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L discretizations of the continuum: Radial kinetic energy and Coulomb Hamiltonian
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The relationship between the matrix eigenvalues of the L' discretization of an operator with a
continuous spectrum and Gaussian quadrature is discussed for the radial kinetic energy and for the
attractive and repulsive Coulomb Hamiltonians. It is shown that discretization of the radial kinetic
energy in a Laguerre- (Slater-) type basis gives a Gegenbauer quadrature, while discretization in an
oscillator- (Gaussian-) type basis generates a Laguerre quadrature. Laguerre discretization of the
Coulomb problem gives a Pollaczek quadrature in the repulsive case, and a new modified Pollaczek
quadrature in the attractive case. The utility of these results is shown in applications to potential
scattering and photoionization. Two numerical techniques for obtaining "equivalent quadrature" weights
are discussed: a matrix method due to Gordon, and a very simple interpolatory method due to Heller.

I. INTRODUCTION

A matrix element of the form (f ~ ( H') '~ f)-, H'
being the radial kinetic energy, will be analytic
except for a branch cut, corresponding to the con-
tinuous spectrum of H, provided that the function

f is sufficiently well behaved. We have previously
shown" for the s-wave radial kinetic energy that
construction of a matrix representation, H', of
H' in a finite set of square-integrable (L') func-
tions of the form re ~"~'L'„(Ar) gives a representa-
tion(f)(z H') '~ f) w-hich can be interpreted as a
Gauss-Chebyschev quadrature representation of
the actual matrix element. That is, the matrix
eigenvalues of H' can be interpreted as Chebyschev
quadrature abscissas, and the difference in nor-
malization between the L' eigenfunctions of H and
the continuum-normalized eigenfunctions of H'
itself can be shown to be related to the correspond-
ing Chebyschev quadrature weights. This realiza-
tion allows the approximate matrix element,
(fl(z —H') 'I f), which has discrete poles and resi-
dues, to be embedded" into an approximation
which retains the cut structure of the actual ma-
trix element. Thus, for example, (z H') ' may-
be used in the z E+ ic limit as part of the kernel
of the s-wave Lippmann-Schwinger equation, al-
lowing straightforward extraction of scattering in-
formation from calculations performed in an L'
basis. ' We refer to the quadrature generated by
this L discretization of H' as the "equivalent quad-
rature" generated by the basis.

It is the purpose of this paper to generalize this
result to the interpretation of (z H') ' in the fol--
lowing cases:

1 d' l(l +1)
=H) =-2

d

where the basis used to define H', is taken to be
either a Laguerre-type (Slater) or oscillator-type
(Gaussian) basis. In the second case

1 d' l(l +1) iZi

and the basis is the Laguerre-type basis. That is,
we generalize the techniques of Refs. 1 and 2 to
higher partial waves and to the treatment of Cou-
lomb interactions.

The plan of the paper is as follows. The idea of
an equivalent quadrature is briefly reviewed in
Sec. II, followed by discussion of the L2 discretiza-
tion of the radial kinetic energy in a Laguerre
basis (Sec. III) and in an oscillator basis (Appen-
dix A), where it is shown that the discretizations
give rise to Gegenbauer and Laguerre quadratures,
respectively. Applications to partial-wave poten-
tial scattering are given in Sec. IIID. The
Laguerre discretization of the Coulomb problem
is treated in Sec. IV and shown to give rise to a
Pollaczek quadrature (Appendix 8) in the repul-
sive case, and a modified Pollaczek quadrature in
the attractive case. Numerical results for Cou-
lomb scattering and photoionization are given in
Secs. IVB, IVD, and 1VE. Section V contains dis-
cussions of two convenient numerical methods for
construction of equivalent quadrature weights.

II. IDEA OF AN EQUIVALENT QUADRATURE

As disucssed in Ref. 1, for the case Ho= —2 d' j
dr' matrix elements of the form (f( (z -Ho) '( f)
can be well approximated by the discrete repre-
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sentation (fl(z -Ho) 'I f), H' being the matrix
representation of H' in a finite L' basis set, pro-
vided that the function f is sufficiently well be-
haved. This is because (fl(z —H') 'I f) can be in-
terpreted as a quadrature approximation to
(fl(z -H') 'I f&, the particular quadrature depend-
ing on the choice of L' basis.

More specifically, we compare the spectral
resolution

easily derived from explicit expansions of gzo&
and ICzo& in the same I.':basis. In Secs. III and

1V we construct such expansions for the radial
kinetic energy and Coulomb problems, and analyze
the quadratures generated by discretization of
these operators.

III. RAMAL KINETIC ENERGY: LAGUERRE BASIS

The radial kinetic energy

1 O' I(l +1)
H = ———+--——

2 A' 2j' (3.1)

H'Ie, .&
=z', l@,.&, (2.2)

can be analytically diagonalized in the (nonortho-
gonal) basis of Jo Laguerre-type functioned''

(+) (+I yQ (yo )1+le x.t/2I2'3+1(y+)

(+zogzo& = 5„,j (2 3) n=0, 1, 2, . . . , X —1

(3.2)
with the analogous expression

(fl(H) lf&
fl z&&zlf &dz(24)

g

where

H'Ie, o& =z'Ie, .&

(e,le„& =6(z -z'). (2.6)

Provided that f is well approximated in the finite
subspace which defines H', we interpret Eq. (2.1)
as a quadrature representation of Eq. (2.4) with
abscissas E& and "equivalent quadrature" weights

