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N, O is a linear triatomic molecule. Electron scattering shows a 'X+ shape resonance at —2, 3 eV.
The lifetime turns out to be so short, 0.9 )& 10 " sec, that one has an impulse picture, in which the

nuclei acquire velocity but suA'er little displacement during the residence of the projectile electron. The
nuclear wave equation at the resonance is solved in the impulse approximation, and is shown to give a

good account of the excitation of more than 20 vibrational states observed by Azria, Wong, and

Schulz.

I. INTRODUCTION

When a molecule captures an electron to form
a short-lived negative ion' whose potential-energy
surface has a local minimum sufficiently deep to
prevent dissociation, the nuclei can move in dif-
ferent ways which depend' on the ratio of the vi-
brational period (=-2m/cu) and the decay rate
(=-(I')/8)." If ~»(1')/h, one may speak of a "com-
pound molecule" with well-defined vibrational lev-
els; if &u «(I')/k, one may speak of an "impulse
limit"; and in the intermediate case &u =(I')/S, one
may speak of a "boomerang model. " Each case
has its own characteristic and easily recognizable
energy dependence in the cross sections; examples
of all three are listed in Hefs. 2-4.

Detailed discussions of several examples of the
"boomerang model" have recently been given. 4

In this payer, we discuss an example of the "im-
pulse limit, " a resonance observed' ' in the colli-
sion

e + N,O-N, O(vibrationally excited) + e'

at an impact energy of 2.3 eV.
This payer continues the discussion of a, model

of molecular negative ions in which a complex
energy is associated with the electronic state';
the imaginary part is proportional to the rate of
emission of the extra electron. The complex en-
ergy is used as an adiabatic potential in a wave
equation for the nuclei (see Sec. III). This model
has now been used to discuss vibrational' and ro-
tational' excitation, dissociative attachment, "and
electron detachment" and associative detachment"
in ion-molecule collisions.

We shall have to make several approximations;
they will. be introduced as they are needed, and are
then listed again together in Sec. X.

II. STRUCTURE OF THE TRANSIENT OF N20 ION

The observed cross sections in the collision e
+ N, O at = 2.3 eV show a smooth hump without fine
structure (see Figs. 1 and 2). This contrasts with a

great deal of fine structure observed at some other
resonances, for example, a resonance at3.8 eV in
the collision e+CO, .' Such fine structure is a con-
sequence of reflected components in the nuclear
wave function in the negative ion, arising at the
turning points in the potential-energy surface;
these reflected components combine with the nucle-
ar wave produced on capture of the incoming elec-
tron to yield an interference pattern which changes
with the energy. Consequently, the amplitudes for
the production of final states, which are propor-
tional to the overlap integrals of the interference
pattern with the final nuclear wave function, oscil-
late as a function of energy. The absence of such
oscillations in the N, O resonance at -2.3 eV im-
plies that there can be no significant reflected com-
ponents in the nuclear wave function of the negative
ion.

There are two possible reasons for the absence
of the reflected components. The first possibility
is that the lifetime against reemission of the extra
electron is very short. (This would be the only
possibility in an ion whose potential-energy sur-
face possesses a minimum stable against dissocia-
tion into heavy fragments. ) The second possibility
is that the ion may dissociate into heavy fragments
before reflected components can arise; this could
happen in N, O because the threshold for dissocia-
tive attachment, e+N, O-N, +O, lies well below
the resonance energy of 2.3 eV (at 0.3 eV for a
target molecule in its vibrational ground state).

To interpret the experiments, we have made the
hypothesis that the first possibility holds in N,O,
and verified that the parameter values we need for
a good fit of the observations are consistent with
the hypothesis. The parameter values have to sat-
isfy two tests: First, the autoionization rate
I'(R,)/N for the extra electron in the neighborhood
of R„ the equilibrium configuration of the target
molecule, has to be large compared with the time
for a significant displacement of the nuclei [we may
take this time to be of the order of -', (2m/u), where
(v is a typical vibrational angular frequency and
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(2w/e) the corresponding period] .The second test
to be satisfied is a reasonable consistency of I"(R,)
with the observed probability of dissociation
N, O —N, +0, relative to the total cross section
for resonant processes; this probability is given
by the "survival factor, " exp[ —(1/8) f dh r(R(t))],
where t is the time reckoned from the capture of
the electron and the integral has to be taken along
the trajectory of dissociation. For this second
test, one must of course extrapolate I"(R) from
the value close to R„which is all that is needed
for vibrational excitation.

