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The solution of the transport equation by the Laplace-transform method, introduced by Landau and

modified by Vavilov and others, is compared with the solution of that equation by what we term a
convolution method. An energy-loss cross section determined for solid aluminum has been used as input

to the calculations. For very small values of absorber thickness, the straggling distribution is dominated

by peaks at multiples of the Al plasmon frequency. At intermediate values, these peaks are a small

structure superimposed on a broad energy-loss distribution which is not described well by any of the
Laplace-transform theories. At larger values, the straggling distribution consists of one peak which is

well described by the Vavilov theory.

I. INTRODUCTION

&f(x, S) w(E)f (x, a -E)dE -f (x, n, )v„

where zv(E) is the differential collision cross sec-
tion for single collisions with an energy loss E and
o& = fow (E )dE is the total collision cross section.
It may be noted that the macroscopic cross section
referred to here has dimensions of inverse length.
It is given by the microscopic cross section per
atom or molecule times the number density of
atoms or molecules in the absorber. In writing a
transport equation, it is implicitly assumed that
each collision suffered by the incident particle is
independent of its previous history, i.e., that one
has a stochastic process. For example, channel-
ing processes are excluded from this discussion.

All the theoretical descriptions of the straggling
process have been based on the transport equa-
tion. The methods of obtaining f (x, a) from Eq. (I)
can be divided into two major categories —those
based on Laplace-transform methods, including
the original work of Landau' and Symon4 and the
modification of Blunck and Leisegang, ' Vavilov, '

Statistical fluctuations in the energy losses ex-
perienced by fast charged particles penetrating
thin targets have been of interest for many years.
The major thrust of the study of the straggling
process began with the work of Landau' in 1944.
The subject has a practical application to particle
identification by use of solid-state detectors' and
low-pressure gas proportional counters. '

Landau introduced a straggling function f (x, 6)
which gives the probability that a particle having
penetrated a thickness x of an absorber will have
lost an energy ~, small compared to its initial
kinetic energy. (For convenience, symbols are
summarized in Table A I.) This probability density
function f (x, n, ) is given as the solution of the trans-
port equation:

Shulek et al. ,
' and Bichsel'; and that which we may

term the convolution method, first described by
Williams, later by Herring and Merzbacher" and
implemented by Kellerer. " We shall not consider
a third approach based on a theory of moments em-
ployed by Tschall, r."

The Laplace-transform methods differ from each
other chiefly in the form assumed for the single-
collision spectrum co (E) and in the corrections em-
ployed, if any, to account for the difference be-
tween the assumed w (E) and a realistic spectrum.
In one of the convolution methods, Eq. (I) is solved
for an infinitesimal distance and the straggling
function for all other distances determined by con-
voluting this function with itself many times. It
may be assumed that given an

exacts�(E),

the con-
volution method gives the exact theoretical stragg-
ling function, limited only by the accuracy of the
numerical integration. The reliability of the usual
Laplace-transform solutions may be assessed by
comparison with these results.

In this paper, therefore, as an example, we
have determined a semiempirical realistic single-
collision spectrum for solid aluminum, determined
the straggling function by direct convolution, and
compared it with various Laplace-transform so-
lutions corresponding to different values of absor-
ber thickness x. We pay particular attention to
small values of x where the differences between
the cross sections used in the transform theories
and a realistic m (E) produce the greatest effect.
We may note that the cross sections used here de-
scribe energy losses only to the electrons of the
absorber, since we will treat incident charged
particles so fast that collisions with nuclei occur
with negligible cross section.

In Sec. II we describe the different collision
spectra which have been used in the transform
theories as well as a realistic spectrum for Al.
Next we briefly describe the Landau theory and its
modifications. In Sec. IV the procedure for direct
convolution and the results are presented, which
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are compared with transform-method results in
Sec. V.

In closing this introduction, it may be noted that
the energy lost by the fast charged particle is only
approximately related to the energy deposited in
the absorber. In particular, energy may escape
in the form of photons emitted in the deexcitation
of inner-shell vacancies or of 5 rays. "' There-
fore, although convolution methods produce what
we have termed the correct theoretical straggling
function, namely, the proper solution to Eq. (1)
giving the energy loss of the incident particles,
great care must be taken in comparing such re-
sults to experiment, particularly for the case of
pulse-height spectra in proportional counters
where, typically, the energy deposited in the ma-
terial is observed. Further discussion of this
important point is beyond the scope of this paper.

