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‘We derive an approximation for transition moments between excited states consistent with the
approximations and assumptions normally used to obtain transition moments betwen the ground and
excited states in the random-phase approximation and its higher-order approximations. We apply the
result to the calculation of the photoionization cross sections of the 23S and 2 'S metastable states of
helium by a numerical analytical continuation of the frequency-dependent polarizability. The procedure
completely avoids the need for continuum basis functions. The cross sections agree well with the results
of other calculations. We also predict an accurate two-photon decay rate for the 2 'S metastable state
of helium. The entire procedure is immediately applicable to several problems involving photoionization

of metastable states of molecules.

I. INTRODUCTION

In the equations-of-motion method or any of its
approximations, e.g., the random-phase approx-
imation or time-dependent Hartree-Fock, the
quantities calculated directly are the transition
densities between the ground and excited states.?
Relative quantities between the ground and excited
states such as transition moments can then be
readily obtained from these transition densities
and the necessary matrix elements between basis
states. For several applications excited-state—
excited-state transition densities are needed.
These include the study of transition intensities
between excited states of molecules of interest in
the development of gas-phase lasers, e.g., the
C’ll,~ B®Il, lasing transition in N,, and in atmo-
spheric emissions where transitions between ex-
cited states play an important role. Other proper-
ties such as two-photon decay of metastable states
and the polarizabilities of excited states require
infinite summations over excited-state—excited-
state transition moments and frequencies.

The purpose of this paper is to show how excited-
state—excited-state transition moments can be cal-
culated directly from the set of ground-state—
excited-state transition densities obtained from
a single equations-of-motion calculation. First,
we derive the simple relationship expressing the
excited-state—excited-state transition moment
directly in terms of the ground-state—excited-
state transition densities. Then we discuss two
interesting applications of this result. The first
application is to the calculation of the photoioniza-
tion cross sections of the 23S and 2 S metastable
states of helium. In this calculation of photoioniza-
tion cross sections we completely avoid the need
for constructing continuum solutions of the wave
equation normally needed to describe the final-
state continuum wave functions. The central idea
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is to use the excited-state—excited-state transi-
tion moments to obtain a discrete representation
of the frequency-dependent polarizability at com-
plex values of the energy. Numerical analytic con-
tinuation can then be used to obtain the photoion-
ization cross sections. We have previously applied
this procedure to obtain photoionization cross sec-
tions for He and H, ground states in good agree-
ment with experiment.>® As a second application,
we use these excited state moments to predict the
two-photon decay rate of the 2 'S metastable state
of helium. Both the calculated photoionization
cross sections of the 2 1S and 23S states of helium
and the two-photon decay rate of the 2 !S state
agree well with the results of other calculations
and available experimental data.

II. THEORY

In the study of dynamical properties of atoms
and molecules the quantities of direct physical in-
terest are relative quantities between two states,
e.g., excitation frequencies w,, and transition ma-
trix elements (0| M|)) between states |0) and |X).
For example, in the frequency-dependent polar-
izability a(w)

o= § ZeanOIB P "

2 2 ’
wo)\i - W

Xi#0

one is concerned with a set of frequencies {wyy}
and the off-diagonal matrix elements of the dipole
operator D. The summation in Eq. (1) implies an
integration over the continuum. The evaluation of
one-particle transition matrix elements simply
requires a knowledge of the one-particle transi-
tion density p,\(¥', T),

Pox(F, T) =(0[ p(¥, T) 1), @)

where p(¥’,T) is the one-particle density operator
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p(F,F) =" (F)P(F) (3)
in second quantized form with $"(¥) and $(F) the
field operators, e.g.,

o)=Y ortal, (4)
k

where ¢,() and a; are single-particle states and
creation operators, respectively. The transition
matrix element of a one-particle operator M can
then be written

OIM 1N = [ araio(F - F MO @, D, 6)

where the integration over the 6 function is per-
formed after M(r) is applied. Since the one-parti-
cle transition density is sufficient to evaluate the
physically significant matrix elements, one should
design a theory that concentrates directly on this
quantity. In the equations-of-motion method as
well as in several other many-body methods, e.g.,
in the theory of Green’s function, we calculate the
transition density directly.