One reason for expecting our hypothesis to be
good lies in the small magnitude, about 10 ', of the
observed probability for dissociative attachment
(N,O -N, +0 ) relative to the sum total of all res-
onant processes. " The simplest interpretation of
this factor 10 is that the N, O ion dissociates
rapidly (in a time of order 10 "sec) as the 0 ion
moves away from N, along the axis of the original.
N, O. In this interpretation, 1"(R,)/I has to be so
large (=10"sec ') that the survival factor is of or-
der 10 '; most of the electron emission would then
necessarily occur before the 0 and N, had moved
apart significantly, in accordance with our hypoth-
esis. An alternative, but rather implausible, in-
terpretation of the factor 10 ' would have been that
the small survival factor comes from a smaller
value of I' acting along a complicated trajectory
which needs a time much longer than 10 '~ sec for
dissociation; this interpretation would be difficult
to reconcile with the absence of oscillations in the
vibrational excitation cross sections as a function
of energy.

The short lifetime against autoionization gives
us an example of the impulse limit, in the sense
that the nuclei acquire momentum from the elec-
trostatic force of the extra electron, but are not
significantly displaced during the residence of that
extra electron.

The neutral N, O molecule is linear in its elec-
tronic ground state. "'" If the lifetime of the N, O
ion at 2.3 eV is short, we are concerned only with
configurations of the nuclei close to the linear con-
figuration of the neutral N, O molecule. The ground
state is 'Z'. Following Bardsley, "we suppose
that the resonance at 2.3 eV is due to the occupa-
tion of a vacant (8o) orbital (the number 8 means
that this is the eighth one-electron 0 orbital in as-
cending order of energy) which can be formed from
atomic 2s and 2p states; thus the resonance is Z'.
The form of the corresponding orbital in the iso-
electronic CO, molecule is given in Ref. 14; the
orbital has two nodal surfaces which are normal
to the molecular axis where the axis passes
through them. Thus the dominant partial wave to
which the orbital matches in CO2 must be a (cd)

wave. In N, O, the absence of a center of symme-
try is likely to distort the orbital so as to contain
a substantial (oP) wave outside the molecule in ad-
dition to the d wave.

The N, O molecule in its electronic ground state
has three normal vibrational modes": a "symme-
tric-stretch" mode in which the two outer nuclei
move apart along the molecular axis while the
central nucleus almost stands still; an "asymme-
tric-stretch" mode, in which the central and one
of the outer nuclei approach, while the third nu-
cleus recedes from the first two along the molec-
ular axis; and a "bending" mode, in which the nu-
clei move perpendicularly to the molecular axis,
the central nucleus moving in the opposite direc-
tion to the other two (there are actually two de-
generate bending vibrations in two perpendicular
planes which contain the axis).

III. EXPRESSION FOR CROSS SECTIONS
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FIG. 1. Energy dependence of the differential cross
sections for two different energy-loss processes. Ex-
periment, dotted line; theory, solid line. The theo-
retical curves correspond to the parameters Qgg, '9~8,
and B given in Sec. IX. As I'0 increases, so does the
cross section both above and below the maximum.

In resonance scattering, the extra electron is
trapped temporarily (together with the target elec-
trons) in a state ((q, R) which is localized at the
molecule (the coordinates of the electrons and nu-
clei, respectively, are denoted by q and R). The
state $ is an eigenfunction of the electronic Hamil-
tonian H„, (q, R), i.e., [H„—W(R)]((q, R) =0, where
W(R) is the eigenvalue. If the extra electron
moves away from the nuclei, g at first decreases
due to the centrifugal barriers responsible for the
trapping; g then reaches a minimum beyond which
it has to match on to outgoing waves. We shall call
the region inside the minimum the "inner region"
(lR). ln an exact theory, the outgoing waves would
have to belong to the total energy in the collision.
We shall use an adiabatic approximation by sup-
posing that within the inner region, g may be rep-
resented by a Siegert state" corresponding to nu-
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4 (q, R; E) = (1)(q, R) $ (R;E) +4,(q, R; E), (2)

where E is the total energy, $ is the wave function
of the nuclei, and 4, is the nonresonant part of the
wave function which contains the incoming wave.
The resonance picture implies that at resonance
I)J)( I

++ Ic', I
in the inner region.

We shall simplify the problem by supposing that
at the resonance wave distortion is adequately rep-
resented by the term (J)$; then 4, may be approxi-
mated by the initial state, i.e. , C, = X, (R)p, (q, R)
&e' 0'', where X, is the initial vibrational state
of the nuclei, Q, the initial electronic state of the
target, and k, the wave vector and r the position of
the incident electron. Rotation of the molecule will
be ignored, becausethe resonance lifetimes/(I') is
short compared with rotational periods.

To get an equation for $, insert xi into the Schro-
dinger equation (H —E)4 =0. (H is the total Hamil-
tonia. n, i.e., H =H„., +K, where K is the kinetic en-
ergy of the nuclei. ) Multiply by )J)*, and integrate
over the internal region to get

[K+ W(R) —E]$(R, E) = —g(R, k, ) y, (R),

where

"X,(x, xx)e'"' '}x..
We have dropped nonadiabatic terms on the left-
hand side of (3) by replacing the product K(J)$ by
(J(Kg), because the electronic wave function g
varies much more slowly with R than does the nu-
clear wave function $. In g, we may replace H —E
by V„ the interaction potential of the incoming
electron with the target, because 4, as written
satisfies [(H —V,) E]4,=0, if we ne—glect nonadia-
batic terms. Thus /is a function of R, and con-
tains no derivative operators with respect to R.
Therefore our approximation for 4, permits for-
mation of the ion only by tunneling through the
centrifugal barriers, and not by a nonadiabatic
coupling to the nuclei.