II. COLLISION SPECTRA

The differential collision cross section w (E)dE
describes the probability of the loss of an amount
of energy betweenE and E+dE in a single colli-
sion. It depends, of course, on the properties of
the target material although the simple spectra
assumed by Landau and Vavilov apply generally.

It will be useful to consider the moments M„of
the spectra:

M„= E+ E dE.
0

The total collision cross section 0, defined pre-
viously is equal to M, . The stopping power is
equal to M„ the "width" of a straggling distribu-
tion is related to M„and its asymmetry to M3.
The second moment is used in the modifications
to the Landau theory, to be discussed below.

A. Free-electron spectra-Landau and Vavilov theories

Vavilov, assuming all the electrons in the ab-
sorber to be free and at rest, uses the Rutherford
macroscopic cross section,

)
2mz2e' Z (1 —P'E/E„)

f8v2 A ~ E2 & N

te ' (E ) = 0, E & E~

where m and e are the electron mass and charge,
respectively, v =Pc and z are the velocity and

charge of the incident particle, Z and A are the
atomic number and weight of the target in grams
(in the case of a molecular target, the sum over
constituent atoms is used), and N„ is Avogadro's
nurpber. The maximum energy transferable in a
single collision is E~ = 2mc'P'/(1 —P'). The defi-
nition

2m@ e Z 0.15354 Zh= »N„&=, z'& (MeVcm')
mc

will be useful. Landau neglects the term P'E/E„
but uses the same form otherwise. Quantities
which refer to the cross section w'(E) will be de-
noted by primes. Because of the divergence at
E =0, the moments M,' and M', are singular. The
second moment is written M,' = kE~ in the nonrela-
tivistic limit.

B. Free-electron spectrum with low-energy cutoff

Since there can be no energy losses for E &E,
the energy of the lowest excitation of the target,
it would be more realistic to apply the limits E
E &E„to the cross section in Eq. (3). The mo-
ments M, and M, can then be evaluated. Problems.
which occur in the application of these limits to the
Vavilov theory are discussed in Appendix A.

C. Collision spectrum for aluminum

A realistic collision spectrum for the passage
of 20-MeV protons through solid aluminum has
been determined semiempirically. Aluminum is a
propitious example because the dielectric theory
used to describe its mell-known plasmon loss may
also be used for the characteristic energy losses
in organic and biological" "solids. The spectrum
for Al is discussed separately for each shell.

K shell. Energy losses to K-shell ionizations
have been calculated within the Born approxima-
tion as

for I~, the ionization potential of the K shell, and

g, the square of the momentum transfer. The in-
elastic-scattering form factors for the K shell,
~Er(Q)~', have been calculated by Walske" in a
hydrogenic model. Discrete excitations out of the
K shell can be neglected. "

L shel/. An expression analogous to Eq. (4) for
energy losses to I -shell ionizations has been
used. For energies up to 1822.46 eV the calcula-
tion of inelastic form factors of Manson" using
Hartree-Slater wave functions is used. Ionization
from the 2s and 2p subshells was computed sepa-
rately. Above that energy a hydrogenic calcula-
tion of the form factors by %alske" in which sub-
shells were not distinguished was employed. The
resulting cross sections were adjusted slightly to
join smoothly. The cross section computed from
the Hartree-Slater model is well approximated by
the hydrogenic model at intermediate and high-en-
ergy losses. " Again, transitions to discrete states
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have been neglected. "
M skell —Plasmon excitation. According to the

dielectric theory, the doubly differential cross
section for the collective excitation of valence
electrons in a solid, i.e., plasmon excitation, for
the case of an incident proton, is given as"

d2o' 1 1 1
dEdQ 2o'n, —,

' v' 8'+8' ~ (5)

where n is the density of electrons participating
in the collective phenomena, 0 the solid angle in-
to which the proton is deflected, a, the Bohr radi-
us, and 8s =E/pv, with p being the momentum of
the incident proton. " The frequency-dependent di-
electric function is denoted by e ((o), where the en-
ergy loss E =0+. The desired energy-loss cross
section for the plasmon, 2o2(E), is given by an in-
tegration over angle using the small-angle approx-
imation,

1 1 .ec
2o2(Z) = . . . , [-Im(e ((o))-'],

nao pmv 0 8 +0~

for energies greater than 22.34 eV, the point where
Eqs. (6) and (8) match. All three valence electrons
are assumed to participate in the free-electron-
like collisions. This procedure is also desirable
since (o~(8) is certainly invalid for energies far
from the plasmon peak.

