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We present calculations of the cross section for quenching of the metastable 2S state of muonic

hydrogen (p. p) in collisions with a hydrogen atom, at collision energies below the threshold for
inelastic 2S-2P excitation. A quantum mechanical approach based on the adiabatic approximation is
used with phase shifts evaluated in the WKB approximation. Below threshold, the dominant quenching
process involves Stark admixture of 2S and 2P states of p, p during the collision, which is

accompanied by a 2P-1S radiative transition also during the collision, and consequently the cross
section is reduced by several orders of magnitude compared with the inelastic cross section. These
results are important to considerations of the possibility of measuring the n = 2 fine and hyperfine
structures of p, p. We also present quenching cross section results based on this same approach for
collisions of the muonic helium ion, (p 0.)', on He, relevant to lifetime and fine-structure measurements
of (p n)'. Our theoretical results for (p 0.)' differ from available experimental lifetime results for (p. n)',
%e attribute the discrepancy to uncertainties in the values of the interatomic potential used in the calcu-
lations.

I. INTRODUCTION

Precise measurement of the fine-structure and
hyperfine-structure energy levels of muonic hy-
drogen (p. P) would be of great value to the topics
of muon electrodynamics and proton structure. ' '
The energy-level scheme of the ground n =1 and
first excitedn =2 states of p. p is shown in Fig. 1.
Because of a much larger electron vacuum-polar-
ization contribution to the 2S level than to the 2P le-
vels, the 2S level is shiftedbelow the 2P levels; pre-
cise measurement of the 2'P -2 'S energy difference
would provide a sensitive test of electron vacuum
polarization. 3 Also, the contributions of proton
structure and relativistic recoil to the 2S state
hyperfine structure interval are relatively large.

A measurement has been reported~' on the 2'P, &,
-

2'S,&, Lamb shift of the muonic helium ion (p. n)',
which is also of great value as a test of vacuum
polarization. ' For simplicity, we denote (p. o.)'
as p, u. The method involves forming p, n ions in the
2S state by stopping negative muons in helium gas, in-
ducing electric dipole transitions with a laser light
source from a 2S level to a 2P level, and observing
the resonant enhancement in the time distribution of
2P-1S x rays for p, +. The method relies on the
metastability of the p, n(2S) ions within the helium
gas environment.

In considering an analogous experiment for JLi. p
it is crucial to know the number of metastable 2$
atoms that can be formed, and how rapidly atomic
collision-quenching processes deplete these p. fr

(2S) atoms. We will be concerned here solely with
the lifetime problem of Jj, p(2S) and p, c(2S).

For free p, p(2S) the dominant'decay mode is'
simply muon decay with a decay rate of 4.5x 10'
sec '. The two-photon radiative transition to the
1S state ' has a rate of 1.7x10' sec ', and hence
the small branching ratio of 3.8@10 '. The rate
of muon capture by the proton is much smaller.
For p, o.(2S) the two-photon decay is 1.1 x10'
sec

Stability of p. P (2S) in H, gas with respect to
collision quenching to the 1S state depends critical-
ly upon whether the relative kinetic energy is less
than or greater than the magnitude of the 2P-2S
energy separation vL, of p, p, where vL, =0.2 eV.
In the laboratory frame this inelastic threshold is
about 0.31 eV in a collision with a stationary H,
molecule. The precise kinetic-energy distribution
of g p(2S) after formation, as well as the proba-
bility that a 2S state is formed, depend on a large
number of atomic and molecular processes, in-
cluding chemical reactions, involved in the slowing
down of p, in the H2 gas' and in the formation of
the 2S state. ' " As a result of the possibility of
chemical reactions it has been pointed out" that
p, p can in principle acquire kinetic energies in the
eV range during the de-excitation process. Indeed,
the kinetic-energy distribution of p. p(2S), or sim-
ply the number of atoms with kinetic energies
above and below the inelastic threshold, depends
on too many complicated processes to calculate
reliably. Furthermore, experimental evidence on
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this distribution available from a diffusion-type
experiment'2 is not sufficiently quantitative.

If the relative kinetic energy of the collision is
greater than v~, inelastic excitations involving
2S -2P transitions can occur. The atom will then
radiate" to the 1S state, so its metastability is
quenched by the collision. The radiative decay
2P-28 is, of course, totally negligible in compar-
ison with the decay to the 1S state. Collision times
are quite short in comparison with the radiative
lifetime v„; therefore radiation to the 1S state will
predominantly occur after the collision. At a rela-
tive kinetic energy of 1 eV for example, the rela-
tive velocity is about 2x10' cm/sec, and the tran-
sit time v., over a region of several Bohr radii is
about 10 ' sec, which is considerably shorter
than the radiative lifetime 7~ of the 2P state where
7~=0.8&10 " sec. The cross section for this
process has been previously calculated'4 using an
inelastic straight-line impact-parameter approach,
and is about 10 "cm2 at a relative kinetic energy
of 1 eV. Further, it is not particularly sensitive
to the value of the relative kinetic energy above
the inelastic threshold. At pressures useful for stop-
ping muons, even as low as one atmosphere, this
value of the quenching cross section corresponds"
to depletion rates as high as 10" see '; such a
high depletion rate makes a spectroscopy experi-
ment on the n =2 state extremely difficult.