In the equations-of-motion method one calculates
the elements of the ground-state—-excited-state
transition densities by solving the equation of mo-
tion of the excitation operator O defined such that
0%]0) = |A). It can be shown that if the operator
0} is restricted to single particle-hole form, i.e.,

01 =3 [¥,,(Nale,
my

-ZyMNaja,l; (6)

the amplitudes me(h) and Z my(x) satisfy the equa-
tion*

o ) lzon) (s o))
<-§* -A* g(x)>=“’°*<0 o/\zw/

The matrices A, B, and D are ground-state ex-
pectation values of second-quantized operators?®
and w,, the excitation energy. The amplitudes
Y,y and Z,, are elements of the transition density,
which, to a good approximation, can be written

por(¥', ) =(0|[p, 011/0)
% 3 [V oy $5F)0)(F) + 2,y 03 F) 0 )],
" ®)

where ¢, and ¢, are particle and hole states, re-
spectively. The equations of motion, Eq. (7), can
be solved straightforwardly in various approxima-
tions for ground-to-excited-state transition ener-
gies and densities. Applications to several mole-
cules, e.g., H,;, N,, CO, H,0, CO,, H,CO, and
CqH;,® show that the method yields accurate dipole
transition moments.
For several applications it would be convenient

to derive excited-state-excited-state transition
moments directly from the set of ground-state—
excited-state transition densities {p,,} obtained
from the solution of Eq. (7). Consider the matrix
element of the one-body operator between states
[x;) and |)\,>. From the properties of the opera-
tors O‘;\i and O’;j we can write

Q4112 =00y, 11080y )

We now exploit the formal properties of the excita-
tion operators to rewrite Eq. (9) as the expectation
value of commutators of the operators O,;, M,

and 0],

M In) =010y, M, 0%, 1]0)
+3(0][0y,, 03,17 0)
+3(0[7(0y,,01,110), (10)
where the double commutator is defined as
2[0y,, M, 03,1=[[0y,, M], 03,1 +[0y,, [M, O, 11.
(11)

The advantage in going from the expectation value
of the direct product of operators O,,, M, 0’;] of
Eq. (9) to the expectation value of the double com-
mutator of these operators, Eq. (11), is due to the
observation that the double commutator is a sim-
pler operator, i.e., of lower particle-hole rank,
than the straightforward product.® The expectation
value of the double commutator can then be expect-
ed to be less sensitive to the details of the ground-
state wave function.*

The right-hand side of Eq. (10) is now evaluated
in three different approximations. First in the
random-phase approximation (RPA) the second
and third terms of Eq. (10) vanish since [0,,, 0 ]
=8y, [xp)#|X;), and the expectation value of the
double commutator is evaluated over the Hartree-
Fock (HF) ground state. In the RPA we obtain

O‘i IMI xI>:" Z E [Y:v(kl)ymy (7\1) +Z:u()\£)Zmy ()*j)]

nv my
X[ T By = Ty Bl - (12)

In Eq. (12) m and » denote particle states and y
and v hole states. The amplitudes {Z,,} implicitly
account for electron correlation in the ground
state. The {Y,,} amplitudes are the dominant ef-
fect in Eq. (12) since they represent the main cor-
relation effects in the excited state. If we com-
pletely neglect electron correlation in the ground
state, i.e., set |0)=|HF) and {Z,,} =0, we obtain

MMy = D0 S MY ()

nv my

X [Tnmbuy - Tyycnm] . (13)

This corresponds to assuming that the excited
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state is composed of single excited states relative
to the HF ground state, i.e., single excitation con-
figuration interaction or the Tamm-Dancoff ap-
proximation (TDA). Equation (13) should normally
be a good approximation to the transition matrix
element.

The third approximation to (A;|M|X;) can be ob-

MM = 30 3 (Y RO)Y ) + Z5 ) Z )]

nv my

tained by solving Eq. (7) for the {¥,,} and {Z,} am-
plitudes in a higher-order scheme. This higher
random-phase approximation is discussed in Ref. 1
and is often needed in discussing excitations to
low-lying triplet electronic states where the RPA
may show instabilities. In this approximation
(HRPA) we have

X[Tyupnm +Tnmpvy - %61/7(2 Tml’ppn + Tnpppm> - '13‘5,,,,, E (Tv&péy +T76p6u)} ’ (14)
4 8

where p is the ground-state density matrix, y, J,
and v hole states, and m, n, and p particle states.
In the HRPA the second and third terms of Eq. (10)
do not exactly vanish but can be expected to be
small and are neglected in deriving Eq. (14). We
recall that these terms do vanish in the RPA since
[0y,,03,1=6x,1,- There are examples where it is
important to use Eq. (14) instead of Eq. (12) or
Eq. (13), e.g., in certain transitions in N,. These
results will be discussed in a separate paper.”

In Sec. III we discuss the applications of these
transition moments to the calculation of photoion-
ization cross sections of the 2'S and 23S metasta-
ble states of helium and of the two-photon decay
rate of the 2'S state of helium.