From the cross section as the sum of the K-,
L-, and M-shell contributions just described, the
stopping power was computed to be within 3% of
the experimental value for 20-MeV protons, "
which gives some confidence in the appropriateness
of the cross section.

III. LAPLACE- TRANSFORM METHODS

Using the theory of Laplace transforms, Landau'
gave the solution of the transport equation as

C+ td)o

f(e, d)= . f e'd(e,

where

(6)
2o'(Z)(I-e ' )dE (10)

where 8, is the cutoff angle corresponding to mo-
mentum transfer 0,. For momentum transfers
larger than k„ the system no longer behaves col-
lec tjvely.

Using the model of the free-electron gas, the di-
electric function may be expressed in the Drude
form, allowing for dispersion in the plasmon fre-
quency, "as

and zo'(Z) is the cross section defined in Eq. (3).
The integral over E in Eq. (10), which may be

performed analytically with some approximations, "
is actually extended to infinity ignoring the con-
straint ao'(Z) =0, E &E„, in contrast to the Vavilov
case below. It is useful to define a reduced pa-
rameter"

-1 COyCO~
2

( ( )) [(o2 ~ (8)2]2 ~ . 2(o2 (7) where $ =)V,x, )'2 having been defined in Sec. II,

K = —(1 —y) —O' —Iruc

eee(2) =, "(—,), 2 22.34 eV
mv'A. (8)

where (d2 is the plasmon frequency; (d2 = (one'/
m)'& and (d~(8), to be taken from experiment, takes
into account the dispersion in that frequency. The
plasmon frequency 5m~ =14.8 eV, and width 5y =9
eV were taken from the experiment of Swanson
and Powell, ' who used 20-keV incident electrons.
The observed plasmon frequency corresponds to a
valence-electron density of 2.64 valence electrons
per atom. The experimental values 6), =20 mrad
and

w2 (8) = (4)~ +mv2 (0.3582 + 2608')

are also taken from these authors' work. ""
For large energy loss the cross section is ex-

pected" to become the classical cross section for
energy transfer to a free electron, namely, 2o~(E)
(XE '. The Drude formula, however, asymptotic-
ally is proportional to E '. Therefore, 2o2(Z) was
taken as

for y the Euler constant 0.577 215 and z = $/Z~.
The mean energy loss 44), for a cross section 2o(Z)
is defined as

Z =x 2o(E)EdE =xM, ,

where M, is the moment given in Eq. (2). Note
that ( and x are also proportional to absorber
thickness x. The desired distribution may then
be written f~(x, b, ) = (I/$) P(X), where P(X) is a uni-
versal function (see Appendix A). The work of
Landau just described and that of Vavilov and
Blunck and Leisegang, to be described below, is
concisely reviewed by Fano. '

The Vavilov' solution substitutes for Eq. (10) the
equivalent expression

( P(e —4) —e f ee'(2')(( —e e 32) k, d—
(12)

where the cross section defined in Eq. (3) is used
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in the integral in Eq. (12). Theory of stopping
power was used to calculate g. Again, the inte-
gral over Z in Eq. (12) is analytical. In this case,
however, the kinematic constraint is imposed ex-
plicitly resulting in a more complicated expres-
sion, detailed in Appendix A.

The distribution f (x, z) is not given by a univer-
sal function. It depends on x, or equivalently, on
the parameter a, which is the customary variable.
In the limit x-0, the Vavilov distribution goes
over into the Landau distribution.

The Shulek etal. ' modification of the Vavilov ap-
proach provides a means of correcting for the dif-
ference between a realistic cross section w (E),
which treats the electrons as bound in atoms, and
that used by Vavilov, w'(E). We may write an im-
proved J as I=I'+ll, where

5I=-x sv -so' 1 —e -pE dE.
0

port equation, just as the convolution method, to
be described next, provides an exact solution to
the same equation. %hen the same cross section
is used in both methods, the same result must be
obtained. In practice, however, for a realistic
w (E), the transform approach requires two inte-
grals to be performed numerically, first over E
in Eq. (12) and second over p in Eq. (9), the latter
of which is extremely difficult numerically, par-
ticularly for small values of z (see Appendix A).
It is therefore not a practical way to obtain the
straggling distribution for small a, while the con-
volution method presents no problems.

The Landau function itself, and as modified by
Blunck and Leisegang, and the Vavilov function
with the Shulek et al. modification, will be com-
pared with the convolution solution using the real-
istic Al cross section.

