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Ab initio cross sections for excitation of the 2p state of hydrogen by electron impact at
intermediate energiese
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Differential and integral cross sections for the 1s-2p excitation of the hydrogen atom at impact

energies of 0.81, 1.00, 1.21, 1.44, 2.25, and 4.00 Ry are calculated from the most accurate available

ab initio calculations and tabulated.

Electron-hydrogen-atom scattering provides an
important test case because the most accurate
ab initio electron-scattering calculations can be
performed for this case. There is much interest
lately in new experimental and approximate quan-
tum mechanical methods for obtaining electron-
scattering differential and integral. cross sections
at intermediate energies and it is useful to have
accurate quantum mechanical results available for
comparison.

The excitation of the 2P state is one of the most
important processes in electron scattering by
ground-state hydrogen. Experimental measure-
ments of the integral cross section for this pro-
cess mere reviewed by Moiseimitsch and Smith'
and Williams and Willis. ' The most accurate
available results at the time of the former review
were the relative measurement of Long et ul. '
Since then additional relative measurements with
better energy resolution have been carried out by
Mcoowan et al.~ and these agree with the results
of Long et al. within a few percent. Recently
Williams and Willis' gave another review of pre-
vious work and measured an absolute value for
this cross section of 0.867 +00 o~82oa', (lao= 5.2918
x 10 "m) at an impact energy of 0.81 Ry (1 Ry
=2.1799x10-"J =13.606 eV) and suggested the
previous experiments be normalized using this
value. This has been done and the results are
given as the experimental results in Table I. No
experimental differential cross sections have been
published.

The most accurate published calculations of re-
actance matrices for inelastic scattering are those
performed by Burke and co-workers using the
close-coupling approximation" and the correla-
tion method" and those performed by Callaway
and Wooten using algebraic variational methods. '
These calculations assume LS coupling (where L
and 8 are the quantum numbers for total orbital
and spin angular momentum of the two-electron
system) and have been carried out for both S =0
and 8 = 1. They yield reactance matrices R~~

from which differential cross sections I(E, 8),

partial integral cross sections, and integral cross
sections Q(Z) may be obtained at each impact en-
ergy E using equations given elsewhere. ' " In
some cases, however, the partial integral cross
sections and/or integral cross sections are pub-
lished but the reactance matrices are not pub-
lished. In such cases there is not enough informa-
tion published to calculate the differential cross
section. Our experience with algebraic variation-
al. calculations on electron-hydrogen scattering has
shown that the reactance matrices (and hence the
differential cross sections) are more sensitive to
the qual. ity of the calculation than are the partial
integral cross sections and integral cross sec-
tions, '~ and it is more difficult to judge the quality
of a calculation when the reactance matrix is not
published. The cross sections involve infinite
sums over L, but in practice the reactance ma-
trices are assumed to be nonzero only for 0& L
~ L where L,„should be large enough that the
truncation error is small (see below).

Calculations of different quality are available at
various energies. At low-enough energies the
quality of the various calculations may be judged
using a minimum principle" or a quasiminimum
principle" for the eigenphase sums; in the present
article this is useful only at an impact energy of
0.81 Ry. The most accurate calculations available
for I = 0 at 0.81, 1.0, and 1.21 Ry are those ob-
tained by the correlation method' and by algebraic
variational methods' and these calculations are in
good agreement at the one energy (0.81 Ry) where
comparison can be made. ' The correlation-method
reactance matrices are available' for L =0 at im-
pact energies of 0.81, 1.00, and 1.21 Ry and were
used in the calculations presented here. For
higher I at 0.81 Ry calculations have been reported
for 1 ~ L & 3 using the six-state close-coupling
method, ' the correlation method, ' and the three-
state plus three-pseudostate close-coupling meth-
od" and the eigenphase sums have been compared
for each symmetry (i.e., for each of the six sets
of L and S). In one case the first method was best,
in two cases the second method was best, and in
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three cases the third method was best. At ener-
gies 1 Ry and greater, calculations have not been
performed using the second method for I ~ 1 and
the eigenphase sums have not been published or
compared. For L ~ 1 the reactance matrices have
been made available only for the first method and
so it was used for L~ 1 for the present calcula-
tions. The six-state close-coupling reactance ma-
trices are available for L & 7 at 0.81 and 1.00 Ry
and for L & 4 at 1.21 Ry. For L = 5 at 1.21 Ry we
used the three-state close-coupling results. ' For
L& 7 at 0.81 and 1.00 Ry and for L& 5 at 1.21 Ry
no calculations more accurate than the Born II
approximation" have been reported. For these
L (up to L =13) we calculated three-state Born-II-
approximation" reactance matrices using a pro-
gram described elsewhere. "