If the relative kinetic energy is below the thresh-
old v~, this inelastic process is energetically for-
bidden. Quenching will still occur, however,
through a physical process that involves Stark ad-
mixture of the 2S and 2P states during the collision,
with an electric dipole transition to the 18 state also
taking place during the collision. " Since in this
process the radiative transition to the 1Sstate must
occur during the collision, we would, in order of mag-
nitude, expect the corresponding cross section to be
reduced by the factor (T,/7„) relative to the inelas-
tic cross section, leading to a cross-section value
of order 10 "em'. At one atmosphere pressure
of H, gas, p, P(2S) would have a lifetime against
eol.lision quenching about equal to the free-muon
lifetime. Hence, provided a reasonable fraction
of the p, P atoms have kinetic energies less than
v&, this situation would make it reasonable to con-
sider a fine-structure measurement on p, P, using
the very-high-intensity muon beams becoming
available at the new meson factories.

In this paper we present detailed calculations of
this so-called Stark-mixing quenching cross sec-
tion applicable at relatively low collision energies
of p, P on H„based on the adiabatic approximation
in which all inelastic excitations are neglected.
Calculations are carried out with both a semiclas-
sical impact-parameter approach and a quantum-

mechanical partial-wave analysis of the relative
motion, with phase shifts computed in the WKB ap-proximationn.

We also present results for the collision-quench-
ing cross section below threshold for p. a on He,
relevant to lifetime and fine structure measure-
ments on p a(2S). In the slowing down of p, in
helium gas and formation of g o.(2S) ions, chemi-
cal reactions are not believed important and hence
if is expected that p. + will have the thermal kinet-
ic energies of the He atoms. Since the 2P-2$ ener-
gy separation of p. n is about 1.4 eV, inelastic colli-
sions 2S-2P are not energetically possible.

The arrangement of the paper is as follows. In
See. II we derive approximate interatomic poten-
tial-energy curves. In Sec. III the validity of the
adiabatic approximation is briefly discussed. In
Sees. IV and V we present the quantum-mechanical
and impact-parameter calculations, respectively.
Section VI is a final discussion.
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FIG. 1. Schematic diagram of the energy levels of
muonic hydrogen (p p) in the n=1 and n=2 states. The
2 Q/2-2 Pg(2 interval &I is 0.2 eV, the 2 Pg(2-2 P3/2
fine structure interval is 0.008 eV and the hyperfine
structure interval in the ground state Av& is 0.2 eV.

II. INTERATOMIC POTENTIAL-ENERGY CURVES

Calculation of the relevant interatomic potential-
energy curves for p, P(2S) on H, simplifies in low-
est order because of the properties of p, p(2S).
Firstly, since p p is small and neutral, it does
not affect, in lowest order, the electronic struc-
ture of an atom it collides with; p, P(2S) does be-
come polarized but because of the smallness of
the induced electric dipole moment its effect on
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the electronic structure of the other atom may be
neglected, even when it is "well inside" this atom.

Secondly, the perturbation of the p, p(28) atom,
as it passes the target atom and is subject to the
electric fields of the target atom, remains totally
negligible relative to the magnitude of the energy
separation of the low principal-quantum-number
states of p, P. Significant mixing occurs only in
the subspace of "nearly degenerate" n = 2 states
through a linear Stark effect and, because of the
magnitude of the 2S-2P energy separation, only-if
p, P is within the target atom. Thus, the electric
field strength of the unscreened proton at a, is
e/a', =5&&10' v/cm, which leads to a first-order
Stark energy for p, P(28) of only 1 eV whereas the
corresponding 2S-18 energy separation is 1.9 keV.
The perturbation on the p, P(28) atom is most sig-
nificant when it is close to one of the protons in H.,
and hence to a good approximation, the H mole-
cule can be treated as two independent H atoms. %e
now consider the much simpler collision problem
of p. P on a hydrogen atom.

Further, since v~ is more than an order of mag-
nitude larger than the fine structure 2'P, &.-2'P,&,
and still larger than hyperfine structure in p, p,
the effect of the muon's spin can be neglected and
the n =2 states are described in terms of simple
nonrelativistic hydrogen-like orbitals with the en-
ergy of the 2S state depressed by v~ relative to
the degenerate 2P states.