IV. CONVOLUTION METHOD

Expanding in a Taylor series, and, since the func-
tions differ most for small E, keeping the first
nonvanishing term in (1 -e ~ -pE),

M =-x [w (E) -w'(E)](-,' p'E') dE

=—'xp 5,
where 6, =M, -M,'. Note that one need only know
the second moment of the realistic distribution.
The numerical integral over p to determine f (x, b, )

requires no more effort than for the unmodified
Vavilov function (see Appendix A). One of us
(H.B.) has noted that adding further moments to
this correction procedure does not appear to be
useful. '

A conceptually identical modification has been
applied by Blunck and Leisegang' to the Landau
function. Taking advantage of a theorem on La-
place transforms of convolutions, we write an
improved distribution as

c)o

(27k x52 j

Based on the universal Landau function, this dis-
tribution is easier to calculate than the Shulek
et gl. modification to the Vavilov function and often
agrees quite well with it for small ~ where the un-
modified Vavilov solution agrees with the Landau
function.

Finally, the approach of Ref. 8 is to use the
realistic cross section w(E) directly in place of
w'(E) in Eq. (12). The integral over Z then must
be performed numerically. The Laplace-trans-
forrn method gives an exact solution of the trans-

Since the individual collisions experienced by the
incident charged particle may be assumed to be
statistically independent, the straggling distribu-
tion f (x, n. ) which is the solution to Eq. (1) has the
property

f(x, +x„a)=j f(x„a—F)f R„E)dE:
0

Equation (15) may be understood as follows: The
distribution of particles which lost an energy E in
absorber thickness x, convoluted with the distri-
bution which lost energy & —E in x, gives the dis-
tribution which lost energy ~ in x, +x,. It may be
demonstrated mathematically using the equivalent
formulation for f (x, A) given in Eq. (19) below and

taking the I.aplace transform of Eq. (15).
For a differential distance dx, we may write

f (x+dx, z) =f (x, z)+df (x, z),
where df (x, Z) is found by multiplying Eq. (1) by
dx. Applying Eq. (16) at x=0 with the initial con-
dition f (0, g) =5(a) the expression

f (dx, a) =6(a)(1 —o, dx) +dx w(a)

is obtained. Equation (17) has a clear physical in-
terpretation: the 5 function at 6 =0 has been di-
minished by the probability of experiencing a col-
lision 0, dx, which is distributed among the energy
losses according to the cross section for a single
collision, w (a). It may be noted that the same ini-
tial condition was assumed by Landau in the La-
place-transform solution.

Using this expression and repeatedly applying
Eq. (15), the distribution f (x, b, ) for any desired
x may be determined. " In practice, the convolu-
tion in Eq. (15) is used for equal segments, dou-
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bling the distance each time. The distance x is
related to the mean number of collisions experi-
enced by the incident particle, m„by

m, =xo, ,

or equivalently, m, (B)/M, =x, where M„as noted
previously is the stopping power. The average en-
ergy (E) lost in a single collision is given by
(E) =M, /v, . The mean energy loss may be written
z =m, (Z). Physically, then, an appropriate dx
corresponds to a value of m, small enough that the
probability of sustaining more than one collision is
negligible.

It may be noted parenthetically that the prescrip-
tion just described for determining f (x, b, ) is
equivalent to the equation

(19)

where w(~) is the cross section for a single col-
lision which we have been using and w (b, )*"denotes
then-f lod convolution of w(a), i.e.,

For small mean collision numbers the major con-
tribution to the straggling distribution is due to
the plasmon peak in the cross section. If one stud-
ies the straggling function as m, increases through
small values, the probability of zero energy loss
is seen to decrease while probability builds up at
values corresponding to multiples of the plasmon
frequency. This is demonstrated in Fig. 1 for
m, =2, 4, 8, where peaks at multiples of 5+~ =14.8
eV dominate the distribution. A peak due to the
onset of I -shell ionization at 80.9 eV cannot be
distinguished from that at 61~~ = 88.8 eV.

For the limiting case of a cross section w (E)
represented by a 5 function located at the plasmon
energy, one would expect a straggling function
with peaks only at multiples of the plasmon fre-
quency, the areas of which are given by a Poisson
distribution. This is demonstrated in Appendix B
for both the convolution and transform methods.
For m, =4 (Fig. 1) the areas of the first five peaks
conformed within 10%%u~ to a Poisson distrit ~tion
with a mean collision number of approximately
3.25. A number smaller than four is anticipated
since some of the collisions have involved inner-

Equation (19) has a clear physical interpretation.
Each term of the sum in Eq. (19) is the probability
of undergoing n collisions, as given by a Poisson
distribution, multiplied by the distribution of en-
ergy losses in n, collisions.