Let the final state be 4 ~(q, R) = 11~(R)(J),(q, R)e'"x' ',
where Xf is the final vibrational state and k& the

clei fixed at R. This implies that the outgoing
waves belong to energy W(R), so that the eigenval-
ue a.nd the boundary condition have to be deter-
mined self-consistently. It is easily shown that as
a consequence of this boundary condition, 5' is
complex:

W(R) = E(R) —2 il'(R), (I)

where both E(R) and I'(R) are real and I'&0. We
sha11-normalize (J) so that J)adq~(J)(q, R)~'=I.

The complete wave function in the inner region is

where
(4)

Thus P'(R, kz) is a function of position R only, and
does not contain derivative operators with respect
to R. The integration in (4), and at corresponding
points later, is to exclude the mass center and the
orientation of the molecule; we shall distinguish
all integrals over R in which the mass center and
orientation are held fixed by a prime.

IV. IMPULSE APPROXIMATION

To solve E(1. (3), we shall drop the term K on
the left-hand side; we call this the impulse ap-
proximation, '"because it amounts to ignoring
the motion of the nuclei during the short residence
of the extra electron. The approximation is some-
times called the "fixed-nucleus approximation, " or
the "adiabatic approximation. ""

To justify the impulse approximation, divide
both sides of (3) formally by the operator
[K+W —E], and expand in powers of K/(W —E).
The impulse approximation is the leading term,
$ = [E —W(R)] 'gx, . In the first-order correction
term, we may ignore all derivatives except (Kx,),
because the variation of X, occurs in a scale of
length smaller than the scale for 8' and ( by a fac-
tor of order (m/M) '=-,'„where m is the elec-
tronic and I a typical nuclear mass. Since X, is
the vibrational ground state, Ex is of order —,'k
xgu, .X„where &u, is the angular frequency of the
ith vibrational mode in N, O. On the other hand,
the denominator satisfies

~
W —E

~

&-,'I', so that
the correction term is smaller than the leading
term by a factor of order (hg ur,.)/(2I').

A similar criterion may be obtained by a more
physical argument. The impulse approximation
should be good if the lifetime of the compound state

wave vector of the outgoing electron. The differ-
ential cross section for the transition from 4p to
4& is given by

(,—„) =, („;}I (e, (x, (x) I*.

Here V& is the potential between the outgoing elec-
tron and the rest of the molecule, vo and vy are the
velocities of the incoming and outgoing electrons,
and m is the mass of the electron.

We shall retain only the resonance term (J)f in xi

and restrict the integration to the internal region,
where the extra electron interacts with the mole-
cule; one gets

l

dR,*R g' R, k, R, E
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is short compared with the time of dissociation, so
that most of the ions emit their extra electron be-
fore dissociation is complete. If we take the time
of dissociation to be of the order of the time it
takes to slide down the side of a parabolic well to
the bottom, that is, of the order of —,

' of a typical

vibrational period (—= 2w/&u), we must have Ru
«(-,' v) (Z').

Within the impulse approximation, the differen-
tial cross section (4) for scattering to a vibration-
al state (s'b'a') from an initial state (sba) be-
comes

do' m ' ' d-X*. . (R) K'(R, k~) K(R, k.)X„.(R)
dQ ~~, , ~, v 2vh2 E —W(R)

(5)

(The notation sba signifies s quanta of symmetric
stretch vibration, b quanta of bending, and a quan-
ta of asymmetric stretch. )

V. APPROXIMATIONS IN INTEGRALS

We are concerned with scattering off the vibra-
tional ground state, i.e, , s = b = a = 0. The Franck-
Condon region defined by the initial vibrational
state y«, has a linear width of order (m/M) 'a~

ypag where M is a typical nuclear mass and a~
is the Bohr radius. Since the typical length in
which (, g', and 8'vary is much larger, of order
a~, we may use linear approximations of g,
and W as functions of the nuclear coordinates R.
The experimental observations in Ref. 5 show that
states with up to seven quanta of the symmetric-
streteh vibration are excited; since the selection
rules for the harmonic oscillator say that a linear
term in g or p' can excite only a single vibration-
al quantum, the dominant mechanism for the ex-
citation of vibrations must be the variation of W(R)
with R in the denominator of Eq. (5); we shall
therefore ignore the variation of g and (' with re-
spect to the symmetric-stretch and asymmetric-
stretch distortions (and return later to discuss
bending).

