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%ithin the Born approximation, a general formulation is given for differential cross sections corre-
sponding to electron-impact ionization of an-arbitrary L-S-coupled atomic system. Expressions for the

generalized oscillator strength and total cross section are also given. Correlation eA'ects are explicitly

included in the formulation through the use of a configuration-interaction wave function to describe the

initial bound target state, and a close-coupling wave function to describe the final free target state. Two

independent computer codes have been constructed which allow these functions to be of arbitrary com-

plexity for any atom. The codes use recently developed, but different, techniques for solving the close-

coupling equations. Test results are obtained for the hehum atom, and they agree well with previous

correlated calculations.

I. INTRODUCTION

Many calculations of electron-impact ionization
cross sections for atomic systems have been per-
formed using the Born approximation and its vari-
ants. A more sophisticated theoretical treatment
of the problem would be desirable. However, the
practical difficulties of dealing with the double-
continuum wave function make this goal seem
somewhat far off. One aspect of Born calculations
which has not yet been investigated in depth is the
effect of using well-correlated wave functions for
the initial bound and final free states of the target
system. It is the purpose of this paper to present
a general evaluation of Born ionization amplitudes
for any atomic system in which arbitrarily complex
L-S-coupled configuration-interaction (CI) wave
functions are used. %e use an orthonormal basis
of radial functions throughout, and always ensure
that the initial- and final-state target functions are
orthogonal. There is no restriction that the initial
target state be a ground state or even the lowest
state of a particular symmetry, and ionization is
not confined to outer-shell electrons.

Ne take for our representation of the bound
state CI wave functions as described by Hibbert, '
and for the free or continuum state we solve ap-
propriate close-coupling equations. In practice the
close-coupling functions are obtained from com-
puter codes which use either (a) the noniterative-
integral-equation method (NIEM) of Smith and
Henry, ' or (b) the R-matrix method of Burke et al. '

In Sec. II we present the general formulation of
the problem, for an arbitra. rily complex neutral
atom, assuming that I--8 coupling is valid through-
out. Section II contains explicit formulas for dif-

ferential and total cross sections as well as gen-
eralized oscillator strengths. In Sec. III we pre-
sent results for ionization of helium which were
used to test the computer codes. Excellent nu-
merical agreement is obtained between identical
calculations which use the NIEM and R-matrix
continuum wave functions. The present results
show very clearly the effects of increasing the
amount of correlation included in the wave func-
tions, and thus they help tie together many of the
previous calculations.

In future papers we shall perform calculations
for more complex systems. Calculations of Born
ionization cross sections for other systems of
astrophysical interest are compiled in the review
article of Bely and Van Regemorter. 4

II. THEORY

The triple differential cross section for elec-
tron-impact ionization of an atom A in the Born
approximation is given by

do =, k'~e, -„(K)~'d~d&„dk,
0

where d is an element of solid angle about the
direction of the scattered electron, k is the wave
vector for the ejected electron, k, and k& are the
initial and final wave vectors, respectively, of
the incident electron, and

K =ko -k~

is the momentum transfer. The cross section o

is in units of ao, and k&, ko, and k~ are in Ryd-
bergs. The form factor is expressed by
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N+l

a,-„(K)=Jd& '(ic) Y 8'"' d, dv,
q=l

where @0 is the initial bound state of the atom and
)ld& '(k) is the continuum final state of (e,)„,(„d +di )
with boundary conditions corresponding to an out-
going wave in channel f plus ingoing spherical
waves in all open channels. N+1 is the number of
electrons in the atom. The continuum function is
normalized to a & function in k space, i.e.,

(4)

If the continuum functions are normalized to a &

function in E space, then

do=, ' le,s(K}l'de&d~sdE, (5
0

where E =k' is the energy of the ejected electron,
and the normalization becomes

J

�g/*'
'(E, k)ef~l'(E', k') dv =5(E —E') 6(k, k')6yyi.

(6)
k is the unit vector in the direction of k and

N+l
e (K)= Jdjt'(E d) Qe'"')d dV

q=l

We will work with the E-space-normalized con-
tinuum functions.