Calculations were performed according to the
convolution method using a computer program
modified from one kindly provided by A. Kellerer.
A value of the differential dx corresponding to
m, =1/1024 was used and the realistic cross sec-
tion for 20-MeV protons on solid aluminum de-
scribed in Sec. II was employed. Since we are in-
terested in energy losses over a very broad range,
for the integrals in Eq. (15), grid points were
equally spaced in lnE.

Results will be discussed in terms of mean col-
lision number, related to absorber thickness by
Eq. (18). The mass stopping power for 20-MeV
protons on Al is 19.69 MeV cm'/g; in consistent
units x, absorber thickness, is expressed in
g/cm'. The average energy (Z) is 77.03 eV for
the spectrum used here. Since, as mentioned pre-
viously, the stopping power determined from the
theoretical cross section differed by 3% from the
experimental value, "the cross section w (E) was
multiplied by the ratio of the experimental to theo-
retical stopping powers.

All of the following observations on the convolu-
tion results will be found to agree with expectation.
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FIG. 1. Straggling distribution f (x, A) for 20-Me& pro-
tons incident on Al from the convolution calculation is
plotted vs energy loss 4 on a logarithmic scale for m~
=2, 4, and 8. For normal density Al, 2.7 g/cm3, these
cases correspond to x expressed in distance of 0.029,
0.058, and 0.116 p, respectively. The probability of
zero energy loss for m~ =2 is 0.1352. For m~ =4 and 8,
zero loss probabilities are 0.0183 and 0.0003, respec-
tively.
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shell electrons instead of valence electrons.
As one goes fromm =2 tom =8 ' F' . 1,C ln lg. a

broad peak at higher energy losses also may be
observed to grow and move to higher energies,

energy oss iswhich is expected since the mean ener 1

directly proportional to mean collision number.
The magnitudes of the peaks due to the plasmon
loss decrease as the straggling distribution gets
broader since it is normalized.

For the case of m, =16, Fig. 2, the peaks at
multiples of h~~ produce only slight structure on
the over-all broad peak. For much higher values
of mean collision number the straggling distribu-
tion consists simply of a broad peak, the location
and exact shape of which depend on m, . In other
words, for these cases no detailed structure re-
sult1ng from the plasmon peak at low energies may
e 1scerned so it is reasonable to compare the

convolution results with the Landau and Vavilov
solutions; this will be done in Sec. V.

V. COMPARISON AND DISCUSSION

In Figs. 2-4, the straggling distribution f (x, n, )
is compared with the Landau function f~(x, b, ),
with the modified Landau function of Eq. (14),
f ~, (x, n, , 5,), and with the modified Vavilov func-
tion f„(x,a, 5,). The functions have been plotted
against the reduced variab1e X defined in Eq. (11).
Because the Al cross section was computed in a
nonrelativistic model, the Vavilov function was
evaluated with p' =0 in the second term in Eq. (3).

IO—
IO

I

20
I

6, (kev)
30

I

mc = 256

4Q
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A
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I I s I i I s

0 4 8 I 2 I6

FIG. 3. Straggling distribution vs A, for intermediate
absorber thickness: m, =256, x =3.71

x, ), solid line; fL(x, 6), short-dashed line;
fv(» A, 6&), long-dashed line; and f~L(x, A, 6 lon-
and-short dash
able at low A, .

one. The latter two are ind' t'1S lnguls

No comparison is provided with the Laplace-trans-
form approach of Bichsel' whichic, 1n pr1nciple,
would reproduce the convolution result although,
in practice, as stated in Sec. III, numerical diffi-
culties limit its application.

The comparison plotted in Fig. 2 is typical for

thickness x.
what we have termed small values of b ba sor er

ickness x. In this case, which corresponds to a

0 0.5
l

b, (keV)
I 0 l 5

I I

2.0
I
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I
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I

a (Mev)
0.4 0.5 0.6 0.7
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a 8—

I
I
I

I

mq= l6
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0 r
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FIG. 2. Straggling distribution vs reduced-energy-loss
parameter A, for m =or m, =16, or equivalently, x=0.232 p,
K =0.002: convolution result f(x, 4), solid line; Landau
function fL, (x, 4), short-dashed line. The modif' d fe m x 1e unc-

s v x, , 6&) and f&L(x, 6, 6&) are indistinguishable
on this scalee and are represented by long-dashed line.
The energy-loss scale in keV is also given.