The coordinate system used for collisions of
g P(28) on H is shown in Fig. 2. The interatomic
position vector H connects the proton in H with the
center of mass (c.m. ) of p, P. With this coordinate
system, nonadiabatic coupling terms involving the
muon's coordinate will vanish asymptotically. The
position coordinates r„and r of the muon and elec-
tron are expressed relative to their respective
nuclei; separated atom coordinates are appropriate
to use since the interatomic interaction is treated
as a perturbation at all values of R = l Rl. With
these coordinates, the total kinetic energy sepa-
rates approximately into the kinetic energy of the
over-all c.m. , the kinetic energy of the relative
interatomic motion, and the internal kinetic ener-
gies of the atoms. Small cross terms on the order
of the electron-to-proton mass are neglected.

Since the range of relative interatomic velocities

of interest is so low compared with electron and
muon bound-state velocities, which are of order
Znc/n, a conventional Born-Oppenheimer approxi-
mation is applied. For fixed R, the effective Schro-
dinger equation for the wave function describing
the electron and muon motion is written

Ke(r „,r; It) = [H,(r) +e(r „)+ V(r „,r; H) ] e(r „,r „H)

(2.1)

where H„ is the nonrelativistic internal Hamiltonian
for the hydrogen atom, H is the internal Hamilton-
ian for p, P including terms for the Lamb-shift
separation and radiative decay of the 2P state (as
detailed below), V comprises the Coulomb interac-
tions between the atoms including mutual nuclear
repulsion, and H appears only parametrically in
V and C.

In line with the above discussion, 4 is taken in
lowest order to be a direct product of a 1S hydro-
genic function for the H atom with a linear combin-
ati.on of 2S and 2P hydrogen-like orbitals for p. p,
which accounts for near resonance of its n =2 in-
ternal states. This form, which in most collisions
is only valid asymptotically, is assumed valid in
the present case at all separations B. The correct
zeroth-order linear combination of 28 and 2P orbi-
tals for the p, P wave functions is then determined
by diagonalization of the Hamiltonian 3C, and de-
pends on R. %e note that the direct product form
for 0 is valid since there is no over-all symmetry
requirement. The only dependence of 4 on 8 is in
the wave function for p. p.

Multiplication by the 1S hydrogenic wave function
of the H atom on the right and left of the Hamiltoni-
an K, and integration over the electron's coordi-
nates leads to the effective Hamiltonian for the in-
ternal motion of p. P

(2.2)

where ~~ and gpss„are the proton and muon masses,
M is total mass of ]I~ P E& is the energy of the H
atom [E~ = —e'/(2a, ) = —13.6 eV], and V,g is the
spherically symmetric Coulomb potential generated
by the H atom. For the important region I ~„l &R
the potential terms vary only slightly over the di-
mensions of p. P, and are expanded abouts; the
first nonvanishing contribution from the sum of
the potential terms is eE(R) r„, where E(R) is
the radial, outward directed, electric field of the
Hato th ag t de

l E(R) l
=R (1+2R+2R )e "(e/a ), (2.3)

FIG. 2. Coordinate system used for. collisions of
g p on H. Analogous coordinates are used for (p, a}+
on He.

wher~ B is in units of ao.
The internal states of p. p are assumed quantized

relative to the body-fixed 8 axis. Since the electric
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field is also along R, the Stark effect in lowest
order mixes the 28 state only with the 2P state of
projection m, = 0; the 2P states of projection m,
=+1 remain unaffected to lowest order, and are not
included in the description given below of the di-
agonalization of H,« in the n =2 subspace.

The matrix elements of IV,«with the asymptotic
basis functions, Q, s and Q,z(m, =0), are then

(42s,ff 42s) (@2s ff 42 )l
&H.„)= I

2P r jeff 28 2Pt Jeff 2P

c &-iy 2
(2.4)

c =(y,s, eE(R) r„y,'~)

=8e(a„/Z) I E(R) I,
(2.5)

where if the reduced mass of p, P is denoted gyes*„,

then a„=—0'/m*„e' is the Bohr radius for l(, p.
Since Hz„,„is a small term relative to b, (H,ff)

is diagonalized with IId„„neglected leading to the
following zeroth-order linear combinations of (t),s
and ps~~ orbitals

y, (r„;R)=A(R)Q, (r„)+B(R)Q,'J, (r„), (2.5a)

(Jr „;R) = —B(R)Q„(r„)+A(R) p,'~(r „), (2.5b)

with corresponding first-order energies

where 26(= vt ) is the Lamb shift of 2S and 2P
states, y —= 0/v.„is the radiative width of the 2P
state, and all constant energy terms have been ab-
sorbed in the energy zero point which is now taken
at the midpoint of the 2S and 2P levels. Radiative
decay of the 2P state is accounted for in the usual
phenomenological fashion with an imaginary Ham-
iltonian term which projects only on the 2P state,
Hd„,„=( iy/2-) I Q,'~) (Q,'~I. c is the first-order
Stark energy,

of projections pyg, = + 1, which are unperturbed to
lowest order ).The states ass and 4,~ are ortho-
normal for all R and represent the lowest-order
~& =0 adiabatic solutions; they are denoted by the
2S and 2P(m) =0) asymptotic orbitals which they re-
duce to for R - .