The calculations just described for 0.81 Ry,
1.00 Ry, and 1.21 Ry use the most accurate reac-
tance matrices which have been made available at
these energies and will be called the "present"
calculations. The integral cross sections are
given in Table I where they are compared with the
three-state close-coupling approximation' (these
results actually correspond to three-state close
coupling for 0 & L& 5 and to Born II for 6 & L & 13).
At 0.81 Ry, the partial integral cross sections
from correlation-method calculations' and three-
state plus three-pseudostate close-coupling meth-
od calculations" are available for 1 ~ L- 3. These
are substituted for the ones used in the present
calculation to yield integral cross sections of
0.855ao and 0.93a,', respectively. Comparison with
Table I shows the former is in very good agreement
with experimentbut the smallness of the deviation is
probably just fortuitous since combining the three
methods by using the best partial cross section
for each of these six symmetries (and treating
L =0 and L& 4 using the most accurate calculations
which have been performed as in the present cal-
culation) yields an integral cross section of 0.924
xa', . These three estimates of the integral cross
section are within. the experimental error bounds.

For higher energies, calculations using the same
methods are not available. We again used the
most accurate available reactance matrices for
low L supplemented by our own calculations at
higher L. At impact energies of 1.44, 2.25, and
4.00 Ry we used the three-state close-coupling
calculations' where available (L & 6 at impact en-
ergies of 1.44 and 2.25 Ry, L » 7 at an impact en-
ergy of 4.00 Ry). To supplement those calcula-
tions we calculated three-state Born-II-approxi-
mation reactance-matrix elements for intermediate
L ( I & L & 13 at 1.44 Ry, I & L & 16 at 2.25 Ry, and
6 & L & 22 at 4.00 Ry) and Born-I-approximation"
reactance-matrix elements for high L (14 & L &19
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at 1.44 Ry, 17 & L& 40 at 2.25 Ry, and 23 & L& 75
at 4.00 Ry). In each case the highest-L value for
which Born II or Born I calculations were carried
out was chosen to meet the convergence criteria
for the differential cross section discussed below.
The L values at which we switched to Born II and
Born I reactance matrices are summarized in
Table I.

For I ~ 23 the Born I reactance-matrix elements

were calculated using only the long-range c;r '
terms in the static (nonexchange) 1s-2P potential
matrix elements. (These terms are given by
Omidvar. ') This asymptotic approximation is
valid at high-enough L and it was used to bypass
the computational problems encountered when using
the program described in Ref. 19 for L&23. The
formulas used for the asymptotic Born I reactance-
matrix elements are"

54& 2(L~I) '~'
~k

'+'~' r(L+1) — "
k, '" " (L+i)(i--.)&'--"=243 2L, 1 a', F(-,)r(L, —,)

"~ u,
' II (L.—,.')

54p 2L '" y, ~ ' ' I'(L) " 0 " " (L+i-1)(i——')
243 2L+ 1 fp, I'(—,')I'(L+ p) + g, II (L+ i —p) i (2)

The sums in (1) and (2) were evaluated including
only terms larger than 10 '4.

By L = 23 the results using (1) or (2) agreed with
the results obtained using Ref. 19 to better than
O. l%%uo and the agreement between the complete and
asymptotic Born I calculations was getting better
as L approached 23 from below. Thus the use of
the asymptotic approximation caused essentially
no error in the present calculations.

The differential cross sections were calculated
from the reactance matrices using a program and
methods described elsewhere. "" Unlike the pro-
cedure used in Ref. 13 however, the Born reac-
tance-matrix elements used in this work were not
truncated to the nearest ten thousandth but were
accurate to four significant figures. In Eq. (9) of
Ref. 13, A. „=26 at the lowest three energies,
A. „=38at 1.44 Ry, A,„„,=80 at 2.25 Ry, and A. ,„
=150 at 4.00 Ry. The calculation at 4.00 Ry re-
quired 444 677 Z coefficients.

The integral cross sections presented in Table I
are not as sensitive to the large-L reactance-ma-
trix elements as are the differential cross sec-
tions. The integral cross sections obtained includ-
ing only the low-L contributions, where calcula-
tions more accurate than the Born II approximation
were used, are given in Table I for completeness.