Q that is,

I &fi+so&l' ~ cu,
"o l(fl +zo& I'

z-E, ; z-E;
1=& f=1:

Knowledge of the equivalent quadrature weights
thus gives the difference in normalization between
the 5-function-normalized eigenfunction of Ho and
the unit-normalized eigenfunctions of H'; from
Eq. (2.7)

I (fI+zo&l'

I (fl@zo&I'
(2 6)

which is an identity if f is exactly represented in
the finite subspace. As discussed in Refs. 1-3,
knowledge of the equivalent quadrature weights al-
lows embedding of the approximation (fI (z -Ho) 'If)
into an interpolative approximation which retains
the analytic structure of the actual matrix element
(fl(z -H') 'I f). This allows taking the z-Z+ic
limit, providing a useful technique for the solution
of scattering problems.

The equivalent quadrature weights are most

A. Finite Lagucrrc basis

The eigenvalues and eigenvectors of H', the ma-
trix representation of the radial kinetic energy in
the subspace spanned by the N functions (P„(r))"„:o',
are determined by solution of the matrix problem

H', l@,o& =Z', I%,;&, (3.3)

I~, &
= p ~.(zl)lp. &. (3.4)

The expansion coefficients a„and eigenvalues E';
are determined by the requirement that

(y„l(H', -z',.)Ie )=0, m=0, 1, . . . , & —1

(3.5)

which reduces to the conditions~

2x(l +I)bo -5, =0, (3.6a)

2x(m+ I + l)b„—(m+2l + l)b, —(m+ 1)b „=0,
(3.6b)

2x(N+ l)b„, —(N+2l)b„, =0

on the coefficients

(3.6c)

both in the case where N is finite and when N =.
In the finite case EI' will have discrete eigenvalues
and L eigenfunctions; in the infinite case H will
have a continuous spectrum and 5-function-nor-
malized eigenfunctions. Comparison of the nor-
malization in these two cases will yield the equi-
valent quadrature weights for the finite-dimension-
al case. The parallel analysis of the discretiza-
tion of the radial kinetic energy in an oscillator
basis is outlined in Appendix A.
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I (n+2l +2)—a„E, (3.7)
X' 1+x,.
8 1-xi

(3.9)

where x is the kinematical factor

E —!&.'/8
x x(E) (3.8)

where x; is the ith zero of the Nth-order ultra-
spherical polynomials. The corresponding eigen-
functions

(3.10)
Equations (3.6a) and (3.6b) are the recursion re-
lations satisfied by the Gegenbauer' (ultraspheri-
cal) polynomials C"'(x). The condition (3.6c) is
also satisfied by these polynomials provided that
C„'"(x)=0. This latter condition is in effect the
boundary condition that determines the discrete
spectrum of H', in the finite-dimensional space.
The eigenvalues are thus given by

n=p

form an orthonormal set provided that

I'(N + 2l + 1)
A2, =!&(1+x";)

(@,)(~ 2l 1)[C„"',(x";)] '. (3.11)

As may be shown by application of the Christof-
fel-Darboux relation appropriate to the ultraspher-
ical polynomials'

a r~~
(x y') ~ '(™lI Cr+1( )Cl+1(y) &

' Cl+1(g)Cl+1 (y) Cl+1(~)Cl+1(y)2 I(k+2! +2)» 2 I(I2+2!+2)» +1 1'+1
k=p

(3.12)

B. Infinite Laguerre basis C. Laguerre equivalent quadrature

In the space spanned by the complete discrete set
$P„(r)}„"o the expansion coefficients b„(E) satisfy
Eqs. (3.6a) and (3.6b) for m =0, 1, 2. . . , and the
boundary condition of Eq. (3.6c) does not come
into play. II thus has a continuous spectrum in
the basis and

OO n .r
@s& =Bl(E) g 2l 2

C +
(x)I Q & ' (3' 3)

n=o

The continuum normalization factor B(E) is deter-
mined by the requirement that

(f I +so& ( @sol f&
&fl(&-If') '!f&=Q --, Eo

i =1
(3.20)

and

&f1 &~ -2', ) 'if) = I dn, &3 2))z-E

Knowledge of the normalization coefficients A,
and B(E) now allows elucidation of the relationship
between (f((z -If2) '~ f& and the discretized approx-
imation (f~(z -ETol) '( f&.

From Sec. II

Z/2

(r~ 4'z& =(r~ )ts& —= — (kr)j, (kr),

where

(!t I y. &=6(E-E'), E=-.k'

in the sense that the moments

&~ ~ @s&=&l' I Xs&,

(3.14)

(3.15)

(3.16)

respectively. The fact that tht,' discrete approxi-
mation has poles at Ei's which are related to the
zeros of the Gegenbauer (ultraspherical) polyno-
mials suggests that Eq. (3.20) represents a Gegen-
bauer quadrature approximation to Eq. (3.21), pro-
vided that

N-1

m! (r[ y. &

I'(m+2l +2) r
Equation (3.16) now becomes

m! mr
I (m+2l+2) ( I'(m+2l+2)& r

(3.17)

where f y„}„"o is the set of functions biorthogonal'
to the nonorthogonal [P„}„"o. In the present case,
the y are explicitly given as

