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%'e present calculations of the cross section cr» for the vibrational excitation of H, by proton impact
with several interaction potentials. The calculation with a long-range anisotropic potential shows features

very similar to the calculation with the H3+ potential surface, but both calculations fail to account for
the observed persistence of the cross section at high velocities (proton energy range from 200 to 1000
eV). A trajectory-dependent potential is introduced semiempirically, and it is found that the main fea-

0

tures of the observed cross section can be explained by its short-range parts (r & 2 A). The signifi-
cance of this potential is discussed. The approximation scheme involves first-order time-dependent per-
turbation theory and considers only rectilinear trajectories. Therefore, for the case reported here, the
calculation is valid for energies higher than about 200 eV, where the trajectories are essentially recti-
linear. The semiempirical deduction of the trajectory-dependent potential was greatly simplified by re-
presenting the time-dependent potential by a Gaussian pulse. The results are compared with a previous
calculation.

I. INTRODUCTION

Recent experimental measurements of the cross
sections for vibrational excitation of the diatomic
molecule H, by proton impact, ' and of the molecu-
lar ion H2 by impact on neutral targets' have re-
vealed some features which do not appear in the
theoretically calculated cross sections. '

The most outstanding feature of the cross sec-
tions for a single quantum transition, besides
their large magnitude, is their persistence in
the high-velocity region (v & 2&& 10' cm/sec) as
evidenced by a broad maximum in the energy
region of 300-1000 eV. The cross sections in-
volving multiquantum transitions are smaller,
and are generally monotonically decreasing with
energy in the high-velocity region.

The broad maximum in the cross section as-
sociated with single quantum transitions has been
interpreted qualitatively on the basis of Massey's
adiabatic criterion. However, the collision dis-
tances obtained with this simple idea are some-
what large. For example, for the H+-H, system,
the collision distances obtained for the single
quantum excitation of H, is about 8@10-' cm.
This distance is longer than the range of the po-
tential, which is less than 4x10 ' cm.

So far, the calculations of vibrational excita-
tion cross sections reported by Ritchie' for the
system H'-H, have used a long-range isotropic
potential of interaction with a suitably chosen
short-range cutoff. The calculation done by
Ritchie and those reported here with a long-range
anisotropic potential do not account for the broad

maximum observed in the cross section for the
single quantum (v': 0-1) excitation collision in
the H -H, system. Also, as we report in the
present work, calculations employing the poten-
tial surface of H,

' yield a cross-section energy
curve similar in character to that obtained with
the long-range potentials.

None of the above calculations account for the
very broad maximum observed in the experimen-
tal cross section. Thus, it seems that the ob-
served behavior of the cross section cannot be
explained in terms of the static character of a
simple adiabatic potential surface or in terms
of the expected anisotropies of the long-range
potential.

At least two reasons can be given for the lack
of agreement using the potentials mentioned above.
First, the H'-H, potential curve crosses the po-
tential curve for the charge-exchanged system H-

0

H,
' at approximately 1.2 A. Transitions occur-

ring in this region should influence the outcome
of the collision. " In the energy range 200-1000
eV the probability of excitation of the electronic
cloud of H, is expected to be large. In fact, the
two adiabatic electronic systems (H'+H, ) and
(H+H,') are both energetically possible at short
distances. The presence of the (H+H,+) channels,
communicated by electron exchange with the orig-
inal (H'+ H, ), increases the probability of excita-
tion of the vibrational modes of H2, making the
"effective" potential between H' and H, softer at
short distances. The collision starts at large dis-
tances with an (H, + H') configuration and as the H+

gets closer to H, (in the region of 1.2 A) the (H,
'
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+ H) configuration becomes very competitive. In
fact, in this region the nonadiabatic coupling be-
tween the two surfaces reaches its maximum.
Thus it is plausible that the system for these
close distances may have one or another config-
uration, and may undergo jumps from one to an-
other by "virtual" electron transitions. The cou-
pling between both configurations is due to the
effect of the relative motion of projectile versus
target on the electronic wave function. The Q
value of the reaction H, + H' -H,'+ H is 1.835 eV;
then, for large separation, with H, in vibrational
states having v' & 4 before the interaction, the
configuration remains (Ha+ H') and so only one
potential surface wi11 be possible. The crossing
of the two-potential surfaces, which occurs at
about 1.2 A, makes the effective two-body inter-
action between H' and H, quite nonlocal in char-
acter.