The partial wave expansion of the final state is

)1&~( '(E, k) = Q Q i & '(1( ~ (k}C'(L&l~L;M~ m, M~) C(S~sS; Ms m»'2Ms)
I S & g)fft(l ))

x)i(( &(o(&L&S, k&l&LSn;. M~ Ms m, M~Ms. X), (6)

where X =X„.. . , X„„with X, denoting the space
and spin coordinates of the ith electron; &&I &S&

specify the final state of the residual ion; k,. l& are
the quantum numbers of the ejected electron;
m(l,.) =-m&J for typographical convenience; and we
define

&J, '(k) = i ' Y, '(k), (9)

where Y, '(k) is the spherical harmonic defined by
'(k) = (-1)"Y, '(5). The orbital angular mo-

mentum of the final state of the residual ion, L~,
is coupled with the angular momentum of the
ejected electron, lz, to give the total angular mo-

mentum L. Similarly, the spin angular momen-
tum S& is coupled with the spin of the ejected elec-
tron to give the total spin ~. The magnetic pro-
jections of L and ~ are M~ and M~, respectively.
The N+1 electron wave function defined by Eq.
(8) is a totally antisymmetric eigenstate of L',
S', M~, M~, and parity n. For notational con-
venience, we define

)1&z '(X}=)I(c(&L&S&k& l&LSn; MI. Ms m& Mr. Ms:X}.

Asymptotically, 4&
) is defined by

@,' '(X)„„—„~C', (&,,e' & —e '
& „)

where

M (I,] ) m ( f .) )If (g. ) fn

@(X, X„;L&S, M~ Ms )g, "&)(r"„„)o «s(I)I+1)C(L, L, L; M~ m, M~)

X C(S,—,'S; Ms m, ),Ms).

Here C'(X, X„;L, S, MI, ,Ms,. ) is the wave func-
tion of the final state of the residual ion A' and S~~&

is the adjoint of the scattering matrix. The quan-
tity 0& is defined by

8,. =k,r ——,'l, n —[(Z -I)i)/k, ] ln(2k, .r)
+ arg(I' [f, + 1 —i (Z I)I)/k, ]'I, -.

where Z is the nuclear charge of A. The asymp-
totic form of 4& '(X) in E(l. (11) is consistent with
the normalization specified by E(l. (6}.

Now, let us define a function @&(X)which satis-
fies standing-wave boundary conditions, i.e.,

a
)I)(X) „4)((sm8(&,q+cos8(Z)))

N+1 &N+l( ])

(14)

e(-&(X) = — pe, (X)(i + i')-„.'. (16)

In the calculations described in Sec. III, we will
approximate 4z(X) by a close-coupling wave func-

where K is the reactance matrix and

K = i(I S)(I +S) '- (15)

The transformation relating 4'& '(X) to )1,(X) is
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tion. Now that we have established the connection
between%~ '(X) and @,(X), we can evaluate the
form factor of Eq. (V) and thus the triple differ-
ential cross section.

Substituting Eq. (8) into Eq. (7) and making use
of conventional Racah algebra relations, we obtain
the following expression for the triple differential
ionization cross section:

P Q (2~.1)(2~,1)I;(I)( 1)~~ ~~"0
d&d&sdE K'ko 2LO+1 &4m

(2L'+1)(2L+1)(2lg+1)(2lg+1) '~'
2l+2 iii

40 Co j~ K+C

x W(L'LI&l&, IL&)tV(XX'LL', IL )C(&A.'I; 000).

This expression is identical to that derived by
Jacobs'; however, we have retained explicitly the
possibility of different residual ionic-state spins
S, in Eq. (12). Further, our notation is consistent
with our generally available computer codes."
If we integrate Eq. (1V) over the solid angles of
the two continuum electrons we have the following
expression for the differential cross section with
respect to the ejected electron energy:

Kt')giP kP ky p Ki)&ax kp. + kf

where

Again, the units of the cross section 0' are a20,

E is the ejected electron energy in Rydbergs, and
I is the ionization potential of the atom in Ryd-
bergs. This expression integrated over the ejected
electron energy yields the total cross section,

dg "nwx 87fdK g 2A. y 1
dE s;„Kko I 8 ~.& ), 2LO+1

2

x y&&z j, ~ C i 4,

The values of K;„and K, .„. are defined by

(18)

0 -I8 7f 0 lllBX 2&+1
k'

K L$ &l X 0

2
x +~&-&S j& r C'~ 4 . 20

TABLE I. Continuum generalized oscillator strengths for helium 4 (1s ) 4' (static ex-
change) using calculated E ionization= 0.'75 a.u. Results using identical wave functions and physi-
cal approximations, but completely different numerical techniques and independent c'omputer

codes: (a) R-matrix calculations; (b) NIEM calculations.