If& =Q C.l~.&

tt =P

(i.e., if
~ f) can be exactly expressed in the N-di-

mensional subspace biorthogonal to [Q„}„",').
To show this, we transform the integration inter-
val [0,~] to [—1, + 1] via the transformation
x= (E —2 A2)/(E+ —,

'
&&2), appropriate to the analysis

of Sec. IIIA, and simultaneously approximate the
integral by a quadrature with abscissas at x"; and
unknown quadrature weights (d~'~:

(3.18)

which, on performing the integral (~ ( )ts&, gives f dn&fl && If&
z-E (3.21)

1/2

(E) 2l(l l)(1 x)(21+1&/2 (3.19)
"d„dE l&fl+s&I'

dx z -E(x) (3.22)
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(3.23)

where

Z(x) =-', z'(I +x)/(I —x) . (3.24)

The equivalent quadrature weights implicit in the
approximation of Eq. (3.20} may now be determined
by equating the residues at the poles of Eqs. (3.20)
and (3.23), giving

consider s-, P-, and d-wave scattering from the
attractive exponential potential V = —V,e &" with

Vo = 5 and y = 1 .0. Typical results are given in
Table I. Details of the construction of the Fred-
holm determinant and the appropriate dispersion
correction are analogous to those of Ref. 2. The
more general dispersion-correction integral
needed for higher partial waves is given by

+1 (I 2)+1/2

. , P. (x,}-E(x)

—
I &(&(x))l'

dx
(3.25) 4&m I'[I +(3/2)j

1(1+2)

Using Eqs. (3.11) and (3.18) and solving Eq. (3.25)
for ~';.~ we find

x,F,[-21—2, 1; -I —2; ~(l —xo}j .

which is a polynomial of degree 2l +2.

(3.30)

(uP = (o"; /p(x;),

where

w I'(X+2l+I} C'+i( )
d C'+i(2"(li)' N i N-j +

g N

and

(3.26)

(3.21)

IV. RADIAL COULOMB HAMILTONIAN:

&,AGUERRE BASIS

A. Laguerre discretization of repulsive Coulomb Hamiltoman

The spectrum of the radial-partial-wave Coulomb
Hamiltonian

2) i+ 1/2 (3.28) '(I I) -I d I(I+I)
2 dz' 2y' (4 1)

p, (x) is the weight function which generates the
Gegenbauer polynomials of index l and the && are
indeed the appropriate weights for performing the
quadrature

p, (x)P(x) dx = Q &u";P(x";),
&-1

(3.29)

D. Application of Laguerre discretization technique
to elastic scattering

which is exact if P(x) is a polynomial of degree
2X —1 or less.

We conclude by noting that we have shown that
for suitably restricted I.' functions ) f) the La-
guerre discretization of the radial kinetic energy
produces a Gauss-Gegenbauer (Gauss-ultraspher-
ical) quadrature approximation to matrix elements
of the corresponding Green's function. If ( f) is a
more general L2 function, the discretization pro-
duces an approximation to such a quadrature.

is easily analyzed in the I aguerre basis of Eq.
(3.2} as the additional term Z/r is diagonal in the
basis, and thus the analysis is, in some ways,
similar to that of the radial kinetic energy in the

aguerre basis.
In the finite basis fp„j„",' the coefficients b„(E';)

0 (a.u. ) N =10 X =2p X =30 & =-40 Exact

l =0

0.25
0.50
0.75
1.00

1.759
0.8957
0.3290
2.722

1.745
0.8939
0.3264
3.044

l.744
0.8919
P.3242
3.041

1.743
0.8898
0.3206
3.037

l.743
0.8903
0.3218
3.038

TABLE I. 8-, P -, and d-wave phase shifts (mod. z)
for scattering from the potential V =-5e " which has
two bound states l = 0, one bound state for l =1, and no
bound states for higher l . Calculations were performed
via the techniques of Ref, 2 with the equivalent quadra-
ture weights of Sec. III C. Results are shown for 10, 20,
30, and 40 Laguerre-type basis functions, for the scale
parameters A. =2.0.

As discussed in Ref. 2, elastic-scattering phase
shifts may be computed from the L' discretized
Green's function (z -Ht) ' via construction of the
partial-wave Fredholm determinant, provided
that the equivalent quadrature weights are known.
The analysis of Sec. IIIC gives the required
weights explicitly for all l. As an application we

l=2

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.0067
3.007
2.735
2.486

0.0028
2.995
2.727
2.466

0.0320 0.0304
0.5462 0.5414
1.304 1.296
1.502 1.491

0.0022
2.994
2.725
2.463

0.0019
2.993
2.724
2.462

0.0014
2.992
2.723
2.460

0.0298 0,0296 0.0291
0.5400 0.5395 0.5385
1,294 1.293 1.292
1.488 1.487 1.485
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in the expansion

I@so(IZI)& =g F „,2'l, 2 b.(E~)l 4.&

B=O

are determined by the relations

2[(l +1+2Z/~)x —2Z/X]b, —b, =O,

2[(m+ l +I+2Z/X)x —2Z/A]b„—(m+2l +1)b„, , —(m+1)b =0, 2= m ~IV' —2

2[yr+ I+2Z/~)x —2Z/~]b„, —(Al+2l)b„, =O,

(4.2)

(4.3a)

(4.3b)

(4.3c)

E -Z'/6
E+ A.'/8 '

interval [—1, + 1] with weight function

p(x) = (2""/v)e'0 '~(1 -x')"' 'I I (l +1+ iy)l'.