The second reason for expecting a nonloeal po-
tential is that the time the proton spends in the
vicinity of the H, molecule is of the order of the
vibrational period of the molecule. This means,
of course, that the nuclear motion of H, is no
longer independent of the motion of the incident
proton, and it becomes extremely difficult to
obtain the wave function for the system. Thus,
the molecular nuclei may respond differently to
two identical instantaneous distances of the inci-
dent proton (which correspond to the same pro-
ton-molecule distance) if those two instantaneous
distances belong to different trajectories (differ-
ent impact parameters). As we shall see below,
this characteristic justifies the potential that is
finally suggested by this work.

In the light of these arguments it is not surpris-
ing that calculations with ordinary potentials have
failed. However, precisely because of the rea-
sons given above, it is very difficult at the mo-
ment to obtain from first principles a potential
which will describe the process of vibrational
excitation of H, by proton impact adequately.

We have found that we can account for the broad
maximum of the cross section mentioned above
by properly adjusting the potential at short dis-
tances in such a way that it conforms qualitative-
ly to the arguments given above regarding the de-
pendence of the motion of the three nuclei and the
possibility of electron exchange. In order to de-
duce the proper form of the potential it was nec-
essary to allow the potential to have a simultan-
eous dependence on the proton-molecule distance
r as well as the impact parameter of the collision
b. This nonseparability of the projectile from the mo-
tion of the internal coordinates of the target may be
associated with a dynamical description of the
collision in terms of a nonlocal potential.

In the following section on theory (Sec. II), the
general method of calculation of transition prob-
abilities of cross section is described. In Sec.
III.we discuss in some detail the following poten-
tials: (i) the anisotropic long-range interactions
with cutoff at short distances, (ii) two possible
potentials deduced from the H3+ potential surface
of Conroy, and (iii) the potential proposed in this
work which fits the experimental data. In Sec. IV,
we present the results and conclusions.

II. THEORY

Consider the collision between a proton and a
hydrogen molecule. We designate the proton-
molecule distance by the vector r. The symbol
y represents the distance between the nuclei of
H„and 0, is the reference orientation angle be-
tween the internuclear axis of the molecule and
the asymptote of the proton trajectory (see Fig.
I). The instantaneous angle between the inter-
nuclear axis and the vector r is designated by 6,
and b is the impact parameter of the collision.
Since we are interested in the vibrational excita-
tion of the molecule, we write the potential as a
function of r and y:

V( r, y) = V( r„y,)+ (V„V)„,V r+ (V,V)„,Vy+ ~ ~ ~,

(I)

where y, is the equilibrium displacement of the
molecule. If we define the dimensionless quantity

t —$0 y —3'0

y,„-y, (2m/m (u)'i'

and express the effect of the angle 8 explicitly,
we can write

V(x, y, 8) = V, (r, 8) + V, (r, 8) t+ 2 V, (r, 8) ('+ ~ ~ ~ .

vt

ON

FIG. 1. Coordinates for the H+-H2 collision.
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Here,

v, (r, 8)= v(r, e, g= 0),

V, (r, 8) = —,
8&

8-0

()2V
I

V, (r, 8)=, , etc.
it=o

After averaging in angle, we may write the pre-
vious expressions as

V,(r, y)=V, (r)+V, (r)E+ p V, (r)('+ ~ ~ ~ . (4)

The proton kinetic energies to be considered
here will always be larger than 200 eV. At these
energies the de Broglie wavelength of the proton
is much smaller than the molecular target size,
and the total scattering cross section is strongly
forward peaked. ' Therefore, the proton trajec-
tory can be represented by a classical straight-
line trajectory of the form

~2 ~2t2+ Q2
) (5)

0'0„=2' ,„(b)b db .

where v is the proton velocity, t is the time mea-
sure from the classical turning point, and b the
impact parameter. Substitution of Eq. (5) into
Eq. (3) allows us to write the coefficients V;(r, 8)
as explicit functions of time.