Table I also includes for comparison the results
obtained in some other calculations where only
the integral cross sections were calculated (or at
least only the integral cross sections were pub-
lished): the Born I approximation neglecting ex-
change"" (B), the Ochkur approximation"(0), the
Vainshtein-P resnyakov-Sobelman approximation'4
(VPS), the modified VPS approximation of Crothers
and McCarroll" (CM), the distorted-wave approxi-
tion neglecting exchange" (DW), the two-state
close-coupling calculations" (1s -2p c.c.), the three-
state close-coupling calculations neglecting ex-

change" (Is-2s-2P c.c. XE), the three-state plus
two-pseudostate close-coupling calculations of
Burke and Webb" (BW), and the multistate eikonal
treatment of Flannery and McCann" (FM). Many
other approximation methods have been applied to
this problem and they can be compared to the re-
sults in Table I. In general the integral cross sec-
tions calculated from the reactance matrices used
for the present differential cross-section calcula-
tions and the integral cross sections of Burke and
Webb are in better agreement with experimental
integral cross sections than are the results of the
various simpler approximation schemes, although
in some cases less complete treatments are more
accurate due to cancellation of errors for the in-
tegral cross section. Such cancellation of errors
is less likely for differential cross sections. Thus
it appears to be worthwhile to employ elaborate
calculations.

The differential cross sections as a function of
scattering angle 8 are presented in Table II. In
addition to the calculations presented i.n Table II
several convergence cheeks were carried out. At
the lower three energies, the 18-2p differential
cross sections were recalculated through A. ,„
=26 but with the close-coupling reactance matrix
for L equals L, (defined in Table I) at each energy
replaced by a Born II reactance matrix. The re-
sults agreed to within 0.1%at 0.81 Ry, 4%%uq at 1.00 Ry,
and 13%%up at 1.21 Ry with the calculations pr esented in
Table II at all angles. At the higher three energies
a cheek was carried out to ascertain the effect of
changing from Born II to Born I reactance-matrix
elements. The 1s-2p differential cross sections
calculated using the reactance-matrix elements
described above were compared to the differential
cross sections calculated after repLacing the Born
II reactance matrices for the highest two L values
at each energy (12 and 13 at 1.44 Ry, 15 and 16 at
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TABLE II. Differential. cross sections l(E,e) for 1s-2P transition as a function of impact
energy E and scattering angle e. Numbers in parentheses denote multiplicative powers of
ten.

(deg)

0
5

10
15
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

0.81

2.4V(-1)
2.43(-1)
2.32(-1)
2.14(-1)
1.92(-1)
1.44(-1)
1.04(-1)
v.9o(-2)
6.93(-2)
e.s4(-2)
6,92 {-2)
6.63(-2)
5.VS(-2)
4.6O(-2)
3.75(—2)
4.os(-2)
6.24(-2)
1.O2(—1)
1.48(-1)
1.se(-1)
2,O1(-1)

1.00

9.67(—1)
9.3O(-1)
S.31(-1)
6.93(-1)
5.43(—1)
2.92(—1)
1.47 (-1)
s.v1(—2)
V.19(-2)
7,22(-2)
7.48 (-2)
v.5o(-2)
V.19(-2)
e.e4(-2)
e.o5(—2)
5.e5(-2)
5.eo(-2)
5.96(-2)
6.62 (—2)
7.28(-2)
7.56(-2)

E (a 20/sr)
E {Ry)
1.21

2.95
2.78
2.36
1.82
1.31
e.23(-1)
3.06(-1)
1.74(-1)
1.22(—1)
9.64(-2)
v.9v(-2)
7.01(—2)
6.92(-2)
6.94{-2)
6.V2(—2)
6.36{—2)
6.37(-2)
v. o4(—2)
7.89(—2)
8.66(-2)
9.oo(-2)

1.44

6.01
5.57
4.50
3.28
2.28
1.04
4.56(-1)
2.2e(-1)
1.45(-1)
1.ov(-1)
8.1.7(-2)
6.92(-2)
e.vv(-2)
v.1s(-2)
v.59(-2)
7.73(—2)
V.51(-2)
e.sv(-2)
6.07 (—2)
5.32(-2)
5.12(-2)