(4.6)
The first two relations are the recursion rela-

tions satisfied by the Pollaczek8'9 polynomial (the
Pollaczek polynomials are defined in Appendix 8),

The last equation of (4.3) tells us that

P"'(x;
I Zl) =0. (4 'I)

P„" (., I zl) ="""-'-'"e'"
n! I'(2l +2)
x,E,( —n, l+1 —iy;2l+2;1-e ""),

(4 4)

y= ——x =cos8.

It is ~n~eresting to note that

P'"(x O) -C'"(x)

The Pollaczek polynomials are orthogonal on the

Therefore the discrete spectrum of H in the finite
space is given by

1+x";
6 I -x,".

(4 6)

where x"; is the ith zero of P„(x, IZI). For the re-
pulsive case the zeros of P„{x,I Zl) lie in the in-
terval [-1,+1], corresponding to the fact that we
would expect that the discrete eigenvalues of
If ', {IZ', ) would lie in the interval (0, ~) in the case
of a finite discretization.

The Christoffel-Darboux relation satisfied by
the Pollaczek polynomia, l f.s

(~-y)~ ' —~- 2l
—

2
—P'"(x, l I)P"{,I I)=2 — 2l—' — [ "'(x,

-P];i(x, I ZI )Pt"(y, I ZI )]

Using this relation, one can easily show that the orthonormal eigenfunctions are given by

N -j. n!
( I I Il

(4.9)

(4.10)

where A. ; has the value

1 (N+21+2) „, „d—P"' (x"
I ZI —P '"(x

I Zl )I -x". V~yr+21+I)
(4.11)

In the infinite basis (g„]„",the spectrum is con-
tinuous and

The continuum normalization factor B(E) is now
determined as in Sec. III by the requirement

l~.) =~, (E) g F „—„-„,—P.'"'(,
I Zl)l y. ) . E,(E) -) P."'(x,

I ZI) =&y.l )ts&, (4.»)

(4.12) where"
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( I ) (2k )
+ '1 Rg y2 'i'I; II'(l+1 —i )I

mk, I'(2 l + 2)
p (x)i)(x) dx= Q (d;P(x", ),"-1 i=a

(4.20)

x)F&(l + 1 —iy; 2l + 2; -2ikr} (4.14)

is the Coulomb wave function and the (y ) are the
functions biorthogonal to the ((I)„j,

m! (rl y4-) -r(m+2l+2) (4.15)

On performing the integral occurring in Eq. (4.13),
we have

2 i/
a, (E) = — 2'I 1.(!+1—iy)I(1 -a)«"l !e! —.l'»,

mk

(4.16)

which reduces to the result of Eq. (3.18) in the
case that Z=O.

The quadrature implicit in the finite discretiza-
tion of Eq. (4.2) is now determined by repetition
of the arguments of Sec. IIIC: Using Eqs. (4.11)
and (4.16) we find

B. Application to elastic Coulomb scattering

in repulsive case

For the case of a repulsive Coulomb potential
plus a "short-range" potential of arbitrary or in-
definite sign, the phase shift 6')(E), relative to
the pure Coulomb phase argI'(l +1 —iI ZI/k), may
be determined from the relationship

D')(E+ie}=I D', (E+ le)I e ' )t (4.21}

where D' (z)) is the Coulomb Fredholm determinant

which is exact if i)(x) is a polynomial of degree
2N —1 or less.

We conclude this subsection by noting that we
have shown that discretization of the repulsive
Coulomb Hamiltonian in a finite Laguerre basis
generates a Gauss-Pollaczek quadrature represen-
tation of the actual operator.

~i ~& /p (x)) 1 (4.17)
l(I I ) —

)z —H', (I ZI)
(4.22)

where

2r(N+ 2l +1)
~r

-1
x PN+, x;, Z —P„'+'x, Z

dx x=x~
(4.18)

V being the short-range potential. If H', (I ZI ) and
H', (I Zl)+ V are discretized in a finite Laguerre
basis, the phase 5)(E) may be determined by the
techniques of Refs. 1 and 2. Results for Coulomb
scattering from the short-range separable poten-
tial

and

22 1+1

p (x) = e&' '&~(1 —x')&'+')'&I I(l +I+ iy)I',
7r

v = -4))(2o.)Iu) (uI,
where

u(r} =e "/r,

(4.23a)

(4.23b)
(4.19)

with x = cos8 and y = —
I ZI/k. p (x) is the Pollaczek

weight function and &"; are the Pollaczek weights
for the quadruature,

are given in Table II for several expansion sizes
and energies. In this case the dispersion correc-
tion integral which arises in the analysis of Table
II is

C) e(xQ) =P p (x}
E(x, ) E(x)-

4(1 —x0) 1
I +I+ (2I ZI /~}

fg 0
+2(1 —e )Re( — . F ( —1 (y, 1; 1+2+. (y;e 'e

)+ + g' pp

(4.24)

where

Izl IzI 1 —x, 'l'
k A. 1+x

p (x) is the Pollaczek weight function (Appendix B),
and again E(x}= —('))P(1+x)/(1 —x). We note that the
particular Gauss-hyper geometric function appear-
ing in Eq. (4.24) is easily evaluated using the con-
tinued-fraction representation discussed by Wall. " (4.25)