In the denominator, we use the linear approxima-
tion W(R) =E„——,'iF, +g U q, where (E„I', )

=(E(RO), F(RO)) corresponds to the equilibrium con-
figuration in the electronic ground state of N, O and

q„(o.'=SS, AS) are the normal coordinates for the

symmetric -str etch and asymmetric -stretch vi-
brations. The q are normalized so that the turn-
ing points of the initial vibrational state Xppp occur
at q =+1. The coefficients are the slopes U

&&p/ &q, taken at q = 0 fo r both mode s in the
linear configuration of the molecule. The U will
be treated as adjustable parameters. (See Figs.
3 and 4.)

However, in the neighborhood of the linear con-
figuration, W does not contain a, term linear in Q,
the angle between the lines which join the middle
nucleus to the two outer ones. (We define the lin-
ear configuration as /=0. ) The reason lies in the
Z ' symmetry of the resonance, which makes W

vary as Q' near Q =0. Therefore, to account for
the observed excitation of a single quantum of the
bending vibration, we have to retain a term linear
in P in the product g'g in Eq. (5).

In accordance with these arguments, we approxi-
mate the product g'g in (5) by the expression

f'(R, k~) g(R, ko) = g'(Ro, k~) r(RO, ko) +Bp, (6)

where g'(A, kz)
=—g'(R„kz), g(A„k, ) =- g(R„k,); R,

stands for the equilibrium position of the nuclei in
the initial electronic state of N, O, and R~ for the
direction of the molecular axis. kf and k, are the
outgoing and incoming wave vectors; their magni-
tudes correspond to the center of the resonance,
and their directions are specified by k& and &p.

The quantity B is a function of R, kf, and k„we
shall eventually treat B as an adjustable parame-
ter. The angle Q refers to a bending of the mole-
cule in a particular plane defined by B; therefore
only one of the two degenerate perpendicular-bend-
ing vibrations will be excited. In Sec. IX we show
that our best values of the parameters make the
second term in (6) smaller by a factor of 20 than
the first.

VI. APPLICATION OF OPTICAL THEOREM

We next relate (' and g to Fp. The relation we
obtain mill be based on an argument to zero order
in the displacements from the equilibrium config-
uration. Thus we shall be neglecting the term BQ
in (6); as justification, we have the observed fact
that the bending vibrations, mhich are excited by
this term, account for only about 10/o of the reso-
nant cross section.

The two terms in Eq. (6) do not interfere in Eq.
(5) because the term BP contributes only to transi-
tions with b' ~b, while the term g'g gives the tran-
sitions with b' =b. The part of the total cross sec-
tion which arises i'rom the term g'p in (6), after
averaging over the direction g„will be denoted
by o'r. When summing (5) over final states, one
may approximate (vz/v, )

-=l, because the ratio
does not differ greatly from unity in the final states
which are observed to contribute most to the total
cross section, " By using the completeness of the
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final states X. .. , one finds

I x~.(R) I'
IE w(g) la '

where

y =-4— dk~ I K'(~., kf) I

' = — dko I K(&o, ko) I
';
(7)

we have used the fact that averages of g I' and
Q' I' over B, and 50 (or kz) are equivalent.

The complete total cross section will be denoted
by o~. We obtain an expression for it from the
optical theorem: or= (4w/k, )lmf(0), where f(0) is
the amplitude for elastic scattering in the forward
direction. It follows that 0 ~ consists of distinct
contributions from the resonant and direct parts

I

m „'„-Ix...(R)l'
lz- w(R) I' ' (6)

If one equates the two expressions 0~ and 0~ to
zero order in the displacements from the equilib-
rium configuration in N, O, one gets

y = (wk'/m k, )I', . (9)

Inserting (6), (7), and (9) into (5), one obtains
finally for the partial cross sections, after aver-
aging over the direction R, of the molecular axis
and integrating over the direction of the outgoing
electron,

of the scattering amplitude. From the expression
for f(0) which corresponds to Eq. (5), one obtains,
with the aid of (6) and (7),

f p2 dRXs b a ( X ( } + f dk (I~la)sba s'b'a'
& k2 0 f

2

dR Xs'b'a'AXsba

E —W(R)
(10)

where

(I& I') = (I/4v)

The factor Q in the second term has to be under-
stood as referring to bending in one plane only.

VII. ANGULAR DISTRIBUTIONS

The observations reported in Ref. 5 were done
at the single scattering angle of 40', so that the
angular distribution has to be known before a
comparison can be made with the theoretical cross
section integrated over all angles, given in Eq.
(10).

It follows from Eqs. (5}-(7)and (9) that after
an average over the direction of the molecular axis
has been done, the angular distribution corres-
ponding to the first term in (10) is given by

%e have not attempted to obtain an angular dis-
tribution corresponding to the second term in (10),
which accounts for the excitation of the bending
vibration; we shall treat (IBI') at 40' as a param-
eter.

The expression for the differential cross sec-
tions which has to be compared with experiment is
now, from (10),

do'
= ——,I'asg(ky, k, )

sba~sb a 0 0

"'„Rx'... (R)x. .(R) '
z w(R)

2

+—— B ' kf, k

'dRx*"b. (R)4x~.
Z —W(g

g(k~, k, ) =
(

«, I & (R„k,)12
I &(&„k,) lb.