FIG. 4. Straggling distribution vs A, for larger thick-
ness: m, =4096, x=59.4 p, x=0.68. In this plot, the
modified Vavilov function f (x 4 6 )

' ' d'
able fra

1s ln istinguish-
a e fram the convolution result f(x, A), solid line;
fL, (x, &), short-dashed line; f (x, A 6 ) lon-
short dashed line.
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mean collision number of 16 or to z =0.0027,
f~(x, n„6,) and f„, (x, b„5,) cannot be distinguished
from each other on the scale of the graph. This is
expected since their respective unmodified func-
tions agree' for a &0.01. The peak of the Landau
function itself is narromer and higher than that of
the convolution result, f (x, A). The introduction
of the second-moment modification appears to
overcompensate for this discrepancy, producing a
function which is lower and broader than f (x, n, ).

In fact, it can be seen in Fig. 2 that f v(x, A, 5,)
has a significant probability for values of X corre-
sponding to negative energy loss. This corre-
sponds to applying the solution of Eq. (1) for a non-
physical situation. For m, smaller than the value
plotted here, a similar difficulty occurs for the
Landau function as mell. In their derivations, the
functions are assumed to have physical meaning
only for positive energy loss. One possible inter-
pretation is to attribute all probability described
by, e.g. , f~(x, A) for A&0 to b, = 0. This inter-
pretation is not needed in practice, however, since,
when the situation occurs, neither f„(x,n. , 5, ) nor

f~ (x, 6) provides a good description of the convolu-
tion result.

An intermediate case is plotted in Fig. 3 for
whichm, =256 and x =0.042. Here, fv(x, a, 6, )
and f „~(x,b„5,) agree to within 3% at their maxi-
ma and approximate the shape of f (x, n, ) better
than in the previous case. Finally, for large x,
m, =4096, and x =0.68 (Fig. 4), f~(x, g, 5, ) agrees
very mell with the convolution result. In this case,
the modified and unmodified Landau functions are
very similar to each other and are lower than

f (x, g) and are shifted to higher energy losses.
The modified and unmodified Vavilov functions
(not shown) also agree to within a few percent.
Note that we are still considering energy losses
much smaller than the incident energy.

The observations on the Laplace-transform solu-
tions may be understood as follows. The dis-
crepancy between cross sections u (E) and so'(E)
for which the second-moment modification com-
pensates, occurs at small E. For the large en-
ergy losses, with which we are concerned in Fig. 4
(Z& 0.1 MeV), the straggling distribution is not
very sensitive to the details of the cross section at
small E. Thus, the larger the absorber thickness
or mean collision number, the smaller is the ef-
fect of the second-moment modification. One may
also note that the high-energy tail on the Landau
function in Fig. 4 may be attributed to the lack of
kinematic constraint on w'(E), as Landau employed
the cross section.

In summary, it has been observed from the con-
volution results that for very small x, the stragg-
ling distribution is only sensitive to the cross sec-

tion at lorn energies, i.e., for the case of solid Al
studied here, only to the plasmon peak. For some-
what larger x, corresponding tom, =16, although
structure in the straggling function at multiples of
the plasmon frequency is not an important feature,
the convolution result is not approximated well by
the Vavilov function, even as modified. As one
goes to even larger values of x or e, the modified
Vavilov function comes into better agreement with
the result of the convolution procedure. In other
words, for large x, the straggling distribution be-
comes less sensitive to the details of the single-
collision cross section. For x greater than about
0.2, f„(x,A, 6, ) is found to be in excellent agree-
ment with the convolution result.

The situation in silicon, which is of interest due
to its use in solid-state detectors, can be expected
to be quite similar. This work may be viewed as
a study of the consequences of calculating stragg-
ling functions using cross sections which depart
from free-electron cross sections. The results
may be applied quite generally independent of the
particular physical processes which cause that
departure. Whatever the origin of the character-
istic energy losses in biological solids, ""they
do shorn a peak in the energy-loss cross section
at low energies, similar to the Al example treated
here. The details of the straggling distributions
mill depend of course on the details of the cross
sections. We have not attempted in this paper to
survey the effects of different features in the
cross section on the agreement between the Vavilov
theory and convolution results; such a study would
be useful in the future.
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APPENDIX A

Landau evaluates the integral in Eq. (10), ex-
pressed in present notation, as

x zo 1 —e dE
.0

= gp[1 - y - Inp +E/]- In($/x) -p'] .