We are interested in determining the cross sec-
tion for the excitation of one vibrational quantum
(i'=0- v'=I) of H, as a result of the proton colli-
sion. We denote the cross section with the sym-
bol o„using the initial and final vibrational quan-
tum numbers v'=0 and v'=1 as subscripts.

In our case of classical trajectories, the num-
ber of projectile angular momenta contributing
to the cross section will be very large, and we
can substitute the angular momentum quantum
number l by the relation k0b=l+2 where k, is
the projectile wave vector. In these cases the
cross section 00„may be obtained from the tran-
sition probability P0„at a given energy from

i
U, (t, t,) =1 —— Vl(T) UI(T, t, ) dw,

t0

where V/(v) is the potential V(r) expressed in the
interaction picture; V(T) is the potential given
by Eq. (3) [or Eq. (4) in the case that we average
in angle] but as a function of time. The passage
from configuration space to time dependence may
be done, for high energy, by Eq. (5). If this is
done the interaction will be a function of time,
and will be parametric on the impact parameter
b and on the velocity v.

In the interaction picture then

P,.(t) =l((t). I UI(t, t, )I p, &l'. (10)

To approximation in first order, Eq. (9) gives

2

P,„(t)=—, Vo,"(r) d~
0

where

von(&) (y IeiEpr/hv(r)E ispr/pi ~-&

Ei(Ep -Ep)r/tl V (T) (12)

where H0 is the Hamiltonian without the interac-
tion, and

v,.(~) =&&.l V(7')I p, & (13)

Substituting Eq. (4) into Eq. (13), we obtain the
expression

Ig(t)& will be a linear combination of Ik„)IH„&=i Q„&,
where IH„) is an excited state of H, which may in-
clude electronic, vibrational, and rotational ex-
citation. Since we are considering pure vibration-
al excitation, only IH„& represents the nth ex-
cited state of the harmonic oscillator.

The transition probability is then given by

P,„(t)= l(il)(t)l y„&i' = l(@„IU(t, t, )l y, &l'.

This probability can be expressed also in terms
of the evolution operator in the interaction picture
U,'(t, t,), which is given by

The expression for P,„(b) will be obtained from
time-dependent perturbation theory. In the Schro-
dinger picture, the state vector I g(t)& at a time t
evolves from the state vector I p(t p)& at a prior
time t, by the time evolution operator U(t, t,):

I() (t)& = U(t, t,)I ()(t.)& .

(14)

In this series only the nth-order term is nonzero.
That is,

(14a)

Hence, Eq. (11)becomes

In our case I g(to)& is the state before the inter-
action, and it is given by I k, ) IH, & where I k, & is
the plane wave corresponding to the projectile
and IH, ) is the ground state of the H, molecule.
At any other time after t0 the state of the system

(t) ], Ei(E„Ep)r/)I-
0n

&&(qb„l V„(r(7)}(g"/n!)I it)o&dv

(15)
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As we have said previously below Eq. (9), V„
will be parametric on b and also on v. We have
found it particularly convenient for the develop-
ment presented here to approximate V„by Gaus-
sian pulses in time, of the form

V„=A,„(b)e (16)

where

T=b/v.