0.01

0.04

0.09

0.16

0.25

0.36

0.49

1.0

4 p

0.05

(a)0.2866
(b) 0.2862

(a)0.2812
(b) o.2sos

(a)0.2723
(b)o.272o

(a)O.26O3
(b) o.26o1

(a)O.2456
(b)o.2455

(a)O.22SS
(b) o.22s7

(a)O.2104
(b) 0.2104

(a)O.1517
(b)p 1518

(a)0.0272
(b) o.o272

0.2

0.3014
0.3005

0.2966
0.2957

0.2887
0.2879

0.2779
0.2773

0.2645
0.2640

0.2488
0.2484

0.2312
0.2309

0.1726
0.1725

0.0339
0.0339

0.6

0.3176
0.3172

0.3147
0.3143

0.3098
0.3093

0.3027
0.3024

0.2935
0.2932

0.2821
0.2820

0.2686
0.2686

0.2175
0.2179

0.0539
0.0542

1.0
0.3125
0.3128

0.3112
0.3115

0.3088
0.3090

0.3052
0.3054

0.3002
0.3003

0.2936
0.2936

0.2850
0.2850

0.2474
0.2474

0.0768
0.0768

2.0

0.2624
0.2625

0.2631
0.2633

0.2642
0.2644

0.2656
0.2658

0.2669
0.2671

0.2680
0.2681

0.2684
0.2686

0.2626
0.2627

0.1323
0.1324

4 0

0.1545
0.1546

0.1559
0.1559

0.1580
0.1581

0.1610
0.1611

0.1648
0.1648

0.1693
0.1692

0.1743
0.1743

0.1913
0.1913

0.1904
0.1904

6.0

0.0893
0.0893

0.0902
0.0902

0.0917
0.0917

0.093S
0.0939

0.0965
0.0966

0.0998
0.0999

0,1037
0.1038

0.1189
0.1190

0.1737
0.1737
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Finally we can write down the expression for the
generalized oscillator strength to the continuum,

)
I+E+2X+1
K ~s, ) ~ 210+1

2
x q&-& Z q, Z~ C'~ e

III. RESULTS

The most complete theoretical study of electron-
impact ionization for a target system in which
approximate wave functions must be used has been
for helium and heliumlike ions." ' In addition,
there are accurate experimental determinations
of generalized oscillator strengths" for neutral
helium.

So we propose to test our computer codes and
choice of wave functions for the helium atom, since
such rigorous comparison is available.

A. Static exchange plus crude closed-shell approximation

In this case we take the ground-state '8 wave
function for the helium atom to have the single-
configuration representation of 1&'. Further, we
take the radial orbital function P„(r) to be that of
He'. This allows us to use the correct e +He'(1s)
static-exchange final-state wave function, and to
easily maintain the orthonormality of the initial-
and final-state wave functions. We have computed
the generalized oscillator strength to the con-
tinuum, using Eg. (21), for a wide range of values
of momentum transfer & and ejected electron
energy O'. Values obtained using both the NIEM
and R-matrix codes are tabulated in Table I, and
the excellent numerical agreement between them
is obvious. Naturally, the results in this approxi-
mation are not expected to be good due to the
crudeness of the target-state wave function, but
it is useful to have an idea of the effect on the final
results of using poor wave functions.

TABLE II. Overlap integrals for the S-wave contin-
uum and bound-state wave functions.

2.k ejected (@p Is'y ( s))

0.05
0.20
0.60
1.00
2.00
4.00
6.00

0.0201
0.0118
0.0294
0.0040
0.0042
0.0064
0.0033

B. Static exchange plus correlation and correlated atomic state

In this case we have used the four-configuration
wave function of Burke and Robb" to describe the
atomic 'S state. This @,(c,l s'+ c,»2s + c,»'+ c,2p')
function uses the He' 1& orbital and 2+ and 2P
orbitals which are optimized on the target-state
energy. The continuum-state wave functions had
the following static exchange plus correlation
form:

+&('S) =~4(ls)4(k&s)+aiXi(ls')+a, X.(»»)
+ a,X(2s') +a,X(2p'),

y)('P) =Sf(1s)g(k)P)+b, X, (1s2P) yb, x, (2s 2P),

e, ('D) =~4(»)4(k, &)+c,X, (2p'),

(22)

In (22) the g(k&l) are continuum orbitals which are
orthogonal to the 1s, 2s, and 2P orbitals for / =0
and 1, respectively. Further, the coefficients
a;, i =1, 4 of @&('S) are obtained in the solution of
the close-coupling equation and subsequently ad-
justed by Schmidt orthogonalization to ensure that

(23)

As an illustration of the size of the S-wave overlap
before Schmidt orthogonalization, we give values
for various &2& in Table II.