The normalization has been chosen so that J de
xg(kz, k, ) =1, so that the differential cross section
corresponding to the first term in (10) is obtained
by multiplying by the factor g(kz, k,).

As we have already mentioned in Sec. II, the
dominant partial waves appearing in g(R„k,) and

p(R„k&) should be ad and cp. The corresponding
forms on the function g are (with 8 the angle be-
tween k, and kz)

(&P): g(kf, k, ) = (I/4~)-', (I +2cos'8),

g(40 ) = 1.3/4&

(vd): g(k~, k, ) = (I/O&)',—,'(1 —2cos'8+3 cos'8),

g(40 ) =0.92/4w.

VIII. EVALUATION OF INTEGRALS

The integrals in Eqs. (8) and (10) have to be
evaluated. It is convenient to factorize X„,
= p, (q„)pb(Q)n, (q„,}, the three factors being nu-
clear vibrational states for the symmetric-stretch,
bending, and asymmetric-stretch modes.

I
There

should, strictly speaking, be two factors for bend-
ing, but since only one is affected by the factor Q
in Eq. (10), the other can be taken to the ground
state, which contributes a factor 1 to all inte-
grals. ]

The factors p.,n„and the associated integra-
tions over q» and q«, contribute to both integrals
in Eq. (10) a factor"
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~*.(nS) ~*. (~AS)P('V'SS) ~ (AS)I = d(l d(IAS
tegral given in Appendix B, Eqs. (B"I) and (B8),
lead to

This integral may be evaluated if one writes
OO

( i) d00 el0)lg W(R)1

E —W(R) 0

(convergence being guaranteed by the condition
I'&0), and uses the generating functions for the
states of the harmonic oscillator to represent the
factors p, and n. In the special case s = a = 0,
Appendix A with the linear approximation for S'
gives

-2i (-fnSS)"(-iT)AS)"
s'a', oo I S / Q~t 5&/22(s'+a')/2

d(d 10s " exp[-((0 —i(s)e +A&u2)],

where
(12)

Is- ts(R) I

'= f «ms(-*Is —s'(&) I']
0

(see Appendix B). For the case s =a =0, and at the
center of the resonance (E =E,), Appendix B shows
that the coordinates q» and q„, contribute a factor

I p0(qss) I I o'0(qAS) I

IE —W(R) I2

2 0O e X

I", , (I +4Am)'~2 '

the bending coordinates contribute a factor unity.
Thus Eq. (8) becomes, with the aid of (9),

s( ass lAs) )

ASS SS/ 0 lAS AS/

C
=—(E —E0)/2I'0.

Since 2U» and 2UA, are the Franck-Condon (FC)
widths with respect to symmetric and asymmetric
stretch distortion, g„and g„, are the ratios of the
FC width to the decay width. The integral in Eq.
(12) has to be evaluated numerically.

In the results given in Sec. Ix, we have con-
fined ourselves to fitting the observations at a
scattering angle at 40'; the formula (8) for or has
been used only to derive Eq. (9) above. Neverthe-
less, for the sake of completeness, we shall dis-
cuss the integral in Eq. (8). The integral may be
evaluated with the aid of the transformation

o T= &, [1 —2A+0(A')] (A «1; E = E,), (13a)
4n

0

I"
0

T P2 4 (U2 + U2 )1)'2

(A» 1; E=E.). (13b)

The dependence on A has a simple interpretation.
In (13a), the Franck-Condon width is so small that
the resonant cross section approaches the result
corresponding to fixed nuclei. In (13b), the intrin-
sic width I', is small compared with the Franck-
Condon width (U,', +UA, )' ', which combines the
effect of the vibrational coordinates; the formula
(13b) tells us that even if E =E„ the incoming
electron is in resonance with the molecule only
over a fraction (—,'2)'~2I'0/(Us2s+U„', )' ' of the vibra-
tional sweep.

IX, RESULTS

Formula (11) contains five parameters, I'„
g(40'), U», U„„and (IBSI)(40'). They have to be
adjusted to fit the magnitude and energy depen-
dence of the cross sections to 20 different final
channels.

There should be some direct contribution to the
excitation of the lower states, since all three vi-
brational modes are optically allowed in N, O. We
have estimated the direct contribution by calcu-
lating the differential excitation cross sections at
40' in the Born approximation. " The results are
shown in Table I. Consequently we have omitted
the point (001) from the fitting procedure

There is a variety of ratios of cross sections by
which the theory can be tested in a way which is
completely independent of the values of the param-
eters. Figure 5 is an example; it shows the ratio

(Ss ~1) ( / )000 s 4100
(da/dQ)„,

at 40', which should be a constant. [The value of
the constant is (U„/UA, )'.]

With the value of this ratio, it is now easy to

TABLE I. Differential excitation cross sections at 40'.