2

For the case of single quantum (v' =0- v' =1)
excitation of H, by proton impact at energies high-
er than 200 eV the main contribution to the scat-
tering comes from forward scattering. ' So the
direction of k„ the proton momentum after the
collision, is virtually the same as the direction
of k„ the momentum after the collision. Further-
more, since the energy lost per excitation colli-
sion is only 0.5 eV, we set k, =ko. Therefore, in
this approximation, the matrix element P 0[Eq.
(15)] is independent of the scattering angle but
dependent on the impact parameter. Thus, the
angular momentum dependence of the wave func-
tions is explicitly shown in the amplitude A„and
in the characteristic time T/P'~2 of Eq. (16).

Finally, the first-order transition probability
for the v' = 0 v' = 1 excitation of the ground state
H, by proton impact for energies higher than 200
eV is given by

This potential was taken as

r' = v't ' + b' = b'(1 + 7')

and (see Fig. 1)

cos8 = (rb/r) cos8, + (b/r) sin8, ,

where

v =vt/b,

(21)

(22)

(23)

the interaction potential given by Eq. (20) be-
comes, for 8 =0, a simple function W(v, b), that
ls

A, A, A, b'T A4b v'
g 7, bj= —'+ —'+ +r' r4 r6 (24)

Qe
V(r 8)= ——

2 r4
e2 1 2Q

———u'P (cos8)+ — P (cos8)
2 r4 2r3 2

(2o)

where a and a. ' are related to the polarizability
of the molecule along its axis and perpendicular
to it. P, is the Legendre polynomial of second
order, and Q the electric quadrupole moment of
the molecule. The molecule H, has no permanent
dipole moment; for this reason there is no term
proportional to the Legendre polynomial of first
degree. After the linear approximation, from
which we may write

P„(b, t) =
~to

where

B0, =(H1I (IH0)

e' »'B,A, (b) e

(17)

(18)

The coefficients A. ; are

A1 = —4 e2Q = —0.19 A2 eV,

A, = —2 e'(o. + 2 o. ') = —1.04 A' eV,

A, = f e'Q =0.58 A' eV,

A.,=--,' m'e'=-0. 64 A4eV.

(25)

1001 = (E1 —E0)/I .

Now, letting to- —~ and t- we obtain

P (b) = —' e-~"10~ »~'&~B A (b)~'.01 g 2 p(b) 01 01

(19)

The inelastic cross section can be found using
Eq. (6).

In Sec. III we carry out the above analysis for
the various cases of interest here, and we also
show the utility of the Gaussian pulse approxima-
tion in obtaining the final potential.

III. POTENTIALS

A. Long-range potential with cutoff at short distances

We have calculated op] using a long-range po-
tential similar to one used by Ritchie' for H'+H,
and also Takayanagi and Geltman' for e + H, .

The calculation was done for Op=0, ep=& p,
and 8, = 2 m. For the last two angles Eq. (24)
takes a slightly different form. After the prob-
abilities were calculated using Eq. (10), the aver-
age cross section was obtained using the same
criterion as Takayanagi and Geltman. ' That is,
assuming that

o(8,) =o, +o,P, (cos8,)+o4P, (cos8,),
the average cross section becomes

o = +, i o'(0) + 8o (~ m) + 6o (2 m) i .

(26)

(27)

We have predicted the cross section for several
cutoffs ranging from 0.95 to 2.0 A. Although the
shape of the cross-section curves is similar for
all of them, their magnitudes are different. In fact,
(see Fig. 2) in all cases the cross sections show

a sharp peak at around 250 eV and positive curva-
ture for energies greater than 400 eV.
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o.s—

0.4-

0.2-

FIG. 2. Vibrational exci-
tation cross section a'p~ in
0
A for the transition 0 1
as function of the labora-
tory energy of H+, corre-
sponding to the anisotropic
long-range potential given
by Eq. (20).

I I I
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FIG. 3. Up~ potential deduced from the H+3 surface ener-
gy calculated by Conroy (Ref. 9). The solid curve corre-
sponds to values of y =y;„such that the energy of the H+3

system presents a minimum, for the given r. The dashed
curve corresponds to y =yp= 1,4 a,u.