H~„„is not diagonal in the adiabatic basis,

B' AB)

AB A')' (2.9)

Since it is small, however, it is evaluated to first
order with the nondegenerate adiabatic states,
which leads to the addition of the diagonal terms in
(2.9) to the energies (2.6). The m, =0 adiabatic in-
teratomic potential curves, which are now slightly
complex and which are defined relative to the as-
ymptotic internal energies of the colliding atoms
so as to fall to zero at 8-~, are then

~„(R)= —e(R)+ ~ .'iyB'(R——),
'V,'~(R) = e(R) —& —s iyA'(R) .

(2.loa)

(2.lob)

0.02—

0.0 I—

The imaginary terms, corresponding to the opaque-
ness of the optical potentials, are proportional to
the decay rate of the 2P state and the amplitude
squared of the 2P-state component in each of the
adiabatic solutions. B (R) is shown in Fig. 4

[A'(R) =l —B (R)]; it attains the value s at R-0
where IE(R)I and hence e(R) are infinite, although
this perturbative approach breaks down well before
this limit is reached.

A similar approach is used for collisions of
p, n on He. However, since p, e is positively
charged it affects the electronic structure of the
target atom. To lowest order, it is assumed to
affect the He atom, which is in its ground state, in

e,s = —e(R),

e,'~ =+ e (R),

(2.6a,)

(2.6b)

e (R) =[~'+c'(R)]'~'. (2.7)

The real amplitudes satisfying unitarity (A'+B'
=-1), are

+2
w(a)=c(a)(2

( )( ( )

(
e ())) —6

)
+' (2.8)

The energies e» and e,'~ are shown in Fig. 3. (Also
included are the energies c,'„'= 4 for the 2P states

-0.0 I—

—0.02—

0.5 I.Q
8 roo

I

2.0

FIG. 3. Energy levels, including the Lamb shift and
first-order Stark corrections, of the different n =2
states of p p as a function of the separation R of p p
from H. The energy zero point is chosen at the mid-
point of the asymptotic (8 ~) separation of the levels.
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H ff(r„; R) =E„',+H(r„) + V'(R) —ev'(B)
—ev'[B+ (mJM)r „]
+2ev'[R —(m„/M)r „], (2.12)

the same way as an incident proton. (The differ-
ence in mass plays no role with regard to solution
of the electronic motion. ) For fixed R, the wave
function for motion of electrons and muons is then
taken in lowest order to be a product of the ground-
state electronic wave function describing a helium
atom in the presence of a proton at position R with
a linear combination of hydrogen-like 2$ and 2P
orbitals for p, e. With reference to the electronic
motion, approximate variational calculations of
the X'Z' ground-state energy of the system
(HeH)' have been carried out" over a limited
range of separations B, and in Fig. 5 we depict
the form of the interatomic potential-energy
curve, which we denote by V'(R). The minimum
in the curve has a depth of about 2.0 eV at the
equilibrium separation, R, = 1.46ao. An approx-
imate Morse fit to this potential curve, which
matches quite closely the numerical values" avail-
able in the range 1.1&A & 1.8, is

Vt(R) P76[1 (1 e-1.85( -l.46))2] (e2/ )

(2.11)
where R is in units of a,. Although the Morse fit
is incorrect asymptotically since it falls off expo-
nentially rather than as R ', corresponding to the
charge induced dipole interaction of (HeH)', this
is unimportant to the quenching process which oc-
curs predominantly at small separations R. Since
the accuracy of the numerical results for V' in
Ref. 17 is not known, and since a Morse extrapola-
tion is used to reach sufficiently small values of
A, the quenching results are quite uncertain in this
case and suggest the need for precise determina-
tion of V' over a larger range of separations.

By the same approach as before, we obtain the
following effective Hamiltonian for the internal
motion of p, 0. ,

where E„„is the ground-state energy of He at in-
finite sepa, ration from p. o. , symbols used previ-
ously are defined in an obvious analogous fashion
for p, o.', and v'(X) is the electrostatic potential at
position X generated by the H), atom, including its
nucleus in the presence of the proton at B. v' is
not, of course, spherically symmetric. As before,
we expand the potential terms about R, and the
first nonvanishing contribution is e(1+m„/M)
xE(R) r„, where E(B)=-&v'(8)/&B. The small
factor m„/M is neglected. From symmetry, E,
at points along the R axis, is radially directed.
Assuming the applicability of the Hellmann-Feyn-
man theorem" (see the final comment of this sec-
tion), the magnitude of E along the R axis is given
simply by

(2.13)

E(R) is radially inward for R &R, and outward for
A &B,.

