY EQUATIONS
8U=(vS v)U+ —.7 7 (4.11)

F,"' =Ee" (4 1)

With no loss of generality we may look for plane
polarized solutions of (3.20) of the form'

(4.12)

Accordingly, along a ray, (4.3} may be written

dE 1—+ —[V' S + (gl ) Im m, ] E = 0
dg

where E and S are real. When we use this in
(3.20) and equate real and imaginary parts, we
obtain

or

d(lnE') = —[V,'S+(gl) Imm, ] . (4.13)

V', E —( V S)' R —2 (
—„„)E = —(gl) (Rem ) E,

(4.2)

2(V S V)E+V SE+2(—.)= —(gl)(lmm)E,

(4 3)

where by (3.21), Imm, &0. If we take the scalar
product of both sides of (4.2) with E, we obtain

(V, S)'+2(—)=(gl)(Rem)+(E V', E)E .(44)'

Of course, one must not forget that Imm, is a func-
tion of E'.

If we next differentiate both sides of (4.10) and
use (4.11) and (4.4), we obtain

":-(vs.v ) v s .""
g2 T 7 7

1 8S
v (v S)'+2v—

2 7 7 7

=1 aS= —v, (v, S)'+2—
2 8$

This is the analog of the eikonal equation of geo-
metrical optics in which diffraction is included

=
2 V, [(gl) Rem, +E 'E ~ V', E] . (4.14)



This is the form used in Ref. 1 obtained by the
analogy of (4.4) to the Hamiltonian-Jacobi equation.

In cylindrical coordinates the "eikonal" equation
(4.4) becomes

8 8$~ ]. 8 8$81——Ip —I+ —,—I +—=-g/Imm, (I) I .
p Bp Bpj p Bp 8+ 8$

(4.16)
The ray equations (4, 10) become

(4.17)

(4.15)

while the energy-transport equation (4.5) becomes

2 d(p 8$
p d( By

while Eqs. (4.14) become

(4.18)

d'p dao
"' 1 & 1 & &WI 1 &'vI ]

p = ——
/, /Rem, (I) + ——p —+

dg df 2 &p pv I Bp Bp p-'vI By2 3 ' (4.19)

d dy 1 6 t 1 8 sv I 1 82MIp' ~ =- ——gf Rem, (I) + — —p +
p'~~ (4.20)

If we seek a solution of Eqs. (4.15) through (4.20)
which has rotational invariance, it is convenient
to introduce a quantity related to the energy flux
between two concentric circles:

Z~' =/V„(Ee")
=/e' [V, ~ E+/V„S ~ Ej
= [(&, E)'+ (V,S E)']'/' 8'l~ ' ~+ '/'l (4 25)

v, (c)
I(p, g) 2' dp . (4.21)

tang = V' S E/V E (4.26)

The effects of refraction and diffraction in U(g)
are compensated for by the use of rings bounded
by the rays p, (g) and p, (g). The U(g) will change
only because of true gains and losses. The result
takes the form

BP p, (r)—=+2m gl 1+'+I'
where I=I(p, g). To prove this result we differ-
entiate (4.21) to obtain

(4.22}

(4.23)

All terms on the right cancel except for the last
in view of (4.18) and we obtain (4.22) when we use
(3.21).

The longitudinal component of the field by (3.19)
and (4.1) is

BU + BI dp—pdp+p. ' I(p„t)
dg

dp~
I(pi, l)

We next eliminate SI/&g using (4.16) (with angular
derivatives omitted} and obtain on integrating

BU 8$ 8$
—,

&

= 2& - p. 6-- I(p. , /;)+ p. 6 I(p„t)

+p2 d ~p2 & -px d I pz &

q(c)
—(gl) Imm, (I ) Ip dp . (4.24)

P

Equation (4.25) describes a l.ongitudinal com-
ponent of the electric field whose ratio to the
dominant transverse component is of first order
in the expansion parameter f= 1/ku, . Moreover,
an exact relation has been supplied between the
first-order correction field and the zeroth-order
field.

F"=(Ze" 0) (5.1)

In cylindrical coordinates (p, y, P), (4.4) becomes

1 8~&„1BE„1 8 E
—,
" + ——". + —, ,", (5.2)

BP P BP P

while (4.3) reduces to

8$ BE,„18$8I".»
Bp Bp p 8+ Bp

8'$1 8$1 8'$
+ + + E+i

BP P BP P

(5.3)

V. AN EXAMPLE

We shall consider the special case of modes in an

an empty spherical cavity resonator' and deter-
mine the first correction to the normal modes.
We assume the field is polarized in the x direction
so that
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2

S = —my + - —(2l + m + 1) tan '2g,
~(~)

(5.4)

It is straightforward to verify that exact solutions
of these equations may be written as' i cosy ' + —(mg

' —1)
d(lnI, ", ) 1 4p

dg 2 zo'

2p cosy m sing (5.11)

~=~ '(~)s "-~ "f,(&),
where

(5.5) For the fundamental mode, m= l =0,

El~"„=-(ito '+ R ')2p cosy&I exp(tSoo) (5.12)

tc'(t) =1+(2t)',

~(~) (&+(&c)')

& =2p'/tc'(0) .

(5.6)

dp 8@4)p
sp 1+(2C)''

dp 1 9$ m
p p9@ p

(5.7)

(5.8)

where we used (5.4) through (5.6). These may be
integrated to yield the hyperbolic rays

p= p. (1+4&')'", (5 8)

where r, =re,p, is the radius of the ray at /=0.
Also

y =-(m/2p', )tan '2&+ y, . (5.10)

Note from (5.8) that p'(dy/dg) = -m, a constant.
lf we use (5.4)-(5.6) and (2.16) we see that the

longitudinal correction is

1., ($) are associated Laguerre polynominals. m
and l are integers and / here should not be con-
fused with the diffraction length. These solutions
are valid when the beam waist size sg, at z =0 is
small compared with the diffraction length f =So', .

The ray equations (4.18) become

F(0
I

2 4p2 cos2y
1+(2~)

In unscaled variables

(5.18)

I
E ~,"„

I

' 4(x/kw, )'
IF...I' ~'(z)

where tc'(z) =w',
I 1+(2z/kto', )'] . Since to, is usually

significantly larger than k ', the conventional so-
lution is accurate for x appreciably larger than
the local beam diameter, tU(z).

VI. SUMMARY

The paraxial approximation makes the incon-
sistent assumptions that one can have a plane
polarized electromagnetic wave whose electric
vector depends on the transverse distance. We
have established that this result is a consistent
zeroth-order solution to Maxwell's equations ob-
tained by expanding all fields as a power series
in the ratio of beam diameter to diffraction length.
The expansion is shown to contain only alternate
orders in the expansion coefficient and thus con-
verges rapidly. The first correction is evaluated
and is shown to be a first-order component of the
electric field along the beam direction. Equations
which yield higher-order corrections are also
presented.
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