(Al)
Substituting (Al) into Eq. (9) with the change of
variables I =gp gives

f, (x, &) = (I/h)P(&),
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C+ fs)o

P(jj.) = . e"'""'~"du,

which must be evaluated numerically in the limit
c-0 to give the Landau function.

The integral occurring in the Vavilov theory,
Eq. (12), may be evaluated to give

f l
(x A) — eK(1+ B y)

1 2

7rz

where

e ~k cos b)A& +KfR) dy,

I' =p (z —z ) —p g (1 +P') + x (1 e—' ")
+ (xP'+ $p}[y + 1n(pE „)—Ei (-pE„)], (A2)

where Ei is the exponential integral function and
the relation x=eE„/k has been used. Substituting
in Eq. (9) and performing the integral along the
imaginary axis with the change of variables y =pE~
gives

here. . In general, Re[I, (q)] is an oscillatory func-
tion with the oscillations becoming damped as q
increases; Re[I, (0)] = 0 and Re[I, (q)] & 0 for q & 0.
The imaginary part Im[I, (q)] monotonically be-
comes more negative with increasing q and
Im[I, (0)] =0. For sufficiently large x or z which
appears in the exponential, all the contribution to
the integral comes near q =0 where Re[I, (q)] is
small. However, for small values of K, the inte-
gral does not converge as one integrates over q.
Also see Ref. 8.

It may be instructive to examine the situation
when the free-electron cross section, Eq. (3), to
which the low-energy cutoff has been applied is
used in Eq. (A.5). The same numerical problems
again arise using the integration limits E to E„
in Eq. (A5); we may write

cos (qE„) cos (qE„)

f, =P'[lny —Ci(y)] —cosy —y Si(y),

f, =y[lny —Ci (y)] + siny +P' Si (y),

A. , =zA, +K 1m'.

(A3)

1 1
-R—+s—+qsi(qs„) -qsi(qz )).

(A7)

The symbols Si and Ci stand for the integral sine
and integral cosine functions, respectively.

The Shulek modification adds the term =~xp'5,
to the exponential in the integrand which may now
be written, expressing x in terms of K as,

(so 2

f~(x, (k,, 5,) = e"O'a')'j exp z f, —

x cos(yA, +xf, ) dy.
(A4)

For the numerical-integration approach of
Bichsel, it is useful to express the integral in Eq.
(12) in terms of the pure imaginary variable
q =ZP

For large q, using

Si (q)
- -,' w —(cosq)/q + ~ ~ ~,

we find Re[I,'(q)]= k/E, which is a constant. Sub-
stituting in Eq. (A6) again, we find that for small
values of x or z the integral does not converge as
one integrates over q.

APPENDIX B

The convolution method may be applied for a
model cross section xv(E) =o,6(E -E,). Using the
initial condition stated in Sec. IV, f(0, a) =5(a),
Eq. (17) becomes

f (dx, a) =5(s)(1 —o, dx)+dxo, 5(E -E,).

I, (q) = w(E}(l -e "s iqE) dE. -
0

(A5) Applying the convolution procedure [Eq. (15}]p
times, the expression

Dividing this integral into real and imaginary parts
and using the symmetry of the integrals, we ob-
tain

/(x, k) = (1/x) j exp(-(xS„/k)Re[I, (q))j
0

x cos[y (z —Z) —(xE„/k) Im[I, (q)]] dq.

(A6)

It may be shown that when the cross section used
by Vavilov, au'(E), is used in Eq. (A5), Eq. (A6) is
the same a.s in the Vavilov case (A3).

Numerical difficulties in the evaluation of Eq.
(A6) arose for x & 0.003 for the Al spectrum used

n &me-7'
f (ndx, A) = p, 5(A -mE, ),

m=0
(A9)

where 7 =no, dx may be interpreted as the mean
collision number. Note that o, is expressed in
cm'/g and dx in g/cm'. Equation (A8) says the

/(xdx, e) = g (q, Cx)"
0

x (1 —o, dx)"-~5 (Z -mE, ), (A8)

where n =2p is obtained. In the limit m«n, o,dx
«1, the binomial distribution in Eq. (8) becomes
a Poisson distribution and f (ndx, z) may be writ-
ten
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TABLE A I. Glossary. In general, the symbols from the earlier papers have been used here. Therefore, some sym-
bols are used for different quantities. (Symbols occur in or near the equation given. )

Symbol Equation or section Meaning

f(x, 4)

f '(x, 4)
f~(x, 6)
f „(x,6, 62)

fy(x, 6, 62)
l~ w)l'

