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Stimulated and spontaneous radiative frequency shifts of a two-level system
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The quantum-electrodynamic frequency shifts of a two-level system in spontaneous emission and in an
intense quantized radiation field are given up to eighth order in the coupling parameter, using the re-
cursive perturbation method developed previously by one of the authors. The first six orders of the
latter agree with the semiclassical result of Shirley and thus disagree with Chang and Stehles calcu-
lation. The eighth-order term agrees with a recent semiclassical calculation by Ahmad and Bullough.
The transition from the quantum mechanical case (the number of photons small) to the classical case
(the number of photons very large) is also exhibited in our approach.

I. INTRODUCTION

A new perturbation method, which we shall. call
the recursive perturbation method, was developed
recently by one of the authors. ' The successive
terms of a perturbation series for the energies of
a quantum system are obtained by an algebraic re-
currence relation rather than by iterations or by
diagrammatic methods. The method is not only a
powerful numerical method particularly suited for
the computer, but it also provides a new line of
analytical approach to the study of quantum sys-
tems by means of difference equations. In the
original papers, "the type of Hamiltonians con-
sidered is a general one consisting of sums of
products of boson and spin operators. The method
has recently been extended' to apply to a general
type of Hamiltonian consisting of elements of the
SU(n) algebras.

In this paper, a Hamiltonian of considerable
interest in quantum optics involving only the boson
and spin operators will be considered. The re-
cursive perturbation method is used not only to
derive the first few terms of the energy series
but is also used in such a way that it is suggestive,
we hope, in leading to a possible closed-form ex-
pression for the energies of the system.

Several papers have recently appeared which
were concerned with the higher-order terms in
the so-called Bloch-Siegert shift. 4 The renewal
of interest in the Bloch-Siegert shift was partly
stimulated by a paper of Chang and Stehle, ' who
derived the shift from a purportedly quantum-elec-
trodynamic calculation which disagreed with an
earlier result of Shirley who derived the shift
from a semiclassical theory. Several other
authors' have since performed calculations using
various approaches and all of their results (up to
the sixth-order term) agree with the result of
Shirley. The estimate of the eighth-order term
by Hannaford et al.' differs from our exact result
by about 1(Pjp. Significantly, however, the recent

where the S's are the usual spin operators and a~
and a are the photon creation and annihilation op-
erators for the quantized radiation field with fre-
quency e. For a spin-& system, the unperturbed
Hamiltonian

H, = ~,S'+(saba

has energies + ~u, +n&, n = 0, 1, 2, . . . , where the
spin is in the static field Bo parallel to the z axis,
co, is the I,armor frequency in Bo, and n is the
number of photons of frequency ~. The quantized
field has a liriear polarization parallel to the x
axis and its coupling with the spin is given by

(1.2)

H, =A.(S++S )(a~+a) .

The coupling constant A,, in the limit of very large
n, , is related to the Rabi frequency co, associated
with the radiation field by

z=(u, /4vn. (1.4)

The terms (a~S+aS+) in (1.1) are usually referred
to as the rotating terms and the terms (a~S++aS )
as the counter-rotating terms.

Hamiltonians of the form (1.1) or its equivalent,

H =voS'+&cata+ i A[(a~S —aS+)+ (a~S+ —aS )],

have long been the basis of one of the most useful
models in quantum optics. Recent results include
the elucidation of the phase-transition properties
of a system of N two-level atoms interacting with
a radiation field."'" The importance of the

result of Ahmad and Bullough' from a semiclassi-
cal theory for the eighth-order term agrees with
our fully quantum-mechanical result.

The quantum-mechanical treatment of the Bloch-
Siegert shift involves the determination of the
eigenvalues of the following Hamiltonian:

H =&@,S'+&oata+A[(a~S +aS+ )+ (a~S'+aS )],
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II. RECURSIVE PERTURBATION METHOD

The recur sive perturbation method given by
Hioe' consists essentially of three steps:

(i) Use the Bargmann analytic function repre-
sentation" of the field and spin operators.

(ii) At each order of the perturbation calcu-
lation, the eigenfunction of the Hamiltonian is
taken to be a finite combination of polynomials in
the Bargmann analytic function variables, the
number of terms being dependent on the order of
the perturbation being calculated and on the form
of the perturbing Hamiltonian.

(iii) Comparison of like powers of the expansion
variables gives a set of recurrence relations by
which terms of the ener gy expansion can be de-
rived recursively in terms of the known quantities
of the previous orders.