(13)

Expression (13) decreases monotonically as A in-
creases from zero. The limiting forms of the in-

(1 0 0)
(010)
(0 01)

Born approximation

12.6x10 ~~ cm2/sr
4.2

43.4

Experiments

96x 10 ~ cm /sr
45
28
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determine the parameters needed to produce the
fit shown in Figs. 1 and 2. The best values are
1,=0.7 eV, U,s=0.84 eV, U„, =0.39 eV, g(40 )
=1.2/4s, (~B'~)(40') =0.011 a.u. For the param-
eter A in Sec. VII, we obtain the value 1.72 (from
I'„Uss, and UAs). The lifetime corresponding to
I', is If/I', =0.9X10 "sec.

There are some restrictions on the values which
are acceptable.

(i) The value of g(40') should lie somewhere be-
tween the values 1.3/4v and 0.92/4s given in Sec.
VII, for pure oP and Od waves.

(ii) U» should be of the order of the value 0.76
eV calculated by Claydon et al."in the isoelec-
tronic molecule CO, .

(iii) One expects U„, to be smaller than Us, be-
cause in the isoelectronic CO, the existence of a
center of symmetry forces U„, to vanish.

(iv) The parameters must take the second term
in Eq. (6) small compared with the first. From the
zero-point vibrational amplitude we estimate a
root-mean square value of 0.1 rad for P in the
ground state of the molecule. From Eq. (7), we
have g'g=y; from (9) and the value of I'„we ob-
tain y=0.2; our best values demand ~B~ =10 '.
Thus the first term on the right-hand side of (6)
is of order 0,2 (in a.u. ), and the second term is
of order 10 ', i.e., smaller by a factor 20.

X. LIST OF APPROXIMATIONS

molecule; we consistently retained only the low-
est-order terms which would lead to the observed
excitations (see Sec. V).

(f) To obtain the relation (9) between the entry
and exit amplitudes and the total decay width, we
equated the expressions for the total cross sec-
tion from the optical theorem and from summing
the partial cross sections; only resonant terms
were retained in each case, and only the terms of
zero order in the displacements from the equilib-
rium configuration of N, O in its ground state.

(g) The velocity factors (vz/v, ) were set equal
to one in the calculations of the total cross section
which led to Eq. (9).

(h) The five quantities listed in the first line of
Sec. IX were treated as adjustable parameters.

%'e conclude from Figs. 1-5 that with these ap-
proximations the impulse approximation gives a
good and self-consistent account of the observed
excitations. The values attached to the parameters
for the best fit are reasonable.

XI. DISCUSSION

The agreement between experiment and theory
shown in Figs. 1 and 2 is satisfactory for the
states (s'00) and (s'01). For the excitation of
states (s'02), and the higher members of the se-
quence (s'10), which are accidentally degenerate
within the experimental energy resolution, the

Since a number of approximations have been in-
troduced at convenient but separate points, we now
list them together.

(a) In Eq. (2), the complete wave function 4 was
approximated by the sum of the incident plane wave
and a yroduct of a Siegert state g and a nuclear
wave function ( to represent the resonance. The
Siegert state ( was used only in the internal re-
gion, by cutting off all integrals in which it ap-
peared at the boundary of the internal region.

(b) Nonadiabatic terms were droyped to obtain
Eq. (3) for the nuclear wave function $.

(c) Only the resonant part II) of C' was used in
calculating the cross sections [see Eq. (4)]. Po-
tential scattering was ignored.

(d) Equation (3) for $ was solved in the impulse
approximation, by dropping the nuclear kinetic
energy K (see Sec. IV). This approximation would
not be justified in a case where substantial dis-
placement of the nuclei occurs during the resi-
dence of the extra electron, as in the boomerang
model4 or in the compound molecule. '

(e) The complex potential W(R) and the entry
and emission amplitudes (, g, and p' were ex-
panded in powers of the displacements of the nuclei
with respect to the normal modes of the target
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FIG. 2. Magnitude of differential vibrational cross
sections at 40 vs energy loss. Experiment: Q, L, ~;
theory: solid line. The notation s'b'a' is explained at
the end of Sec. IV. For the sake of clarity, the theoret-
ical points have been joined by continuous curves. The
excitations (s'02) and I', s'10) are accidentally degenerate
within the experimental resolution for energy losses
exceeding 0.4 eV; the broken curves are the calculated
cross sections for these two excitations separately. The
sum of these broken curves is shown as a continuous
curve above 0.4 eV.
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Re W,
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Neutral electronic
ground-state energy

Compound
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-l 0

Equilibrium

configuration

FIG. 3. Meaning of Uf}f. The curves show cuts through
the potential-energy surfaces along the axis for the nor-
mal vibrational coordinate q~ in the neutral molecule.
The parabolic curve belongs to the neutral molecule; the
line sloping down to the right is the linear approximation
to the real part of the complex electronic energy in the
negative ion. Uo is one-half the vertical drop along the
linear approximation for He+' between the turning points
of the initial vibrational state in the neutral molecule.
The normal coordinate qo is scaled so that the turning
points correspond to q~=+1. The "Franck-Condon
width" is 2U~.

summed cross sections from the theory are too
large by about 50%, although the relative magni-
tudes agree well with experiment.