C. Laguerre discretization of attractive Coulomb
Hamiltonian

In the case of the attractive Coulomb Hamilton-
ian, H'( IZI), the recursio-n relations of Eqs.
(4.3a) and (4.3b) determine the discrete eigenval-
ues of IIQ( IZI) in a finite L-aguerre subspace.
The formal solution of the recursion scheme is
given by the polynomials

P)I"(x, -I ZI)
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TABLE lI. Coulomb phase shift [relative to argI'(3+1 —~'Y)l for scattering from a Z= 1 re-
pulsive Coulomb potential plus the short-range potential of Eq. (4.23) for l =0, with n =20.
Results are given for several different expansion sizes and for two different values of the
scale parameter A,.

k (a.u. )

N=8
A, = 2.0

N =10
A, =2.0

N =14
A. = 2.0

N =14
A, = 3.2

/

Exact

0.25
0.50
1.00
1.50

3.1407
3.0534
2.6563
1.9845

3.134 83
2.662 28
1.980 39

3.135 719
2.662 208 03
1.980 469 5

3.135 719
2.662 208 98
1.980 470 09

3.135 730 92
2.662 208 46
1.980 470 88

and the discrete eigenvalues given by the zeros
defined by

P„'+'(x;, -!Z!) =0, i =0, 1, 2. . . , N —1 (4.26)

and the eigenvalues are thus Eo =-)') )P(1+x";)/(I -x";)
The P„'"'(x, —!Z!) are not the Pollaczek polynomi-
als of Sec. IVA and Appendix B, in that the x; cor-
responding to the bound states of II'(-!Z! ) lie out-
side the interval [-1,+1] and thus are not the
zeros of the polynomials generated by a positive
weight function on the interval (-1, +1)." We re-
fer to these more general polynomials, defined by
the recursion of Egs. (4.3a) and (4.3b), for Z(0
as the "attractive Coulomb-Pollaczek" (ACP)
polynomials.

As long as

(n+ l + 1) —2! Zi /A. & 0, n = 0, 1, 2. . .

the ACP polynomials can be generated from a pos-
itive weight function, defined in this case on the
interval [-$,+ 1], with

p(x) dx, xe[-1,+1]

do. (x) =p (x) dx = )

p 5 x-g~
(4.27a)

xZ [-1,+1]

(4.27b)

p(x) being a positive weight function, continuous
on [-1,+ 1], p; being positive real numbers,

~( ~ ~ ~ g ~ ~ ~p- N~

then A.; & X;, where A.; is the ith lowest eigenvalues
of M itself (i.e. , a, ( X, ( ~ ~ ~ X, ~ ~ ~ ).

Theorem S combined with theorem HU implies
that the weight function which generates the poly-
nomials whose zeros approximate the eigenvalues
of Hermitian operator will reflect the spectrum of
that operator in that o.(x) will only increase at
those (real) values of x which are in the spectrum
of the operator. In the present case this implies
that the positive weight function p (x) which
generates the ACP polynomials will be of the form

1
1-2!z!/z '

, Z„'-~'/8
n=1, 2). . .E„+A. /

(4.28a)

We quote two theorems which will partially charac-
terize the weight function.

Theorem S [Szego"]: Let dn(x) be a distribution
on the finite segment [a, b] and let (p„(x)] denote
the associated orthonormal set of polynomials.
Let [a', b'] be a subinterval of [a, b] such that
J". do. (x)&0. Then if n is sufficiently large, every
polynomial p„(x) has at least one zero in [a', b'].

Theorem HU (Hylleraas-Undheim)'4: If the
eigenvalues A, ; of an N-dimensional matrix repre-
sentation I of an Hermitian operator I are ord-
ered

and

E„' = ——.'!Z! '(I/n2), (4.28b)

ACP

ufo= ~
' —,x;e[-1,+1]p'(x;, -Izl) '

where

(4.29)

E„being the Coulomb bound states.
For the analysis of the discretization of the con-

tinuous spectrum of II, ( !Z!) only va-lues of p (x)
on [-1,+1] are needed, and we have, following the
analysis of Sec. IVA,

r«" =—, ( '(««;, -I&l)q &'"(« —)&I) (4.30)

and

p (x, -!Z! ) ——2"+'e('8 ') —(1 —x')' "'!P(l + 1+ i y)!
'1 !Z!

jj
(4.31)
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p (x, -I ZI) is the continuation of p~(x), the Pollac-
zek weight function, from positive to negative Z.
The results of Eqs. {4.24) and (4.30) follow from
the Christoffel-Darboux formulas for the
I'„'"(x, -I ZI ), which follow directly from the re-
cursion scheme, Eq. (4.3). We conclude that
p&Aci' =p (x, -IZI), xu[-1, +1]. The p of Eq.
(4.27b) are not determined by this informal analy-
sis, but are not needed for extraction of scattering
information from I.' discretization of the attractive
Coulomb problem.