In Table III we present the values of the general-

TABLE III. Continuum generalized oscillator strengths for helium 4 (cols +c21s2s+c32s
+c42p ) 4 (static exchange plus some correlation) using exact Eipfilpatlpfi =—0 ~ 90485 a.u ~ NIEM
calculations.

k2

K2 0.05 0.2 0.6 1.0 2.0 4.0 6.0

0.01
0.04
0.09
0.16
0.25
0.36
0.49
1.Q
4 Q

0.9070
0.8843
0.8481
0.8002
0.7428
0.6785
0.6097
0.4009
Q. 0447

0.8633
0.8478
0.8221
0.7864
0.7417
0.6897
0.6321
0.4445
0.0565

0.6078
0.6123
0.6176
0.6204
0.6178
0.6073
0.5879
0.4817
0.0852

0,4219
0.4297
0.4416
0.4555
0.4691
0.4800
0.4858
0.4585
0.1134

0.2100
0.2145
0.2223
0.2334
0.2477
0.2649
0.2842
Q.3396
0.1943

0.0854
0.0843
0.0866
0.0904
0.0954
0,1016
0.1091
0.1412
0.2578

0.0310
0.0317
0.0329
0.0346
0.0368
0.0397
0.0431
0.0571
0.1405
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TABLE IV. Reduced-matrix elements, static exchange plus four-correlation terms, and
four-term CI initial state.

0.05 1.0 4 p 6.0
Rep ~ Imp Rep Imp ImP ReP

p.01 s
p
d

f

0.0019
0.0402
0.0012
0.0000

—0.0008
0.0030
0.0000
0.0000

0.0005
0.0222
0.0012
0.0000

—0.0002
0.0017
0.0000
0.0000

0.0017
0.0068
0.0003
0.0000

—0.0023
0.0000
0.0000
0.0000

0.0002
0.0024
0.0002
0.0000

0.0000
0.0027
0.0000
0.0000

0.09 s 0.0239
P 0.1150

0.0102
f 0.0003

—0.0099
0.0085
0.0000
0.0000

0.0105
0.0668
0.0106
0.0013

—0.0039
0.0052
0.0000
0.0000

0.0030
0.0206
0.0028
0.0003

-0.0041
0.0001

-0.0000
0.0000

0.0014
0.0074
0.0014
0.0001

-0.0004
0.0082
0.0000
0.0000

0.25 s
p
d

f
0.49 s

p

f

0.0623
0.1748
0.0251
0.0014

0.1085
0.2142
0.0497
0.0036

-0.0258
0.0128
0.0000
0.0000

-0.0449
0.0157
0.0001
0.0000

0.0307
0,1104
0.0272
0.0053

0.0599
0.1504
0.0476
0.0121

-0.0114
0.0085
0.0001
0.0000

-0.0222
0.0116
0.0002
0.0000

0.0059
0.0351
0.0076
0.0015

0.0105
0.0506
0.0148
0.0039

-0.0080
0.0002
0.0000
0.0000

-0.0144
0.0004

-0.0001
0.0000

0.0038
0.0126
0.0041
0.0007

0.0076
0.0183
0.0083
0.0019

-0.0010
0.0141

-0.0001
0.0000

-0.0020
0.0205
0.0002
0.0000

1.0p s 0.1733
P 0.2333
d 0.0561
f 0.0075

4.00 s 0.2061
P 0.1181
d 0.0291

0.0042

-0.0717
0.0172
0.0000
0.0000

—0.0852
0.0087
0.0000
0.0000

0.1139
0.1955
0.0762
0.0243

0.2114
0.1625
0.0720
0.0266

-0.0422
0.0151
0.0003
0.0000

-0.0784
0.0126
0.0003
0.0000

0.0214
0.0761
0.0308
0.0112

0.1003
0.1616
0.0989
0.0553

-0.0292
0 ~ 0005

-0.0002
0.0000

-0.1369
0.0011

-0.0005
0.0001

0.0162
0.0279
0.0175
0.0058

0.0802
0.0602
0.0744
0.0430

-0.0043
0.0312

—0.0005
0.0000

—0.0212
0.0673

—0.0020
0.0001

(&) I I g, iq (K~,)c~ (r",) I I @0).