II. APPLICATIONS

A. Photoionization cross sections of metastable states

Photoionization of excited-state species plays
an important role in several physical systems.
For example, photoionization of rare-gas excimers
is an important reaction that may limit the laser
gain of these systems. In previous calculations of
photoionization cross sections of metastable
states,®® as well as for ground states, accurate
atomic or molecular continuum eigenfunctions are
needed to describe the final states of the systems.*
We have recently shown how one can completely
avoid the need for continuum eigenfunctions in the
calculation of atomic and molecular photoioniza-
tion cross sections.'*** These calculated photo-
ionization cross sections for He ! and H, ? in their
ground states agree well with other calculations
and experiment. The central idea is to obtain a
discrete representation of the frequency-dependent
polarizability, which, although not directly useful
at physical energies in the continuum, often pro-
vides an adequate representation of the polariza-
bility for complex values of the energy. Numer-
ical analytic continuation can then be used to re-
turn to the real energy axis where the physical

]

—
information is desired. This L? method for calcu-
lating photoionization cross sections was suggest-
ed by Broad and Reinhardt,'® who applied it to
atomic hydrogen. »

To apply this method to the calculation of photo-
ionization cross sections of excited states we start
from the frequency-dependent polarizability of the
excited state. For the state |1;) we have

f)qx; ® g>\i(€)d€
wz)\i)"_zz"‘_j;’ P s b (15)

le,(z)=
X=X

where z is complex and wy;x,, fa;x;s and gy,(€)
are the transition frequencies and the bound and
continuum oscillator strengths, respectively, and
€, is the first ionization threshold of the system.
In the neighborhood of z = w +in with -0

o (@)= 3 D

1 -
Y w)‘l)‘l w
® g le)de
+P o 5 +
g € -Ww

This gives the relation between the photoionization
cross sections of state |);), 0y, and the imaginary
part of its polarizability

. gk{(w)
T 2w "

(18)

Ox;(w)=1ni_1}é (4rw/c) Im[ay, (@ +in)]. )

a(z) of Eq. (15) is first approximated by a finite
sum over approximate oscillator strengths f”x{ A

and frequencies Dxyag0 i
a2)= > Eri%"x‘f? (18)
Xi# X iy

To continue a,,(z) analytically on to the real axis,
we construct a low-order rational-fraction repre-
sentation of a,(z) by fitting it to the approximate
@,,(2) of Eq. (18) at a number of points in the com-
plex plane.'* With this smooth representation of
a@y,(z) we can now calculate a,,(z), and hence
03,(2), at real energies where the original dis-
crete approximation, Eq. (18), is unphysical.

The finite set of oscillator strengths fy,,, and
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TABLE I. RPA transition moments and oscillator strengths for the 2'S—A!P and 23s—aA%P
transitions used to evaluate &, (z), Eq. (18).%

25—~ 21p 3lp 4'p 51p 6lp 7lp 8lp 9lp

| M| 3.021 0.9047 0.5945 0.6430 0.4793 0.1646 0.0296 0.0036
s 0.3917 0.1442 0.0815 0.1334 0.1428 0.0480 0.0060 0.0003
23—~ 23p 3% 43p 5% 6°%p 7% 8%p 9%p
M| 2.330 0.3884 0.2971 0.4208 0.4971 0.3310 0.0922 0.0098
f 0.6094 0.0407 0.0289 0.0723 0.1634 0.1806 0.0552 0.0025

fring=2wxyn, [M|? for S—P transitions.
In atomic units.

transition frequencies @)y, needed to obtain @, tion moment Dy, is evaluated in the three ap-
Eq. (18), is generated by solving the equations of proximations discussed above, i.e., Egs. (12)-
motion, Eq. (7), for the transition frequencies (14). In the calculation of the photoionization
wox- The resulting transition amplitudes Y, and cross sections of the 2 'S and 23S metastable states
Z,, give, through Egs. (12), (13), or (14), the ex- of helium we use a finite set of eight discrete os-
cited-state—excited-state transition moments cillator strengths, i.e., fy;,(2 138w n®3pP), n=2,
M>;»;» Which, along with @,;,,, define fyy,, 3,...9, in Eq. (18). Table I lists these oscillator
- 2~ - strengths in the RPA which are used in the calcu-
Y A T3y [x: DI (19) lation of the photoionization cross sections. We

D is the dipole moment operator and the transi- do not list the oscillator strengths in the other ap-

TABLE II. Transition moments and oscillator strengths

proximations for all eight transitions since all the

for the 21S—~A!P and 235—A °P transitions in different approximations can be expected to give similar
approximations. results where excited-state correlation effects

are not critical, e.g., in the 152s(2!S)~ 1s2p(2 1P)