In Fig. 2 the maximum in the calculated curve
joining the points (s'02), and also the reduction in
slope as one goes from (s'00) to (s'01), are both
.consequences of the impulse picture. The poten-
tial-energy surface E(R) in the N, O ion has well-
defined slopes in both the symmetric-stretch and
asymmetric-stretch directions; the impulse is de-
lievered to nuclei points along the resultant slope.
Therefore an excitation corresponding to a large
component of impulse in the AS direction must al-
so have a large component of impulse in the SS di-
rection.

The value obtained for I; from the best fit, 0.7
eV, is reasonable in relation to our criterion
—,'~I', »8~, which was given in Sec. IV as deter-
mining whether the impulse approximation is valid.
~ was the angular frequency of vibration in a para-
bolic potential well such that the slide from a
point on the side to the bottom should take a time
of the order the N, O ion takes to dissociate. We

get 2&I', = 1.0 eV, and that is substantially larger
than any reasonable value one could consider for
k+. Therefore I', satisfies the first test men-
tioned in Sec. II.

To check that our value of F, is consistent with
the observed probability of dissociative attach-
ment, we estimated the "survival factor" (see Sec.
II) in the way described in Appendix C. The value
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(a) (b) (c)
FIG. 4. Meaning of I'0 and Eo. The diagrams show the complex energy plane for the electrons (the nuclei are regarded

as fixed). The origin corresponds to the neutral molecule, with the nuclei in their equilibrium configuration in the
electronic ground state, plus an extra electron at rest at infinity. The compound-state energy corresponding to the
equilibrium configuration in the neutral state is W(RO) =Eo —(i/2) I D. The two crosses at q „=+1 give W corresponding
to configurations displaced from the ground-state equilibrium in the neutral; except for the shift in the coordinate q~,
the configuration is unchanged from the equilibrium. Because of our approximation I = Io —=I'(Ro), the two crosses are
at the same distance from the real axis. The interval between the points q„=+1 is 2U~, the "Franck-Condon width, "
according to Fig. 3. The three cases (a), (b), and (c) illustrate different possible relations between 2U~ and I', The
compound state of N20 treated in this paper is like case (a) for the asymmetric stretch, and between cases (a) and (b)

for the symmetric stretch. (According to the fit quoted in Sec. IX, U~z/ —' I() =1.1, Uzz/2I'0=2. 4.) (a) —'I'0 = U; (b) 2I'0

«U; (c) —,'r, &&U
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Jl
9

p. , (q, ) =N, H, (q„}e ~'~'~'$$,

o., (q„,) =N, iH, (q„,)e " ' 'A$,

where H„(q) is the nth-degree Hermite polynomial
and where the normalization constants are

With this normalization one obtains, if one drops
the factor (E —W} ' from I, ,

dq„dq„, u ". (q„)~*.(q„)u.(q„)o'.(q.,) = f. ,&.

0 I I

4 5
5

in accordance with the Ref. 21.
It is convenient to use the integral representa-

tion
FIG. 5. Ratio of differential cross sections:

(@ )
(do /a&)P~P si+f, PP

/d~) opp, I pg

This ratio of experimental cross sections should be
constant if the impulse approximation is valid, irrespec-
tive of the values of the parameters. The cross bars
correspond to the probable errors of measurement; the
solid horizontal line is the mean of the experimental
points.

depends critically on the 0 -N, separation at the
point of stabilization against autoionization. If we
take the distance of this point from the N, O equi-
librium configuration to be equal to the value given
for OC-0 in Ref. 13, we get a survival factor of
about 10 '; this agrees with the observed value
mentioned in Sec. II.

The present results have added an example to
the list which has previously demonstrated the
yower of the complex-yotential model for molecu-
lar negative ions, based on Eq. (3), in vibrational
excitation, rotational excitation, dissociative at-
tachment, and electron detachment (see Refs. 1-4
and 10 and 11).
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APPENDIX A: DERIVATION OF EXPRESSION (12)
FOR INTEGRAL I ' '0 0

In Sec. VIII, we defined the integral

1

E —W(R)
dew e'~t~ ~'""-

with the approximation

E —W(R) = E —(E, ——,'i r, + U$$ q$, + UA$ q„$)
1
2ro(e 1$$q$$ lA$qA$)

where

dq N, N, H*,.(q„,)H, (q, )e 'A$ ' "A$'*$ .

To evaluate the integrals o er qss an q s e
the generating function

e - = " p".p$„~$
"

H„($)
n~

n=0

(A3)

Thus

dq e ~+ &casse ss ' ss ssSS

ao s oo

»
—f (dedqss H *,i q Q qss e '» ' ~ss'ss .

s =0
SS s SS 0 SS

e = 2(E -E,)/-r„q„=2U„/r „q„,= 2U„, /r, .