I.O

UJ

~ 0.5—

( I I I ( I I l

YDBERGS

ized oscillator strengths in this approximation.
All of these numbers were obtained from the NIEM
code, since the numerical quality of 4, ('P) was
poor for the R-matrix method. Computer re-
sources did not allow us to improve this calcula-
tion. However, the R-matrix and NIEM values of
the mLS, ='S', 'O', 'E'contributions to the summa-
tion in Eq. (21) were in agreement to better than

I I I I

0.5—
ke -"(.0 RYDBERGS

0
O. I I.Q

K

I 0.0

FIG. 1. Continuum generalized oscillator strength for
helium vs momentum transfer for ejected electron ener-
gy equal to 0.2 By. Solid curve, present work, 40(CI);
dashed curve, present work 40(1s ); 0 values, Jacobs
P.ef. 5); %values, interpolated from Oldham {Ref. 8);
0 values, interpolated from Bell and Kingston (Ref. 9).

I I I I I I

O. I 1.0 (0.0
K

FIG. 2. Same as Fig. 1 except that the ejected electron
energy is 1.0 By.
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TABLE V. Triple differential. cross section for ionization of helium,

Single configuration-static exchange
d3cr e d3cr

g) d~d~z dE {deg) deed co+ dE (deg)

Four configuration —static exchange
plus correlation

6 0' 0

dudu& dE (deg)

4 g
dude~ dE

0
10
20
30
4p
50
60
70
80
90

10'0

11Q
120
130
14Q
150
16Q
170

0.331
0.217
Q.114
0.037
0.001
0.022
0.110-
0.267
0.483
0.737
0.997
1.226
1.386
1.451
1.410
1.270
1.055
0.798

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

0.540
0.312
0.141
0.037
0.007
0.024
0.093
0.192
0.304
0.416
0;516
0.594
0.646
0.666
0.653
0.609
0.536
0.441

0
10
20
30
4p
50
6p
70
80
90

100
110
120
130
140
150
160
170

0.646
0,456
0.262
0.099
0.008
0.041
0.242
0.639
1.223
1.946
2.713
3.405
3.900
4.104
3.976
3.543
2.886
2.125

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

1.382
0.760
0.317
0.072
0.003
0.069
0.220
0.410
0.603
0.777
0.919
1.022
1.086
1,110
1.095
1.040
0.946
0.814

1%. In Table IV we give the partial-wave con-
tributions to the reduced-matrix element in Eq.
(21) for a range of momentum transfer and ejected
electron energy.

In Figs. 1 and 2 we plot the present results
against previous calculations, for ejected electron
energies of 4',. =0.2 and 1.0 Ry. Oldham' used a
Hartree-Fock-type wave function for the atomic
state, while Bell and Kingston' and Jacobs' used
elaborate Hylleraas-type wave functions. It is
interesting to note the severe error in the final
result when one uses a really crude target-state
wave function. We would expect that our corre-
lated calculation would lie closest to the calcula-
tion of Jacobs. ' This is indeed so, although all of
these calculations agree extremely well. For
&', =0.2 Ry (I"ig. 1) there is a significant difference
between our results and Jacobs for low momentum
transfer. This is probably due to the combined
effect of the lack of orthogonality of Jacobs's
S-wave functions and the slightly inferior nature
of our 4'0(c, ls'+ c,1s2s+ c,2s'+ c,2p') function.

Finally, in Fig. 3 we compare our. triple differ-
ential cross section with that of Jacobs. Also
shown in this plot are the experimental data of
Ehrhardt et al." For completeness we present
our numerical values, for both calculations, in
Table V. In the momentum-transfer direction our
results are in good agreement with Jacobs, but
the agreement is poor about the recoil peak. This
discrepancy is due to a combination of the following
facts: (i) In lieu of orthogonalizing the continuum

state to the initial target state, Jacobs includes
the nuclear potential term. The corresponding

states in the present work are constrained to be
orthogonal. (ii) The initial-state wave function
used by Jacobs is better than ours; however, our
final-state wave function gives better e + He'

Oo

904

+ 180'

FIG. 3. Triple differential cross section for helium
for a 256.5-eV incident electron energy, a scattering
angle 8=4', and an ejected electron energy of 3.0 eV.
Solid curve, Jacobs (Ref. 5); dots, experimental results
of Ehrhardt et al. (Ref. 13); dashed line, present work
with 40(CI).
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scattering phase shifts than his. (iii) There is no
guarantee that the triple differential cross section
will get better with improvement of the wave func-
tions. This last point is clearly demonstrated by
the fact that our single-configuration-static-ex-
change calculation gives a poor generalized os-
cillator strength, but gives a forward-peak-to-
backward-peak ratio (see Table V) for the corre-
sponding triple differential cross section which is
in better agreement with experiment than the ratio
obtained by Jacobs.
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