I
II
6I
k

kc

M„
Mg

mc

w (E)

w '(E)
wg (E)
w»(E)

w (6)

w(A) +"

xf p x2

F2
6 (QP)

0

0~
ec

(1)-(4), (8), (10),
(12), (13), (A1), (A5), (A8)

(18)

IIB
(3), (4), (13), (A2),

(A4)- (A7)
Appendix B
(1), (9), (15)-(17),

{19), (A3), (A6),
Appendix B

(A3)
(»), (14), V, (A1)
(14), V

V, (A4)
(4)

(A3), (A4)
(15)
(9), (1o)
(12), (A2)
(13)
II, (11),

Appendix A
(6)

(2), (»). (»), (»)

(3), (13)
(18), (19), IV,

Figs. 1-4
(1), (2), {11), (13), (A1),

(A5), Appendix B
(3), (10), {12), (13), V
(4)
(6), (8)

(»), (»)

(19)
(1), (10), (11), (12)-(14),

(16), (18), V, (A1),
Appendix B

(15)
(1), (10)- (12),

{A2), (A6)
(11), (12), (18),

V, (A2), (A6)
(13), (14), (A4)
(5)- (7)
(5), (6)
(5), (6)
(6)
(11), {14), V,

(A3), (A4), (A6)
(11), (A1), (A3), V
(A3)
(11)

Energy loss of incident particle in a single collision

Average energy lost in a single collision
(here, 77.03 eV)

The smallest permitted value of E
The largest possible value of E (42.2 keV)

Discrete energy loss if S"(E) is represented by a 6 function
Straggling function in general

Vavilov's straggling function
Landau's straggling function
Blunck-Leisegang modification of

Landau's straggling function
Modified Vavilov function
Inelastic scattering form factor for E shell (Walske)
Function occurring in Vavilov integral for f(x, 6)
Total energy loss of a particle
Integral used in Landau theory
Integral used in Vavilov theory
Integral used to obtain modified Vavilov function
Factor in w(E)

Maximum momentum transfer permissible in
plasmon excitation

The nth moment of a probability density function
Stopping power (here assumed to be 19.69 MeV cm2/g)
Second moment of w'(E), Eq. (3)
Mean number of collisions experienced by particle

Differential collision cross section for a single
collision

Special form (rutherford) of w(E)
Contribution to u (E) due to collisions with E shell of atom
Contribution to w(E) due to energy losses to plasmon

excitations
Same as u (E) but the total energy loss 6 is achieved in

a --ingle collision
The n-fold convolution of w(A)
Absorber thickness (g/cm2)

Partial absorber thickness, xf + x2 x
Total energy loss of a particle in x

Mean value of 6

m, -m,' =0.074m,'

Frequency-dependent dielectric function of absorber
Angle of deQection of incident particle
E/pv
Cutoff angle corresponding to k,

Landau parameter
Vavilov parameter
Defined below Eq. (11)
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TABLE A I. (Continued)

Symbol Equation or section Meaning

d 0'

dEdQ

4 (~)

(dp

Q

(11), (A2)
(1), (17), (18), (A8),

Appendix B

(5)

Appendix B
(11), (A1)
(5), (7)
(7)
(5)

kx
Macroscopic total co1lision cross section {here

2.56 x 105 cm2/g, corresponding to a mean free path
of 1055 A)

Doubly differential cross section for the collective
excitation of valence electrons in a solid

Mean collision number
Universal Landau function
Frequency of collective excitation, energy loss = A~
Plasmon frequency
Solid angle for deflection of incident charged particle

straggling distribution is nonzero only for energy
losses which are multiples of the single-collision
loss Ep and the areas of these peaks a,re given by
a Poisson distribution. Equation (AS), as expec-.
ted, is identical with Eq. (19).

The same result is obtained from the Laplace-
transform method. With the 5-function model
cross section, Eq. (10) becomes

I =pa -xo, (l -e ~so).

Substituting in Eq. (9) with the change of variables
p =iy, the expression

~t"
f (x, S) = e"~exp(v, xe '"s&) dy

is obtained. Expanding the second exponential in
the integrand leads to

(v,x) e 't" 1f (x, 6) = P ~, — e'"&~ "so&dy
p sl, 2g

Tilt e -7
f (z -mz, ),

. p m

where x =ndx. The transform result is the same
as Eq. (A9). The extension of the sum to infinity
may be ignored since the Poisson distribution be-
comes va,nishingly small for large m.
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