The resultant m, =0 d.diabatic interatomic-poten-
tial-energy curves are obtained as before and are
written

V„(R)= V'(R) —e(R)+A- .'iyB'(R), —

'U2J, (R) = V'(R)+e(R) —& —2iyA (R),

(2.14a)

(2.14b)

where e, A, and B are defined as before, with E
now given by (2.13). Except at R =P, V'(R)»e (R),
and the real parts of the optical potentials in Eqs.
(2.14a) and (2.14b) are accurately approximated
simply by V'. The magnitude of the B (R) term in
the opacity coefficient, obtained with the analytic
Morse fit (2.11) in (2.13), is shown in Fig. 6 for R
~ ao. [The value of B'(R) for R s ao is unimportant
due to the extremely repulsive character of V'(R)
for 8 & a,, for the range of thermal velocities of
interest, the atoms will not penetrate closer than
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FIG. 4. gg (A) vs B for p p on H.
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Flo. 5. X' Z+ ground-state interatomic potential &'(R)
of (HeH)+,



a, .] The values of 8' for p, o. are greatly reduced
over comparable results for g P in spite of the fact
that electric field strengths are about the same in
both cases, namely of order e/a', . This arises
because of the much larger Lamb shift for p, e
and because its nuclear charge is 2. There is a,

very slight bump in 8'(R) for R z R„which is not
evident on the scale of Fig. 6. This bump accounts
for only a small fraction of the quenching. Most
quenching occurs in the region a, Sg 6g „and
particularly near R = a„where B~(R) is increasing
rapidly. The values of 8' (which depend on the de-
rivative of V') and hence, also the cross-section
results, are found to be extremely sensitive to the
precise form of V' in this region.

With reterence to the appl1cab1lity of the Hell-
mann-Feynman theorem in the present case, which
leads to Eq. (2.13), we note that although the elec-
tronic wave function u.sed in Ref. 17 is not exact,
it does not contain R explicitly, but only through a
set of variational parameters which are varied to
minimize the energy. Under these eircumstanees, "
the theorem still applies although the electric
fields obtained from Eq. (2.13) may still be subject
to gross inaeeuracies. Since the energy estimates
of the ground state ot (HeH)" are variational, the
curve V' is good to second order in the errors of
the wave function, but this property does not apply
to the electric field E.

For the relative kinetic energies below threshold
that we are interested in, we will assume that both
collisions, p, P{28) on H and p, n(2$) on He, evolve
adiabatically along the slightly complex optical po-
tentials 'U»{R), that is, we assume one-channel
processes throughout. In a time-dependent view,
nonadiabatic excitation processes to the adiabatic
4,'~, state [as well as to the excited channels that
connect adiabatically to the 2P(yn, =+1) states] are
neglected as intermediate states. No permanent
excitation outside the collision region can occur
at these energies below threshold. In this ealcula. -
tional approach quenching occurs since the adiabat-
ic state C» contains a component of the decaying
2I' sta.te during a collision.

A simple criteri. on to judge the validity of the
adlabatlc approxlmat3. on requ1res that

ty (3.1) is satisfied for incident relative velocities
v, up to approximately the threshold value; at
thermal velocity (3X10' cm/sec), bE7, & 5S.
More precisely, criterion (3.1) should be evaluated
at all Z,

( )„
u(R)

(3.2)

Since the real part of the adiabatic curve V,~(R) for
p, p is everywhere attractive, the velocity v(R) in-
creases monotonically as B decreases. However
4E also increases monotonieally. Further, there
are no near-crossing regions where nonadiabatic
effects might be particularly important. The net
effect of (3.2) is not appreciably different from the
crude asymptotic estimates.

For p, ~ this adiabatic criterion is much better
satisfied. The Lamb shift for p. n is about 1.4
eV, velocities are definitely in the thermal range,
and the interaction region is somewhat larger than
ao, which leads to &E7,=20k. We have not dis-
cussed excited states of (HeH)'. The energy sepa. —

ration between the ground X'Z' state of (HeH)+
and the first excited 'Z' state, which asymptoti-
cally goes to He' +H and which is everywhere re-
pulsive, is much larger than the energy separation
of the 2S and 2P adiabatic states associated with
the ground X'Z+ electronic state.

As a final point, it is perhaps useful to consider
the ease of close collisions where the interaction
potential may actually be momentarily la.rge, and
both adiabatic channels a.re equally populated.
Here, both channels will contain equal 28 and 2I'
components and hence will be equally attenuated.
We suggest that even this extreme ease where both
channels are equally populated and equally atten-
uated is in fact not unlike the adiabatic approach
where decay occurs solely from the lower channel.