The Bargmann representation of the field and
spin operators is given by

8
0 Z 0

8z

8 8 8 i 8 8
S Q —,S v —,S — Q ——v—

8V 8Q 2 8Q 8v

(2.1)

where Q, e, and z are arbitrary complex variables
(the superscript z in S' denotes, of course, the
z component). In the Bargmann representation the
eigenfunction of a Hamiltonian consisting of boson
and spin operators is of the form"

counter-rotating terms in the theory of spontaneous
radiative frequency shifts was pointed out by
Ackerhalt, Knight, and Eberly. "

This paper is devoted to the study of the eigen-
values of II. The eigenvalues of H can be ex-
pressed in closed form if the perturbing terms of
H contain only the rotating terms or the counter-
rotating terms. With both the rotating and counter-
rotating terms present, however, a closed-form
expression for the eigenvalues of II has not been
found, and one therefore resorts to perturbation
methods. We have used the recursive perturbation
method to derive the correction terms to the en-
ergies + &~p+nco up to eighth order in the coupling
parameter as functions of u„u, n and have de-
duced an expression for the correction terms for
the frequency shift of a two-level atom in spon-
taneous emission by putting n =0 and an expression
for the correction terms of the Bloch-Siegert
shift by letting n be very large. The recursive
perturbation method also gives a simple recur-
rence relation by which higher-order terms can
be quite readily computed, and can be used to
show how the perturbation series can be summed
into a closed-form expression when only the ro-
tating or the counter-rotating terms are present.

oo 2$

f(u, v, z)=g pc; u'v' 'z
k=p i =p

(2.2)

[8(S+1)]'~' being the total spin angular momentum.
If the HamiltonianH can be written as the sum of
II„ the unperturbed part, and XII„ the perturbing
part, then the eigenvalue and eigenfunction of H
will be written as

(2.3)

f( ) (A.;u, v, z) = g BP)(u, v, z)A.~,
P=o

(2.4)

where (K) denotes a set of quantum numbers used
to designate the particular energy considered, and
A(o ) and B(oz)(u, v, z) are the unperturbed eigen-
value and eigenfunction, the higher-order A's and
B's being the quantities to be determined. If the
unperturbed eigenfunction B(o")(u, v, z) is given by
u 'v'z-'z" and if the highest powers of z and &/&z

appearing in the perturbing Hamiltonian are I and
J, respectively, and the greater of the highest
powers of Q and v and the greater of the highest
powers of 8/Bu and 8/Bv appearing in the perturb-
ing Hamiltonian are P and Q, respectively, then
following Ref. 1, we may derive the A, 's in (2.3) re-
cursively in a systematic and consistent manner
by letting

f '"(A.;u, v, z) =B;"(u, v, z) g P~'"(u, v, z)A~,
P=o

(2.5)

where Po "(u, v, z) =1 and for p~ 1,

IP PP
P& «(u v z) —P g I ba,~«

i i-
A = -JP i= -QP

(2 6)

the prime in the summation denoting the exclusion
of the term &=i =0. The crucial part of the re-
cursive perturbation method is expressed by Eq.
(2.6). Substitutions of Eqs. (2.5) and (2.3) into the
eigenvalue equation for H and comparisons of the
coefficients of the like powers of Q, v, and ~ lead
us to a recurrence relation involving A. 's and b's,
thus enabling us to determine these quantities re-
cursively. It is interesting to note that (see the
following sections) the recurrence relation auto-
matically gives bg. ;",=0 for

~
i,

~

& 2S or Ii& —n, con-
sistent with the correct form of the eigenfunction
(2.2).

III. HAMILTONIAN WITH BOTH ROTATING

AND COUNTER-ROTATING TERMS

Consider a spin- & system with the Hamiltonian
(1.1). In the Bargmann representation, the Hamil-
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tonian is given by In the presence of interaction, let the same eigen-
value and eigenfunction now become

8 8 8
H = z40ou —-V —+COZ-

8u 8v 8z

8 8 8 8 8 8
+A, Q +ZV + ZQ —+—V

8V 8Q 8v 8z 8Q

(3 1)

E '"(A.) = Q Ap
'"

A.