2.25

15.79
12.69
7.52
4.10
2.27
v.3s(—1)
2.39(-1)
9,5O(-2)
e.oo(-2)
4.11{-2)
2.61(-2)
1.91(—2)
1.V8(-2)
1.e5(—2)
1.4O(—2)
1.oe(—2)
V.42{-3)
5.2V(—3)
4.ss(—3)
5.91(-3)
6.64(-3)

4.00

4]., 18'

21.89
7.59
2.87
1.19
2.19(-1)
4.3e(-2)
1.96{-2)
1.29(-2)
6.42(-3)
3.68(-3)
3.54(—3)
3.25(-3)
2.31(-3)
1.41(-3)
1.11{—3)
1.43(-3)
1.82(—3)
1.37(-3)
5.91{-4)
3.2S(-4)

2.25 Ry, and 21 and 22 at 4.0 Ry) with Born I re-
actance-matrix elements. The two calculations
agreed to within 1/0 at 1.44 and 2.25 Ry and 4% at
4.00 Ry at all angles. Since the sum over L in the
differential cross section converges more slowly
as the energy is increased, checks were carried
out at the four highest energies to ascertain the
effect of removing the reactance-matrix elements
for the highest I (13 at 1.21 Ry, 19 at 1.44 Ry, 40
at 2.25 Ry, and 75 at 4.00 Ry) from the calcula-
tions presented in Table II. The differential cross
section converges most slowly at very large 8
where it oscillates as L is increased. Upon elimi-
nating the term with highest L, the differential
cross section remained unchanged within 1% for
all 8 less than 150' at 1.21 Ry, 176' at 1.44 Ry,
178 at 2.25 Ry, and 177' at 4.00 Ry. Even at 8
= 180' it remained the same within 4/o at all ener-

giess.

The effect of the large-L contributions on the
differential cross sections at the four highest en-
ergies is shown in Fig. 1 where the present differ-
ential cross sections are compared to cross sec-
tions computed by setting all reactance matrices
with l, & L, (defined in Table I) equal to zero. The
figures show that inclusion of higher-L values
generally raises the ratio I(E, 0)/(E, 180) as ex-

pected.
The contributions from the Born I reactance

matrices are most important at the two highest
energies. If these reactance matrices are left out
the differential cross section oscillates about the
present results with "wavelengths" (angular spac-
ing between successive minima or maxima in the os-
cillation pattern) of about 20 . Figure 1 also shows
for comparison the Born I approximation neglecting
exchange. The Born-I-approximation differential
cross sections are monotonically decreasing func-
tions of scattering angle. At small scattering
angles they agree in angular dependence but over-
estimate the magnitude as compared to the more
accurate results. At larger scattering angles they
underestimate the cross section. These conclu-
sions agree with those obtained previously2 ' by
comparing the Born approximation to experimen-
tal differential cross sections for the 1'8-2'P ex-
citation of He in a comparable energy range (im-
pact energies 1—,-4 times threshold energy). This
gives further support to the expectation that this
should be the general result for optically al1.owed
excitations at intermediate energy.

The authors are grateful to Dr. Richard L. Smith
for assistance with some of the calculations.
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FIG. 1. Differential cross sections as functions of scattering angle for the 1s-2P excitation of the hydrogen atom at
electron impact energies (a) 1.21 Ry, (b) 1.44 Ry, (c) 2.25 Hy, and (d) 4.00 Ry. Solid lines, complete present calcu-
lations; dotted lines, low-I results, i.e. , the results if only the contributions from O~I. ~L& {where L& is defined in
Table I) are included; dashed line, first Born approximation.
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TABLE AI. Born-approximation reactance-matrix elements for L = 14 at total energy 1.25
By (impact energy 2.25 Hy in the ls initial channel and 1.50 Ry in other channels). Numbers
in parentheses denote multiplicative powers of ten.

1sk &L

2sk,L
2pk'2L + 1
2Pk', L-1

1sk &L

2.152(-8)

2sk 2L

—1.156(-6)
6.739(—4)

2pk2L +1

5.508(-4)
-1.434 (-1)
-1.665(-2)

2pk2L-1

—9.555(—3)
1.482(-1)
1.709(-2)

-1.723(-2)

APPENDIX

Re t ce-matrix elements for 1,&].3 or reactance-matrix elements smaller than 10 'have apparently
never been published before. Some accurate values of these may be useful as test cases for other workers
and for this purpose some of our Born-approximation results are presented in Table AI.

*Research supported in part by the NSF under research
Grant No. GP-28684 and by the University Computer
Center and the Graduate School of the University of
Minnesota.
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