0.005—

IV. QUANTUM-MECHANICAL PARTIAL-WAVE

CALCULATION

A quantum-mechanical treatment of the relative
interatomic motion is desirable, particularly for
p P on H, because of the small values of the angu-
lar momentum. We ean roughly estimate classi-

DF.7~ & Fi, (3.1)

where ~E is the energy separation of the adiabatic
states and 7,. is the collision time. For p, p, if we
very roughly set 4I.' equal to its asymptotic value
2h, and 7, =R,/v„where the interaction range
8,- lg and v is the incident relative velocity of
p p with respect to the nucleus of H, then inequali-

R /00

FIG. 6. B2(R) vs 8 fox (p 0.)+ on He.
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cally this maximum value of the angular momentum
that is expected to be important. For p, p the re-
duced mass of the relative motion of p p on 8
given by M» =—mp(mp+m, )/(2m~+m„) is 967m„and
for the energies of interest the maximum impact
parameter 5 is about ap. At a thermal velocity
u, = 3 x 10' cm/sec the angular momentum is then
bM~v, = S. Even at a relative kinetic energy well
above threshold of 1 eV, the angular momentum
is only about 6k. For p. e, the relative mass is
3700~, and the impact parameter is somewhat
larger, which leads to somewhat higher values of
the angular momentum.

Since the optical potentials are central and the
values of the angular momentum are low, a par-
tial-wave analysis is quite useful to obtain the ab-
sorption cross section, with only a limited number
of partial waves expected to contribute. The ab-
sorption or quenching cross section for the lth
partial wave is given as

Im(5, ) = Im K(R') dR'
Rp l

=Im
Rp l

((2M /k')IE —V, (R') +i yP(R')]—
(I + —,')2/R "]~(' dR ' (4.2)

(4.1)

where hÃp=—M~vp is the asymptotic wave number of
the relative motion and 5, (K,) is the lth phase
shift. 5, (K,) is now complex and is conveniently
written in the form 5r = gr +i~yp. „since the imag-
inary (Im) part of 6, will be shown to be propor-
tional to y. (p, ( has inverse energy units. )

Evaluation of the phase shifts in the JWKB ap-
proximation leads" to the following equation for
im(5, ):

suggests that one can approximately evaluate
Im(5, ) by simply expanding the integral functional
about y =0. The first nonvanishing imaginary term
in the expansion leads to the following approximate
expression for IL(. r:

v, ,(E )=+, P(R' (, (E —)', ())')j

(4.4)

where v, (R) is the classical radial velocity and de-
pends on the angular momentum l. The energy-
level width —,'y will in general be small compared
with i(, , (E) (except possibly at a special value of the
energy discussed separately below), and hence one
has approximately

1 —
I

e'*"I' = » u ((&.) .
Since for both collisions the atoms involved are

homonuclear, the over-all wave function must be
made symmetric or antisymmetric with respect
to interchange of the coordinates and spins of the
two nuclei, depending on whether the nuclei are
fermions or bosons. This added complexity gets
translated into the partial-wave analysis by having
the sums over the angular momentum l restricted
to either even or odd values. " However, if more
than a few partial waves contribute to the total
cross section and their values do not vary abruptly
for different l's then to a good approximation one
can still express the total quenching cross section
by the usual result of potential scattering where ex-
change symmetry plays no role:

where P(R) = B'(R), E, is the incident relative ki-
netic energy which is conserved since the scatter-
ing is elastic, V»(R) represents the real parts of
the optical potentials IEq. (2.10a) for p, p and Eq.
(2.14a) for i(, a, respectively], l(l +1) is replaced,
as usual, by (l +-', )', and R, , is the largest classi-
cal-turning-point solution of the motion, for angu-
lar momentum l of the equation

o» =- —,Q (2f+1)(1—
)
e""(I'),

r

=(8»/K', ) Im Q(l+ —,')5,

4»q, " " P(R'), g (l+-', ) (,)
dR'

0 , vr R' (4.5)

E, —V, »(R) —k'(l + 2)'/2M, R' = 0. (4.3)

The scattering phase shift 6r is defined relative
to the phase of a free particle, which then requires
that in the calculation of the elastic-scattering
phase shift an analogous phase integral for the free
motion be subtracted off. However, for the calcula-
tion of the imaginary reactive phase shift there is
clearly no analogous subtraction. Since the imag-
inary term in the optical potential is so small, it

Numerical integration of Eq. (4.4) for p, p on H

was carried out for relative kinetic energies Ep
up to the threshold value (0.2 eV); the results for
the partial cross sections are shown in Fig. 7.
Even for Ep =0,2 eV only partial waves with l ~ 5

gave a non-negligible contribution and it was esti-
mated that they provided over 95%%u() of the total
quenching cross section; for the energy range of
interest the centrifugal barrier term excludes
partial waves with l & 5 from the interaction region
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ly small changes in the fit to V' the results for o,
are found to vary by as much as a factor of 3. In
addition there are uncertainties in the numerically
calculated values of V'(R)" to which we fit the
Morse potential.

Quenching at long range due to the van der Waals
interaction has not been included. For p, P, the
interatomic potential curve was estimated in lowest
order with atomic orbitals and so has typical ex-
ponential fall off. In second order, but still neg-
lecting couplings to different principal-quantum-
number states of p. p the leading term in the inter-
action leads asymptotically to c (R) = A/B', but since
A. is proportional to the induced dipole moment of
p. p which is so small we have neglected this long-
range effect. Similarly, we have neglected van der
%aals quenching of p. n.