P=O

f '"(A;u, v, z) = PB& "(u, v, z)A~

@=0

(3.4)

A "= (v —~)&go+ n(d, (x = 0, 1 and n = 0, 1, 2, . . .
(3.2)

and

B, "(u, v, z) =u 'v'-'z" . (3.3)

The eigenvalue and eigenfunction of the unperturbed
Hamiltonian corresponding to the quantum num-
bers 0 and n are given by

=Bo '"(u, v, z) g Pg "(u, v, z)A~,
P=O

(3.5)

with Po'"(u, v, z) =1. Substituting (3.5) and (3.4)
into the eigenvalue equation for H, comparing the
coefficients of A.

" on both sides and remembering
HQ; "=A,'"B,'", we get

p 1 8 8 8
A. g(do u ——v —+(dz —pp

' (u, v, z)

i 8 82
&

8
(I —z)zzv 'z '+zz —z '+(( —z(zv ' —+z +zz 'vz+ —vz)8v Bz 8 v8z 8Q

+ 1 —0 v z+u —z+vnu vz +n —vz +au v —+v
&

'~ Q v z
8V 8Q 8Z 8Q8Z

The crucial part of the recursive perturbation method is to let

= p A. p A& '",p, '"(u, v, z) . (3.6)
a=0

Pp
'

(uz vz z) = Q Q bp. 'i yu v
k = -P i= -P

(3.6a)

where the prime in the summation denotes the exclusion of the term 0 = i = Q. Now comparing the coeffi-
cients of u'v 'z on both sides of (3.6) gives the following recurrence relation (the superscripts o and n
on A's and b's are omitted for convenience):

(a(d, +k(d)b~ ;,+[(-o —i.+2)(n+k+1)b~, .;,„,+(o+ &+1)b, , .;„,,]
P-j.

+ [(-v —i + 2)b~, ... , + (o + i + 1)(n+ k+ 1)bp, .;„„„I= P Ap, b, (3.V)

with

and (3.Va)

b~.;,=0 if i =k=0, p&0 or if [(i( or [k( &p.

For a particular order p considered, the recur-
rence relation (3.V) formally implies a set of si-
multaneous equations in (2p+1)' unknowns, b~.; „,
i, k = —p, -p+ 1, . . . , p (excluding i = k = 0) and A~
which are given in terms of the A. 's and b's of
lower orders than p.

However, we have a number of simplifying fac-

tors inpractice. First, the b~.;,can be determined
individually as there is only one b of order P ap-
pearing in each equation (3.V). Second, b~ ;,is.
equal to zero for ~i) & 2S or k & n in addition —to its
being equal to zero as given by (3.Va). Thus for a
spin-2 atom, the only nonzero b~.; ~ are those for
which i =0, +1 and jg& —n. Further simplification
results for the Hamiltonian (1.1), as it turns out
that if cot uo, the only nonzero b~.';"I, are those for
which (i) when p is even, i = 0, k = even integer & n-
and (ii) when p is odd, i =1, k =odd integer & —n
for v =0, and i =-1, k =odd integer& -n for 0 =1.
Thus, without much trouble, we derive the follow-
ing expression for the frequency shift:
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2&@ (2n+1) 2 2&u6(uP+3aj26)(2n +2n+1)
A, +'''.

CO —(d0 ((d —CO joj

For n =0, we have obtained the following expression for the frequency shift of a two-level atom
undergoing "spontaneous emission"' up to eighth order in the coupling parameter:

(3.8)

+3+ ) ~(oo(3(u +64(o (go+70

2(u (27')" + 2577(u' (u'+ 13070(o'u)4+ 7026(u (u —2217uAu' —51(u'(u, + 48(u )
~2(~2 ~2)7(9~2 ~2)2

For very large n, we have obtained the following expression for the Bloch-Siegert shift up to eighth
order in the coupling parameter:

(3.9)

E'"(X)-E'"(A) =(u — ' 2b'+ ' ' 2b' — — ' ' + ' 2b'0 2 2
(

2 2)2 (
2 ~2)5 +

(~2 ~2)2(9~2 ~2)

-2(u, ((u6 —39(o4(o', —10lcu2(o4, —53(u6) 16u)6(~2+ (u'6)

(~2 ~2)7 (~2 ~2)4(9~2 ~2)

4(u6(3(o6+ 14(o6(g26+ 388(o4(@46+130(u2+66 —23(u66)

((o' —(o'6)'(9(o' —(u'6)

8(u6(9+6+ 252(o6(@26+382')4a46 —148(u2(u6, + 176u6)
(~2 ~2)6(9~2 ~2)2 (3.10)

where b=—one. is the notation used by Shirley and
the terms up to b6 in (3.10) agree with those given
by him.