D. Photoeffect in hydrogen

The cross section 0» for the photoionization of
the hydrogen atom is proportional to the quantity
I(P~(y)ID(r)I C, (r, k))I', where D(r) is the dipole
operator and C, (r, k) is the appropriate p-wave
Coulomb wave function normalized to a 5 function
of the energy scale. We have

l(4~(o )ID(o')IC, (~, k;)&I'~';o-
x =xo

= l(@s(o')ID(&)l+~o(-I ZI)&l', (4.32)

E, Application to elastic Coulomb scattering

in attractive case

For the case of an attractive Coulomb potential
plus a short-range potential V(x), the phase 5c(E),
relative to argl'(l +1 —iy), may be determined
from the partial-wave Fredholm determinant

D, (z) = det[ [z -H', (-I ZI) —V(x)]/[z H', (-IZI -)]}
(4.33)

~~a
D, (E+ ie) =ID, (E+ i@)I e '~i ill . (4.34)

As H~&(-I Zl) has bound states, the dispersion re-
lation for the determinant is of the form

Dci(z) =1+Q —' s +
z -Z~

""A.(E) dE
(4.35)

D'"'"' (z) = det([~ —[H'(-
I Z

I ) + V]) /Ez —[H', (- I Z I )]])

where the a, are the residues at the (simple)
bound-state poles at E; . An approximate determi-
nant, arising from the I' discretization of
H', ( IZI) andH-', (-IZI)+V, will have the form

4 ~ (-I ZI ) being the unit normalized discrete eigen-
function of Ho(-IZI), the discretized attractive
Coulomb Hamiltonian. Knowledge of %s (-I ZI) and
the equivalent quadrature weights thus allows com-
putation of 0» from calculations performed entire-
ly in an L basis, complementing the analytic con-
tinuation results of Broad and Reinhardt. " Cross
sections determined using Eq. (4.32) at the E' s,
followed by rational interpolation, give the results
of Table III. These results confirm that, over
that part of coordinate space spanned by the func-
tion D(r)I P, (x)&, the essential difference between

I C, (r, k;)) and gzo(-I ZI )) is a normalization factor,
which is indeed given by the equivalent quadrature
weight of Eq. (4.29).

goi& + ~ ~ @DC ~ {4.36)

The y; are the residues at the approximate bound-
state energies E'; s (Eo s &0) and the sum

gives a quadrature approximation to the integral
appearing in Eq. (4.35) (Eo )0). To obtain scat-
tering information from the discretized approxima-
tion of Eq. (4.36), we take the E+ ie limit using
the equivalent quadrature of Eq. (4.29) with appro-
priate dispersion correction terms to obtain

TABLE III. Photoionization cross sections for ground-state atomic hydrogen as computed
by diagonalization of the Z = 1 attractive Coulomb Hamiltonian discretized in a Laguerre basis
with A, =1.5. H, esults with N =8, 9, 10, and 15 are compared with the exact result.

Photon energy
(a.u.) N =10 Exact

Q.51
0.55
0.60
0.65
0.70

0.209 64
0.174 73
0.13863
0.11098
0.090 09

0.213 62
0.174 34
0.137 82
Q.11Q 83
0.090 41

0.213 598
0.174388
0.137 834
0.110807
0.090 390

Q.213 540 06
0.174 392 14
0.137 830 51
0.11Q 80499
0.090 392 075

0.213 540 01
0.174 392 16
0.137 830 50
0.11Q 804 90
0.090 392 081
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y,. (d j~oA'"'"'(E,").(dE/dx)„„o
Eo, @O,ci 0 j

A(Z)(d,Zidx) ,„+ f(„)g„~my(~ )

)f (x,) . , Eo E(-x) E, E,-"
(4.37a)

~OP))rox (Eo 0) P EQ

x =xo. -
(4.38)

and the A'"""'(E,) by interpolation. We note that
the dispersion correction of Eq. (4.37a) is a gen-
eralization of those discussed in Refs. 2 and 3, in
t,hat

p(x) dx

, E, -E(x) (4.39)

has been replaced by the often more tractable in-
tegral

f(x) dx
„', E, -E(x) ' (4.40)

where f(x) is restricted only by the requirements
that the principal-value integral of Eq. (4.40)
exist, and that the Lipschitz condition

Im D'"""(E,+'ie) = —i mA"""'"(E,), (4.37b)

where, as appropriate to Eq. (4.3), E(x) = —
(') A.'(1+x)/

(1 -x), and thus dE/ax=4k. '(1 -x') '. The
A""""(E&")are obtained by

numerical methods for determining the weights.
The first is a modification of the numerically
stable method of Gordon, "appropriate to the case
where the recursion scheme for generating the
polynomials is known. The second, introduced by
Heller, is an exceedingly simple technique for de-
termining equivalent quadrature weights, w,./p(x, . ),
fro~ an interpolation of the abscissas.

A. Modified Gordon method

Gordon has given a numerically stable method
for obtaining Gaussian weights from the power mo-
ments u, of a positive weight function p(x). The
method involves a continued-fraction transforma-
tion of the u„ to obtain quantities a„which may be
used to construct a well-conditioned matrix prob-
lem for construction of the quadrature abscissas
and weights. In the case that the three-term re-
cursion generating the orthogonal polynomials is
known, the determination of quadrature weights
may be reduced to a stable-matrix problem, equiv-
alent to that of Gordon, without explicit construc-
tion or knowledge of the u„, or a„, except for &=0.

The recursion scheme

dp dE
&(E) f(x,) -f (x)A(E,—) — (CIE -E,l

x=x0

(4.41)

P„„=(a„+xb„)P„—c„P„

may be written in the more symmetric form

xP„=y„,P„,+ s„P„+y„P„„,

(5.1)

(5.2)

be satisfied in the neighborhood of E„ for some
positive constant C.

Results for scattering from the potential V of
Eq. (4.23), in addition to a unit attractive Coulomb
potential, are given in Table IV for a variety of
basis sets. The function f(x) was taken to be
(1 —x')'~', making evaluation of the dispersion cor-
rection integral identical to the l = 0 case of Eq.
(4.23).