Quenching due to an external Auger effect of the
target electrons has also been neglected. Estima-
tion of this effect' for p, p in the Born approxima-
tion at 1 eV indicates that, at the thermal velocities
of interest here, the associated cross section will
be much smaller than the Stark-mixing cross sec-
tion. We believe the same is true for p, u."

Perturbative treatment of the interatomic inter-
actions is invalid if the muonic systems directly
approach the nucleus. The mutual nuclear repul-
sion prevents IU, ~ from approaching closely the
He nucleus at thermal velocities. For ILI, p how-
ever, the potential curve is attractive. At dis-
tances 8 -a„(Bohr radius of p, p) the perturbative
approach is no longer valid, but we do not expect
this breakdown to affect significantly our results
for vs.

V. CLASSICAL PATH APPROACH

Although, as discussed in Sec. IV, a quantum-
mechanical approach f.s clearly desirable because
of the relatively few angular momentum terms
that contribute to the collision for the velocities of

ih —„y(r&, t) ={H'„,(r&', R(t))[y(r&, t) . (5.1)

We expand X in terms of the time-dependent adia-
batic basis states, +» [r„;B(t )] and %,~[r „;R(t )]
with corresponding energies e,z[R(t)] and e,z'[R(t)],
which represent lowest-order solutions and first-
order corrected energies of the time-independent
Schrodinger equation with the Hamiltonian
If,«(r„;B), in which B and hence t, appear only

0
INC IDENT ENERGY (eV)

0-05 O. l

interest, we present here also, because of their
calculational simplicity and as a check on the quan-
tum calculations, time-dependent impact-parame-
ter calculations of these cross sections. The atoms
are here assumed to move along definite trajec-
tories B(t) which will be specified later; the atoms
become moving centers of force that subject the
internal motion of muon and electron(s) to explicit
time-dependent perturbation potentials, which will
cause transitions among the internal states. As in
Sec. IV we take the adiabatic limit, neglecting ex-
citations of either the muonic or electronic states
that may be caused by the time-dependent electro-
static potential or dynamic nonadiabatic couplings.
Since the internal states are taken to be quantized
along the interatomic R axis, dynamic couplings
will occur because of the radial and angular veloc-
ities of the axis relative to fixed axes during the
collision. Relative velocities are so low that elec-
tronic and muonic translational factors play no
role.

For p, p on H, the electronic1Swavefunctionhas
no dependence on 8, and therefore has no explicit de-
pendence on time aside from the usual exponential
time factor. We can then separate out the elec-
tronic motion, leading to an effective Schrodinger
equation for the internal motion of p, p,

0.0 I 0—
OJ

E

O

C/l

b

—0.0t0
0

R/a0
FIG. 9. Effective interatomic potential for the Lth

partial wave, V, (B), for p P on H.

I

2

I NG IDENT ENE RGY {I 0 a.u. )

FIG. 10. Calculated total quenching cross Section 0
vs incident energy for (p. +)+ on He.
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parametrically. X is then written

)((r„, t) = a,z(t)4, z(r„;R)exp — — e,z(t') dt'

+ g a,,'(t)e, '(r„„R)
fft) —-1,0,1

x exp — —
i z,~(t') dt', (5.2)

where the amplitudes are now complex. The adia-
batic solutions are orthonormal for any R.

Upon substitution of Eq. (5.2) in the Schr(idinger
equation (5.1), it is straightforward to obtain the
coupled equations which the amplitudes satisfy,
and a general expression for the total depletion
rate of the state X due to radiative decay from the
2I' components, with inclusion of all the nonadia-
batic coupling terms. In the adiabatic limit these
couplings are dropped, and the only remaining
coupling betmeen the adiabatic states is that due to
Hd y which is treated in 1om est order . This 1eads
to the following approximate expression for the
amplitude g», which Bt t = —~ has the value
az(- )=1,

a„=1—y B'(t')dt'.
2A „

(5.3)

1 —Ia.z(")I' = y B'(t') dt'. (5 4)

The total quenching cross section, involving inte-
gration of (5.4) over all impact parameters t) is

»t)dt)(I —Ia, ( ) lz)
~0

For specified values of the relative kinetic energy
and impact parameter, the depletion rate of the

asymptotic 2S state is

&=—„(I".I') =(-y/I »«)I".(t)I',
and the corresponding total quenching is

Substitution for B'(R) from (2.8) in (5.6) and eval-
uation of the integral leads to

(z,"= 0.39(ma', ) (a,y/kv, ),
which at typical thermal energies (4—', eV) leads
to a value for the cross section of 3.7&&10 "cm'.

For collisions of p, n on He, an analogous ap-
proach is used. Now homever, the electronic wave

function of (HeH)' depends on R, and its partial
time derivatives will not vanish, but since the wave

function is assumed normalized and we exclude
excited electronic states the equations satisfied by
the amplitudes in the expansion of the muonic wave

function are unaffected. In particular Eq. (5.5) re-
mains valid, where the electric fields E used in
B'(R) are those obtained from V'.