It will be observed that in Eq. (3.5), since
E,'"(u, v, z) is cancelled on both sides of the eigen-
value equation for H, it is the function p2'"(u, v, z)
and not the function B2'"(u, v, z) which plays the
crucial role and it will be noted that the power of
z in Q2, p~'"(u, v, z)A2 ranges from -n to + ~.
Thus in the fully quantum-mechanicaL case n =0,
we have only positive powers of z while in the fully
classical case n =~, we have the powers of z

P = z[l —4(Bq/B(u6)2] (3.1 la)

The quantity q' is a more useful quantity as it is
nonsingular at v =~,. We find from (3.10),

l

ranging from - to +. Shirley's formulation of
the problem using the Floquet Hamiltonian is
closely related to this point. "

For the Bloch-Siegert shift, define

(3.11)

Shirley' showed that q is related to the spin transi-
tion probability through its derivative:

2&d6b 2&d& b 8(d6(M —5&(g6 —2(d6)b 2(d6(9(d —252&d (d6+ 346(d2(d6+ 364(OQP6+ 77(d6)b
I'd + (d6 (M + (d6) (QP + (d6) (9GP —(d6) (&u+ ~,)7(9aP —~'6)'

Setting Bq2/B~6 =0 to obtain a maximum" for P, we get

(3.12)

4(gb2 4((u —2(u )b 16(9(o' —126(u4(o +82(o'(u26+ 42&v u)' —23~(u4 —8(o'6)b

(Id + &u6)2 (&o+ v6)4 ((o+ (u, )6(9(u2 —(o2,)2

4(81(u7 —5022(u6(@6+ 20709(u5(g2 + 234co4(@26 —8285~2~4+1382uP(u5+ 2471(u(u6, +462(u7)b'
((d + (d6) (9(d —QP6)

(3.13)

The position of the main resonance can be deter-
mined iteratively from (3.13). It is usua. lly more
convenient (but not more accurate) to express u,
explicitly in terms of b and u or to express u ex-
plicitly in terms of b and e, . From (3.13), we
find

b 5b 61 b 407b
0 ~ ~ (3.14)

4 co' 32 co' 128 cu'

b2 1 b4 35 be 103 bs
(O =u)6+ —+ ——

2
———5+ —7+ ~ ~ ~ . (3.15)

(uo 4 o 32 +5o 128 ~o
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IV. COMPARISON WITH THE RESULTS OF OTHER
AUTHORS

For the spontaneous shift, the terms of order
higher than the second in (3.9) are new as far as
we know.

For the Bloch-Siegert shift, the terms up to b'
in (3.14) agree with the semiclassical result of
Shirley. ' Our result thus disagrees with the con-
clusion of Chang and Stehle' who claimed that the
semiclassical treatment leads to a frequency shift
at variance with their quantum-electrodynamic
result. Our result is of course fully quantum elec-
trodynamic, but in agreement with the results of
Shirley and other authors' rather than with the re-
sult of Chang and Stehle. The eighth-order term
in (3.14) was estimated semiclassically by Hanna-
ford et al.' as approximately equal to -227b'/64(d'
and this differs from our exact result by about 10%.
It is significant, however, that our eighth-order
term in (3.14) agrees with the semiclassical re-
sult of Ahmad and Bullough which was given very
recently. The eighth-order term in (3.15) has not
been given previously although it can be easily ob-
tained by inverting (3.14).

The expressions (3.12) and (3.13) are indepen-
dently useful, and it will be noted that while (3.14)
and (3.15) can be obtained from them, the con-
verse is not true. The coefficients up to the terms
in b' in (3.12) were given previously by Pegg"
from a semiclassical theory and the terms up to
b6 in (3.13) were given previously by Hannaford
et al.' also from a semiclassical theory. The
eighth-order terms in (3.12) and (3.13) are new
and have never been given previously from either
the semiclassical or quantum theory.

It should be mentioned that Stenholm" derived
a continued-fraction expression for the Bloch-
Siegert shift from a semiclassical theory which
he showed to give a power-series expression for
the shift in agreement with the result of Shirley
and the quantum-electrodynamic result of Cohen-
Tannoudji et al. (up to sixth order). It would obvi-
ously be of value to have the quantum-electrody-
namic Bloch-Siegert shift also expressed as a con-
tinued fraction and this has been done and will be
published elsewhere. " It should also be mentioned
that for small values of (d,/(d, Hannaford et al.'
obtained a semiclassical expression which ex-
presses the shift in terms of Bessel functions and
powers of (d,/(d, and these expressions were said
to give a better fit than (3.14) or (3.15) in that
region.

l.e.)