V. APPROXP''JA'i"E DETERMINATION OF QUADRATURE
WEIGHTS

where P„=t„P„, t„being independent of x. Equa. —

tion (5.2) is equivalent to the matrix equation

TABLE IV. Coulomb s-wave phase shifts for scatter-
ing from the spherically symmetric separable potential
V =-4m'(~&)u (r)u (r'), u (r) =- e /x, in addition to a unit
attractive Coulomb potential. Results are given for ex-
pansion sizes N =10, 20, 30 for G.'=20 and the scale pa-
rameter A, =-2.2. The construction of the Coulomb Fred-
holm determinant and the approximate dispersion tech-
nique used to take the E+i& limit are discussed in the
text,

Once the equivalent quadrature weights have been
formally determined, numerical values must still
be obtained. As in most cases the evaluation of
the weights in terms of high-order polynomials
and their derivatives is a numerically ill-condi-
tioned problem ~@~ li;-.;cuss two straightforward

k (a.u. )

0.50
1.00
2,00
3.00
5.00

0.4785
0.4579
0.3867
0.3165
0.2154

N =20

0.4752
0.4555
0.3838
0.3121
0.2081

N =30

0.4738
0.4558
0.3841
0.3125
0.2087

0,473 c3

0.4556
0.3840
0.3123
0.2085
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MA =xA,

where ~ is the symmetric tridiagonal matrix,

(5.3) p'"(x,")=(1 —x,') '

(i+1)m= sin (5.13b)
(5.4a)

(5.4b)

(5.5)

A is the diagonal matrix whose elements give the
qua, drature abscissas,

(5.5)

and the weights are given by

(5. I)~a =(~x, () ~0~
b

where a, =u, = J, p(x) dx is the zeroth moment of
the weight function. In terms of the (d,. the equiva, -
lent quadrature weights are given as vp = e;/p(x;).

B. Heller derivative method

In his thesis Heller"' "suggested that the equiv-
alent quadrature weights could be directly calcu-
lated by considering the function f($) which
"smoothly" interpolates the ordered (increasing)
abscissas x,. obtained directly from the diagonali-
zation of the discretized operator in the sense that

1V), , „=M,.„,. =y, ,

and A, = P, The matrix ~, which is identical to
the matrix constructed from the a„by Gordon, may
be diagonalized by the unitary transformation

In general the interpolatory function f(() is not
known and must be obtained approximately. Re-
sults of high accuracy have been obtained using
pointwise rational fraction fits and spline fits,
using as input the fact that f($) =x, for integer val-
ues of $. Results of application of the derivative
method to determination of equivalent quadrature
weights are given in Tables V and VI, where they
are compared with the results obtained by the tech-
nique of Sec. IIA. The derivative method gives re-
markably accurate weights, even for low-order
quadratures where the interpolation of the x, is
less well determined. We note that, as the deriv-
ative method does not require specification of the
weight function p(x), it can be used in situations
where the analyses of the present paper cannot or
have not been carried out. The major requirement
for application is that the abscissas x, are rea-

TABLE V. Equivalent quadrature weights w;/p (x;)
calculated by the stable-matrix technique of Sec. VA
and by the Belier derivative technique (w "") of Sec. VB,
with an N-point rational interpolation. Results are giv-
en for the Laguerre discretization of the l = 2 radial ki-
netic energy with A. =1.0 and expansion sizes 10 and 14.
Similar results were obtained for other I, and A, values.

f(()lg=; = x; .

In terms off($) the conjecture is that

(5.8)
EO

i

N =10
w;/p {x,) ,

deriv
w;

df(h)
p(x,.) d$

(5.9)

+ $
X", =-cos — ~; i =0, 1, 2. . . , N —1 (5.1O)

For the case of the s-wave radial kinetic energy
this may be explicitly verified, as the zeros of the
Chebyschev polynomials of the second kind are
given explicitly by' '

6.429 277 94E —03
1.686 11250E —02
3.338 428 78E —02
5.868 024 95E —02
9.767 18104E -02
1.599 745 10E —01
2.662 735 78E -01
4,680 345 46E —01
9.266 87867E -01
2.430 28846E + 00

1.152 31707E —01
1.633 692 09E —Ql
2,025 637 66E —01
2.300 833 56E —01
2.442 625 97E —01
2.442 625 97E —01
2.300 833 56E —01
2.025 637 66E —01
1.633 692 09E —01
1.152 31707E —01

N =14

1.15121668E -01
1.633 795 22E —Q1
2.025 608 17E —01
2.300 852 53E -01
2.442 589 73E -01
2.442 589 71E -01
2.300 852 52E -01
2.025 608 17E -01
1.633 79522E -01
1.15121669E -01

(5.11)

and

df(() ' v . (i+1)
&+1 ~Ã+I (5.12)

(d
' = sin (i+1)

N+1 n+1 (5.13a)

which is indeed the appropriate weight for the
Chebyschev equivalent quadrature as

3.688 083 89E -03
9.459 437 55E -03
1.811 566 80E —02
3.037 624 29E -02
4.736 19000E -02
7.084 11341E —02
1.036 781 31E-01
1.507 068 06E —01
2.205 639 45E -01
3.299 06528E -01
5.143 822 45E -01
8;625 13048E -01
1.651 789 54E+ 00
4.236 61729E+ 00