The potential for the relative motion, which is
approximated by V'(R) is in this case strong enough

so that at these low values of the relative velocity
it is appropriate to use the classical path approx-
imation. This is particularly important since the
opacity or absorptive coefficient P(R) =B'(R) is
strongly dependent on R near the origin and hence
it is essential to have mell defined the distance of
closest approach R, (classical turning point). The
linear path would lead to too large cross sections
because of the oversampling of small distances.
Also because of the repulsive character of the po-
tential for small R, the classical path will accu-
rately reflect the time spent in the vicinity of the
turning point where the absorption will be greatest.

The classical elastic scattering solution for given
energy Ep and impact parameter b, is symmetric
about the distance of closest approach R,(b) defined

by the largest zero of

&, —V'(R) - (Z, t')/R'=0;

noting that dt =dR/v, (R), where v, is the magnitude
of the velocity for particular b. Since the initial
state of the He atom is spherically symmetric,
the quenching cross section can be written

y

0
dt) dt 2~t B'(R(t)) . (5.5)

o) P =— 2zbdb - dR
~o &B (5) vy(R)

(5.'I )

Since the interatomic potential is so weak for
p. p on H we assume a straight-line trajectory
R(t) = t)i +zk, where 7, and k are unit vectors per-
pendicular and along the initial direction of motion
and where z=vot. Then since dt=dz/v„Eq. (5.5)

can be expressed as

Finally, since the classical angular momentum is
just @I,=M&v pb, where M&is again the relative
mass, 0,' can be mritten

4~&,i " " " B'(R)
@&o .Io z, (~) vi«)-

v," = db dz 2)(:":B'(R)
@~0 0

dR R'B'(R) .
AV0

(5.6)

where F0 =MEep is the initial wave number. This
result is analogous to the quantum &KB expression
(4.5), except that the sum over discrete l is re-

' placed by an integral over continuous l. Upon

evaluation of the integral using the Morse-potential



COLLISION QUENCHING OF THE METASTABLE 2S STATE. . . 1185

fit for V', we obtain results similar to the quan-
tum-mechanical estimates. At thermal velocity,
the value pf the crpss section is 1.1x10 cm .

VI. DISCUSSION AND COMPARISON WITH

EXPERIMENT

For both collision systems under consideration,
the results of the impact-parameter calculations
described in Sec. V are in reasonably close agree-
ment with the quantum-mechanical estimates over
the range of collision energies studied. It should
be noted, however, that for collisions of p, n on

He, a straight-line path is not at all adequate,
leading to results that are nearly an order of mag-
nitude too large at the lower collision energies
compared with the quantum-mechanical results.
Other than the Stark quenching collision process
[p, -p(2S)+H- p, -p(IS)+y+H] which we calculate,
the only other two-body collision process that is
allowed energetically is the external Auger process
[p P(2S)+H- p, -P(1S)+H'+e ]. Previous calcula-
tions' indicate that the external Auger process is
unimportant. The same conclusion applies for

o.(2S) quenching.
A calculation has recently been done pn the

quenching of p, n(2S) in helium gas in which the
dominant quenching occurs through formation of
the bound molecule (p, -n)'He and subsequent elec-
tromagnetic transition to the ground 1S state. The
calculated quenching rate is comparable to our
theoretical results for p, n(2S) and about one order
of magnitude greater than the observed quenching
rate. This quenching process requires the forma-

tion of the bound molecule and hence differs from
the Stark quenching process we have calculated in
this paper.

We can make a comparison of the theoretical re-
sults for quenching of p a with available experi-
mental results. From observations of the meta-
stable 28 state of p. n in He at different pres-
sures a value of the total quenching cross section
has been obtained, which is in the nature of an up-
per bound; the result is about 10-"cm'. For
thermal kinetic energy of p, a the theoretical value
of v, is 3&&10 "cm' (Fig. 10) which is larger by
about an order of magnitude than this experimental
value. We feel, as noted previously, that uncer-
tainties in the precise form of the interatomic po-
tential V'(II) at small separations is responsible
for the discrepancy. This points to the need for a
more precise determination of V'.

At present there is no experimental information
about the quenching cross section o, for y. P(2S),
and indeed no direct information on the formation
of p P(28)." An experiment is planned'~ to search
for the formation of p P(2S) in H, gas and to mea-
sure the quenching cross section through observa-
tion of delayed 2P-1S x rays as a function of H, gas
pressure. The small theoretical value of o, for
p p(2S) below the 2S-2P inelastic threshold implies
that if there is sufficient formation of p, P(2S) with
energies below this threshold, then fine-structure
and hyperfine-structure measurements might be
done on p p in the n =2 state, analogous to that on
p, -z in the n =2 state. '
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