B.Potential deduced from the 83 configuration

Assuming that we are dealing with an atomic
configuration, where the process may be assumed
to develop adiabatically, we may deduce the H'
—H, potential from the energy of the H,'. The
potential energy will be equal to the energy of
the H,

' system minus the energy of the H, +H
when both elements are at infinite distance. This
was done by 6everal authors" under certain lim-
itations of the geometric configuration of the three
atoms. We have also deduced such a potential

using the work of Conroy' for the isosceles-tri-
angle configuration of H,'.

The potential V(r, y, 8) (see Fig. 3) may be
written as

v(r, y, 8) =z(r, y, e) -z(, y, 8), (28)

where E is the energy of the H,
' system. It was

obtained by the polynomial expansion given by
Conroy as the best fit to the H,

' system.
Since we are interested in the transition 0-1,

we must be concerned with the first derivative of
V(r, y, 8) with respect to y, that is V, (r, 8) in E l.
(2).

This derivative should be taken at the value of

y which makes E minimum, if we assume that
for each position of the projectile the atoms re-
arrange themselves to get a configuration corre-
sponding to a minimum energy of H,'. However
this may not be the case, and the equilibrium
position of the molecule may be different due to
the short time used by the projectile in crossing
the interaction area. This will produce a varia-
tion in the effective spring constant of the mole-
cule. For this reason we have also considered
the extreme possibility where the H, nuclei do
not change their equilibrium position, as the pro-
jectile gets closer. Thus we have built two poten-
tials by taking the derivative of V(r, y, 8) first at
y = y . , where E is minimum, and then at y = y, = 1.4
a.u. In the last case, the spring constant is as-
sumed to be unaffected by the interaction.

Figure 3 gives the potential matrix element Vp]

[see E l. (14a)] deduced from the work of Conroy
for y =y,-„corresponding to the distance between
the nuclei of H, where the energy of the H,

' sys-



HIGH-ENERGY BEHAVIOR OF THE VIBRATIONAL EXCITATION. . . i33i
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O. l-
I
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FIG. 4. Probabilities Po~
corresponding to the poten-
tials given in Fig. 3. The
dashed curves correspond
to y =yo and the solid cux ves
tO y =ymin'

tern has a minimum, and the potential correspond-
ing to y, =1.4 a.u. , which is the equilibrium vibra-
tional distance for the free H, molecule. The cor-
responding predictions are shown in Figs. 4 and 5.

C. The new potential

In the potentials used above, the time pulse
V, (t), is obtained by direct substitution of Etl.
(5) into the potential form wherever the distance
r appears. This pulse depends parametrically on
b, and the shape of potential pulse is strictly re-
lated to the dependence on r. That is, in the cal-
culations above the static character of the poten-
tial was preserved by the transformation from x
to the time t.

We now proceed along the following lines. We
assume that the potential should retain its static

character for long distances ~ because of the
weak coupling between the potential surfaces at
long distances, and we further assume that at
long distances the projectile motion is separable
from the motion of the molecular nuclei. Because
a complete quantum-mechanical solution to the
dynamic problem of the H' -H system does not
exist, it is impossible to determine u Priori the
region where short-range effects begin to play an
important role in the collision. The short-range
effects in this problem may be many in number;
however, those yrimarly responsible for an alter-
ation of the static character of the potential are
the two effects already mentioned above.