H =(doS'+(da a+A(a S +aS') (5.1)

have been given by Tavis and Cummings" and
Mallory. ' With a view to understanding the solu-
tion of Eq, . (3.7), however, it is instructive to see
how Eq. (3.7) simplifies in this case, resulting in
the possibility of summing the perturbation series
into a simple closed-form expression.

In the absence of the counter-rotating terms, the
recurrence relation (3.7) reduces, for @=1, to

(i(d, +k(d)bp ;,+[(.-i+1)(n+ k+1)b~,

P-z
+ (i + 2)b~, .;„),j = Q Ap, b, .; ) .

(5.2)

((d (do)52@ ).
= +Aces-&-~ ~ (5.3)

A, ))
= (n+ 1)f),p, . (5.4)

We thus get

1 P

QA, ~ 2,A2, for p 2
(d —

QPO
(5.5)

with

A, = —(n+ I)/(u) —(do) . (5.6)

The nonlinear equation (5.5) turns out to have a
simple solution, because if we assume the series

1-a((d —(d()) +A2A. +A A. + ' ' '

to be an expansion of the expression

(5.7)

4(n+ 1)A.
'

—2((d —(d, ) 1+
((d —(d,)'

then we have

(5.8)

Remembering that only certain b~.; „are nonzero
from Sec. IV, it is easy to see that all b~.;,=0 ex-
cept those with i = —1, 0 = 1, and P = odd integer,
and the odd-numbered A~ (i.e. , p = odd number)
vanish. Thus the recurrence relation (5.2) be-
comes (omitting the subscripts i and k in b's)

V. HAMILTONIAN WITH ONLY THE ROTATING
OR COUNTER-ROTATING TERMS

The eigenvalues of a spin-& system with Hamil-
tonian (1.1) excluding the counter-rotating terms,

A ~
= (—1)~ '

( ) (n + 1)~( )
.

But Eq. (5.5) requires that for p & 2,

(5.9)
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(5.10)

and

Eo "(z) = (n+ 2)(u —~2[((u+ (oo)'+ 4(n+ 1)A. ]'

E'"(z) = n(o + 2(go+ 2((u —(oo)

= (n+ 2)(o —2'[(~ —(g,)'+ 4 (n + I )x']'~',

n =0, 1, 2, . . . . (5.12)

The remaining eigenvalues of H (the case & =0)
can be obtained in a similar way and are found to
be

E'"(A.) = (n —2)(o+ 2[((o —(g,)'+4n)P]'~',

n=0, 1, 2, . . . (5.13)

Expressions (5.12) and (5.13) are in agreement
with the results given by Tavis and Cummings,
and Mallory using different methods. In our ap-
proach, the removal of the singularities at ~ = co,
of I/(&u —&u, )'~ ' following the summation of the
perturbation series is clearly exhibited.

For a spin-& system with the Hamiltonian con-
sisting only of the counter-rotating terms, i.e.,

(5.11)

i.e., (2~') must be equal to zero for p ~ 2, and this
has a nontrivial solution t = ~. Thus, we obtain
for the case o =1 the following exact eigenvalues of
H given by (5.1):

n =0, 1, 2, . . . . (5.16)

As mentioned earlier, when both the rotating
and the counter-rotating terms are present, we
have not been able to obtain a closed-form expres-
sion for the eigenvalues of H from the recurrence
relation (3.7). It is hoped that the approach we
used leading to the expressions (5.12), (5.13),
(5.15), (5.16), (3.9), and (3.10) would shed more
light on this problem which might lead us to obtain
the required closed-form expression.

VI. SUMMARY

We have presented a new fully quantum-mechan-
ical method for calculating the stimulated and
spontaneous radiative frequency shifts of a two-
level system and we have presented a recurrence
relation (3.7) by which the successive perturba-
tion terms can be obtained with considerable
speed. Expressions for the spontaneous and stim-
ulated frequency shifts (3.9) and (3.10) up to
eighth order in the coupling constant are given as
examples but these are not representative of the
power of our recursive method. The power will
be clearly exhibited in the actual numerical com-
putation with a computer. Generalizations of the
method to the study of multilevel atoms in a radia-
tion field are obvious.

H =&uoS'+&uata+A(atS'+aS ), (5.14) ACKNOWLEDGMENT
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