215~ 2'p 3lp 4'p transition the main effect is included in the TDA.
TDA® M| 3.035 0.9255 0.6053 In Table II we do, however, show the first three
’ ’ ’ oscillator strengths and compare them with the
f 0.3824 0.1494 0.0839 .
. results of other calculations.
RPA M| 3.021 0.9047 0.5945 Figures 1 and 2 show the calculated photoioniza-
f 0.3917 0.1442 0.0815 tion cross sections for the 2 'S and 23S metastable
HRPA? |M| 3.012 0.9285 0.5985 states of helium. These cross sections are for the
f 0.3766 0.1526 0.0831 continuous background photoionization below the
Weiss? |M| 2.916 0.9020 0.4699 n =2 threshold. The fitting points for determining
f 0.3764 0.1478 0.0508 the rational-fraction representation of &;‘,(z) were
Schiff® (M| . 2.916 0.9129
f 0.3764 0.1514 PHOTOIONIZATION CROSS SECTION HE 25 SINGLET
10.0
235— 2% 3% 4%
TDA (M| 2.364 0.4283 0.3194
f 0.5857 0.0480 0.0325
RPA M| 2.330 0.3884 0.2971 ]
f 0.6094 0.0407 0.0289 g
[ou
HRPA |M| 2.341 0.4319 0.3168 g
f 0.5819 0.0497 0.0326
Weiss || 2.531 0.5230 0.2896
f 0.5391 0.0641 0.0240
Schiff M| 2.5314 0.5247 0.0
f 0.5391 0.0645 4.0 8.0 1200 16.0 20,0 20 2810 32.0
ENERGY (eV)
2See text. FIG. 1. Photoionization cross sections of the 21S state
LYNR 4 Weiss, J. Res. Natl. Bur. Stand. (U. 8.) A 71, of helium in Mb. The curve shows the present cross
163 (1967). sections obtained by numerical analytic continuation.
°B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 The triangles and octagons are the calculated results
(1964). of Norcross (Ref. 8) and Jacobs (Ref. 9), respectively.
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chosen with a real part between each pair of wj; A
values of Table I, and the imaginary parts were
varied over a region of the complex plane. For
the different choices of the fitting points the cal-
culated cross sections agree within (2—-8)% of one
another. In Figs. 1 and 2 we also plot the cross
sections obtained by Norcross® and Jacobs,® who
used Hartree-Fock and correlated initial-state
wave functions, respectively, and close-coupling
final-state wave functions. The agreement between
these results and the present calculation is good.
Within the experimental uncertainty of ¥14%, the
various calculations agree well with the measured
values.’® The accuracy of our calculated cross
sections could be improved by using a discrete set
of fy;»,’s and wy,y,’s specifically designed to give
photoionization cross sections of these metastable
states. The f values used in this calculation were
obtained from a calculation originally designed to
give ground-excited-state energies and transition
moments.

Finally, it should be emphasized that since this
method completely avoids the use of continuum
eigenfunctions, the techniques used here can be
easily extended to molecules.” Some immediate
applications would be the study of photoionization
of excited states of rare-gas dimers and other
molecular-gas lasers. For example, photoioniza-
tion of the A'Z; state is critical in determining the
possible gain of the proposed He, ultraviolet laser.
These calculations can also provide estimates of
the stimulated emission cross section, another
important parameter in these laser systems.

B. Two-photon decay of the 2 'S metastable state

As a second application, and more in the purpose
of a check on the discrete oscillator strength dis-
tribution of Table I, we now calculate the probabil-
ity of two-photon decay of helium in the 2 'S level,
i.e.,

He(21S)~ He(11S) +7iw, +Hiw, . (20)

Accurate estimates, including those of a coupled
Hartree-Fock calculation!” and variational proce-
dures,!® have been obtained for this decay rate,
and hence this application can serve as a useful
calibration of our discrete f distribution.

Since the theory of two-quantum processes has
been discussed elsewhere,' *® our discussion of
the basic equations will be brief. The probability
of two-photon transitions can be formally ex-
pressed as an infinite summation over interme-
diate states. If Zw,, is the energy of the two-pho-
ton He(2 'S) - He(11S) transition of Eq. (20), the
probability A(y)dy that a photon will be emitted
in the frequency range w,,dy is given by