In order to include the short-range effects in

the potential, we must find the proper way to alter
the static potential at short distances. Indeed,
we have found that by adjusting the parameters

7.0

6.0"

5.0-

4.0-

5.0-

2.0-

FIG. 5. Vibrational cross
section sot in Lt corre
sponding to the potentials
given in Fig. 3. The dashed
curve is for y=yo and the
solid curve is for y =y;„.
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IOO 200 500 400 500 600 700
a(ev)

800 900 IOOO
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TABLE I. Parameters in table are defined in Eq. (16).
P is dimensionless, the impact parameter b is given in
A, and the amplitude A0& in eV/a. u. 1. 5—

0.6
1.0
1.4
1.8
2,0
2.4
2.8

0.02
0.06
0..13
0.13
0.20
0.20
0.20

0.40
0.78
0.50
0.36
0.38
0.29
0.25

I.0—

0.5—

P(b) and A„(b) in the Gaussian pulse, in such a
way that x and b behave as variables which are
completely independent from each other, we can
explain the observed cross section without the
necessity of an unduly large collision distance.

The Gaussian-pulse representation of the po-
tential is particularly convenient for carrying out
the procedure of adjusting the potential at short
distances. Several attempts soon show that the
values given in Table I for P and Ao, are the
"best" values with regard to reproducing the
broad high-energy maximum observed in the en-
ergy dependence of the cross section. The po-
tential. surface of Conroy was taken as the poten-

I i }» I s I i i I

500 IOOO
E (ev)

l500

0
FIG. 7. Vibrational excitation cross section 00& in A

for the transition 0 1 as a function of the laboratory
energy of H+. Closed circles, experimental results of
Ref. 1; smooth curve, predicted cross section corre-
sponding to the potential given in Table I.

tial at large distances and as the starting point
for the adjustment procedure at short distances.

The values obtained were found to be somewhat
critical in the sense that a small deviation from
these led to an appreciable change in the cross-
section shape.

O.I—

Po)

00l
0 500

E ( ~) 1000 l500

FIG. 6. Probability for the transition v' =0 v' =1 as
a function of the energy for the potential proposed in this
work. The number next to each probability curve gives
the value of the impact parameter in A.

IV. RESULTS AND CONCLUSIONS

From Figs. 2 and 5-7 we see that the only po-
tential which accounts for the broad maximum of
the cross section is the one given in Table I. The
others will not even account for the negative cur-
vature of the experimental points. This is an in-
dication of the importance of the short-range part
of the potential around 1 A, where the contribu-
tion to the probability P» is also maximum. At
these distances the sensibility of the cross sec-
tion to the potential has been found critical.

The set of parameters given in Table I were
found quite unique for fitting the experimental
data. This sort of uniqueness gives a sense of
reliability for our approach.

As it is shown in Table I the parameter P(b) is
fairly constant for large impact parameters while
the amplitude A„(b) varies significantly throughout
the entire range of b. This suggests that we are
not working on the same potential. surface. In
fact, the potential V, (r) equivalent to these pulses
is not unique in this region. Thus, the possibility
of electron exchange and correlation of different
potential surfaces is supported by this work. For
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larger impact parameters however, Ap] inferred
from the Gaussian pulse, goes to zero following
a unique envelope which agrees pretty well with
V, (x), deduced from the work of Conroy. As it
was expected, in this region there is only one po-
tential surface corresponding to the system (H,
+ H').

This work suggests the possibility of studying
the coexistence of different potential surfaces by
the type of experiments analyzed here, which re-
veal effective contributions from the short-dis-
tance part of the interaction. In addition, the
fact that deviations from the static potential be-
come important already at an impact parameter
of 2 A, indicates that the coupling of the motions
of the three nuclei is already significant at these
distances.

An indication of the importance of the short-
range region is given by Fig. 6, where the transi-
tion probability reaches a maximum for impact
parameter 6=1 A and an energy 8 of the order
200 eV.

A further fitting of the 0-2, 0-3, etc. vibrational
excitation cross sections may give us some moxe
information on the potential. However, since in
these cases we would be concerned with the sec-
ond derivative of the potential with respect to y
we would also find similar uncertainties at short
distances. The conclusions may not fold in with
the others, and we will just have two uncoupled
sets of information. The uncoupling could be re-
moved by removing the uncertainties of V(x, y, 8)
at short distances, and this is, at the moment,
quite a difficult task.
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