Expression (A1) now becomes, in the special case
s=a=0,

d(ue ~
2'

S'a', 00
0 0

('q$$) + '(qA$) 9 ('q$$) +o(qA$ )

E —W(R)

(Al)

Since

P +2&qss —qss —'qss~ss

(A4)

The harmonic oscillator wave functions p. and n
have the form [q —(p —,'i (uq —)]' —i q p(u ——,'&u'7}'—
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the integral on the left-hand side of (A4) becomes

exp(-izlsp(zz + 4(dzz)sss) dqss exp[-[q —(p- 2i(zzz) )]2)

= em exp(-iz)ssp(d +4'~2z)S2, ) .
If one expands in powers of P, and equates the co-
efficient of p' on both sides of (A4) one obtains

where

Q 8; q; q. = (1 +x'gss)qss + (1 +xz)AS)qAs

ASS~AS qssqAS '

%"e may use the formula"

(B4)

dqss H+4'(qss)H3(qss)e ss ~ss ss

= zz'/2(u' ( iz)s-)' exp(-4(uzz)2SS) . (A5)

fl ff ~n /2

dqf exp — B„„q„q" detB 1/2 ~

(B8)

A similar result holds for the coordinate q~s.
Inserting (A2) and (A5) into (AS), one finds

t
2z (-zz)ss) (-zzlAS)'

s'a', 00 I (&/ t&/ t)1/22(s~+az //2&

In the present case, detB=1+4Ax, where A
= —4'(z)' +z)ASS). One obtains, from (B4),

2 2

( ), , (1+4Ax)1/2 . (B6)

de~''"'e ~

A limiting form for I valid when A «1 follows
if one expands in powers of A under the integral
sign. The leading terms are

where

A = '(n,', +-n,', )

I(@=0) " e *

(2/I", )' , (1 +4Ax)~ '
= [1 —2A+ 0(A')] for A «1. (B'I)

APPENDIX B: DERIVATION OF EQ. (13)

When the integral

f'dR I X...(R) I'
IE- W(R) I'

in Eq. (8) is expressed in normal coordinates for
the special case s=a=0, the coordinates q» and

q„s contribute a factor

Iz .(qss)I'I ~.(qAs)I' (B1)

where

(q ) zz
—1/4e —(1/2) Qss

(s (q ) = zz 1/4e 1/2 4As
SS

As we remarked in Ref. 21, the normalization of
I is determined by the requirement that I must be-
come equal to unity if the factor IE —W

I

' is
dropped.

It is convenient to use the representation

dx exp[-x I
E —W(R) I

'] . (B2)
IE- W(R) I

We use the linear approximation

E W(R) =-,'r, (e+i —z)„q„—z)„q„), (B&)

which we have already used to derive Eq. (A3) in

Appendix A. At the center of the resonance, we

have e =0, so that

2 '1
l(e =0)= —— dxe "

dqs
0 0 OQ

x dqAS exp

If A»1, one gets an expansion in powers of
A ' by changing the integration variable to Y =x
+ —,A. Then

2 el/4A ~ e
—3"'="= r 0 1/4A

r— 2A1/2 dy

The first integral in the parentheses ( ) is vzz

The second becomes, when A»1,

f
1/4A e- y 1/4A

dy = dyy '(1 —y+ —,'y'+ )
0 ~y 0

1/2
~1

3/2 4

Thus when A»1,
I(e=0) " e "

(2/r.)', (1 +4Ax) &2

e1/4X
(1/1Z -A 1/2+-'p 3/2+ ).2A+2 (B8)

APPENDIX C: PROBABILITY FOR DISSOCIATIVE
ATTACHMENT

To check that our value of I'0 is consistent with

the observed probability for the decay N,O - N,
+0 (i.e. , satisfies the second test mentioned in

Sec. II), we have estimated the survival factor
exp[-(1/8) f dt I'(R(t) }] (see Sec. II). The potential
energy E(R) for the N, O ion and the potential en-
ergy in the electronic ground state of N, O were
both approximated by straight lines as functions of
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the displacement of the O nucleus with respect to
the N~ fragment. The two straight lines were fixed
by the resonance energy of 2.3 eV in the equilib-
rium configuration of N, O, and by the observed
dissociation energy N,O- N, + 0('D) and N, O -N,
+0 ('P) at a certain displacement Ro of the O-N,
distance from its equilibrium value in N, O.

The displacement R s, at which the straight lines
representing the potential energies of N, O and

N, O cross, has been treated as an adjustable pa-
rameter to reproduce the observed survival factor.
As a function of the N, -O displacement R, the

electronic width was approximated by the expres-
sion '4

Here IIf'h'(R)]/2m is the energy of emission of the
extra electron at R and R„ is the radius of the
molecule which we took to be R„=1.6 A from the
value of the van der Waals b coefficient for N, O.
The factors v, are the expressions for the pene-
trabilities of the centrifugal barrier given in Ref.
24.
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