A(y) =5.299x 10%wg,v*(1 - v)® | M(v) |, (21)

where y =w,/wy, and M(y) is the two-photon tran-
sition matrix element

M(y)="(2'S|D; |\ Py (A 'P| D, [1%S)
X

Wor Wor

X <°~’o)\ +Y Wor +("’o)\ +(1 —y)wof) » (22)
where D, is the z component of the dipole moment
operator. The summation in Eq. (22) requires the
transition moments between the ground and inter-
mediate states, (\'P|D|1'S), and between the
metastable and intermediate states (21S|D|x1P).
The ground—excited-state transition moments are
directly available from the solution of Eq. (7) in
any approximation, e.g., the RPA or time-depen-
dent Hartree-Fock approximation, and the excited-
state—metastable-state transition moments can be
derived in any of the approximations discussed in
Egs. (12), (13), or (14). Direct substitution of
these moments and the corresponding energy dif-
ferences yield estimates of the probability distri-
bution A(y). The Einstein A coefficient for two-
photon emission is just the integral

A=%flA(y)dy. (23)

In Table III we list the values of A(y) obtained
using the RPA transition moments and frequencies
throughout Eq. (22). It is important to note that
for excited-state—excited-state transition mo-
ments we define the RPA as our approximation
of Eq. (12) to the exact expression, Eq. (10). The
agreement with the coupled Hartree-Fock calcula-
tions!” and variational calculations®® is good, but
the results are generally about 10% too high. This

PHOTOIONIZATION CROSS SECTION HE 2S TRIPLET

MEGABARNS

1.0 a0

a0

a0
40
420 o i

0.0 T T T
4.7 8.7 12.7 16.7

T T T T T
0.7 4.7 28.7 32.7 36.7 40.7

ENERGY (oV )

FIG. 2. Photoionization cross sections of the 23S state
of helium in Mb. The curve shows the present cross
sections obtained by numerical analytic continuation.
The triangles and octagons are the calculated results
of Norcross (Ref. 8) and Jacobs (Ref. 9), respectively.
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TABLE III. Relative probabilities for two~-photon
emission of the 21S level of helium.

y? A(y)P A(y)© A(y)d
0.00 0.0 0.0 0.0
0.05 28.1 24 .7 25.2
0.10 65.5 58.2 59.9
0.15 94 83.8 86.4
0.20 115 103 106
0.25 130 . 116 120
0.30 141 126 130
0.35 149 133 137
0.40 154 138 142
0.45 157 141 145
0.50 158 141 145

2y =w;/wgs, Where wy is the frequency of one of the
two photons.

b Using the definition of the RPA for excited-state—ex-
cited-state transition moments of Eq. (12). A(y) is in
units of sec™!,

CEquations (21) and (22) of text with the initial—final-
state experimental energy differences.

dReference 18.

is partly due to the strong w,, frequency depen-
dence of A(y) rather than the sum over interme-
diate states in M(y). For example, if we use the
experimental wy, in Eq. (21), the calculated A(y)
falls within (2-3)% of the accurate results of Ref.
18. These results are also listed in Table III. The
Einstein A coefficient -derived from our A(y) of the
second column of Table I is 55.6 sec™* compared
with 51.3 sec™! of Ref. 18. With the A(y) derived
from the experimental wy, i.e., the third column
of Table III, we obtain an A coefficient of 49.7
sec™l

IV. CONCLUSIONS

We have derived an approximation for transition
moments between excited states consistent with
the approximations and assumptions normally used
to obtain transition moments between the ground
and excited states in the random-phase approx-
imation. The basic procedure is to exploit the for-

mal properties of the excitation operators O’;‘ de-
fined on the ground state, i.e., O{‘ |0), to rewrite
the transition moment (x;|M|X,;) as an expectation
value of double commutators, Eq. (10), over the
ground-state wave function. The resulting expres-
sion can then be written in terms of the ground-
excited transition amplitudes. Equation (12) can
be viewed as an RPA definition of transition mo-
ments between excited states.® Although for some
applications the lower-order TDA or single-exci-
tation CI may suffice, there are cases where a
higher-order solution is necessary to calculate
excited-state—excited-state transition moments.”

The results for the photoionization cross sec-
tions of the 2 1S and 23S metastable states of heli-
um demonstrate some of the useful applications of
these discrete oscillator strength distributions for
excited-state—excited-state transitions. Most im-
portantly, these results indicate that it is also not
necessary to employ continuum basis functions in
the calculation of photoionization cross sections of
metastable states. This can be very significant
for molecular photoionization, where it is very
difficult to obtain adequate continuum eigenfunc-
tions. Some immediate applications could be to
the photoionization of rare-gas excimers involved
in proposed gas lasers, e.g., the He, UV laser.
From the calculated two-photon emission cross
sections of the 2 'S state helium, the procedure
could also be an easy and direct approach to two-
photon emission cross sections in molecular sys-
tems.
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