6.798041 69E —02 6.797 745 57E -02
9.843 581 94E —02 9.843 592 32E -02
1.258 562 70E —01 1.258 562 58E -01
1.490 454 22E —01 1.490 454 25E —01
1.671 752 OOE —01 1,671 751 98E -Ol
1.796 185 16E —Ql 1.796 18518E —01
1.859 484 73E —01 1.859 483 96E -01
1.859484 73E -01 1.859 48472E -01
1.796 185 16E —01 1.796 18517E-01
1.671 752 OOE —01 1.671 751 98E -01
1.490 454 22E —01 1.490 454 25E —01
1.258 562 7OE —01 1.258 562 57E -01
9,843 581 94E —02 9.843 592 64E -02
6.798041 69E —02 6.797 740 QOE -02
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TABLE Vl. Equivalent quadrature weights calculated
by the matrix technique of Sec. VA, zo;/p(x;) and by the
Belier derivative method of Sec. VB (M)d"") for the Z=-1
attractive Coulomb problem with l =2. Results are giv-
en for /I =2.5 for expansion sizes N =10 and N =14. Only
those E; which correspond to the discretized continuum
are given.

N-y nt
I qs;) = g r(n + l +3/2)

n=O

the b,. being determined by the conditions

(l+ p —x)b, +b, =0,

(A2)

(AS a)

Eo~c ()0)
N =10

ge;/p (x;) deriv

(2m + l + —,
' —x)b + (m + l + —,')b, + (m + 1)b „=0,

m=2, . . . , N —2

7.291 431 39E -02 2.181750 63E —01 2.182 268 60E -Ol
2.026 450 54E —01 2.61061499E —01 2.610 53917E-01
4.082 264 32E —01 2.845 997 47E —01 2.846 023 37E —01
7.42409048E-01 2.883229 05E-01 2.883 21270E -01
1.320 484 66E +00 2.726 561 67E —01 2.726 579 36E —01
2.432 877 86E+00 2.391632 73E —01 2.391 599 44E —01
5.002 79305E+00 1.906153 85E —01 1.906 27588E -01
1.361 41831E+01 1.312 736 89E —01 1.31146730E -01

(2N+ l ——,
' —x)b„, +(Ã+l ——,')b„,=0,

(ASb)

(ASc)

where Eq. (A3c) serves as the "boundary condition"
analogous to that of Eq. (3.6c), and x=2E/A. '. The
first & —1 equations are identical to those satis-
fied by the Laguerre polynomials L'" '(x), pro
vided we make the identification

1.545 845 11E—Q2

7.759 901 27E -02
1.670 264 09E —01
2.932 047 97E -01
4.719 762 90E -01
7.304 56868E -01
1.1175139 VE + 00
1.728 073 26E+00
2.766 769 64E+00
4.749 930 32E +00
9.287 34782E+00
2.440 826 40E+01

1,244 938 82E —01
1,58Q 11921E —01
1.838 418 25E —01
2.018265 52E —01
2.116901 88E —01
2.132 990 05E —01
2.067 578 06E —01
1.924 452 57E —01
1.710 221 41E —01
1.434 272 86E —01
1.108 828 29E —01
7.508 637 80E —02

1.244 874 24E -01
1.580 120 50E —01
1.838 418 21E —01
2.018 265 50E -01
2.116901 89E -01
2.132 990 03E —01
2.067 578 QVE -01
1.924 452 55E —01
l.710 221 51E —01
1.434 272 46E —01
1.108 84191E-01
7.507 579 75E —02

b (&) (-1)'L'" '(x) (A4)

The last equation is also satisfied by the same set
of polynomials provided

Ll + 1/2(x) 0 (A5)

The eigenvalues of H' in the finite space are there-
fore given by

g0 & g2&N (A6)

where x", is the ith zero of L„'" '(x). The eigen-
vector ~4', ) corresponding to the eigenvalue E; can
now be written down as

sonably evenly spaced, allowing interpolative ap-
proximation of df (g)/d&.
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APPENDIX A: RADIAL KINETIC ENERGY IN AN

OSCILLATOR BASIS

The radial kinetic energy H, may be analytically
diagonalized in the I.' basis of oscillator functions

(+) (x [ y ) (/ x) i+le- x r /2Ll+I/2(! 2+2) (A1)

in both the finite and infinite cases, in direct anal-
ogy with the Laguerre case discussed in Sec. III.

In the finite basis (Q„(r)J„":,'

Using the Christoffel-Darboux relation

It
( y) Q 1,(~ l 3/2) L„(x)L~ (y)

!!t=0

P+] !
I (p p I p 3/2) ILp' '(x) L',", '(y)

Ll+1/2(x) Lj+1/2( )]

(A8)
We find the normalization constant

2A.x", I'(&+l+1/2)
(
„,/,

( „),
lV! (!V+1 +1/2)

(A9)

In the infinite-dimensional case, lQ„)„"=„the
spectrum is continuous and

I q, ) = B(E) p (-I)"~ ",
3 2

L„""(x)I y.) .
n=O

(A10)

Again the continuum normalization function B(E) is
determined from the relation
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nf
(y„~x ) =(-1)"

~
I'-

3
2I„'"/'( )&(&), (All)

where, in this case,

(Al 2)

which. is exact if p(x) is a polynomial of order 2%
—1 or less.

The dispersion correction integral

p(x)
&( .) -&( )

and, as in Sec. III, (r ~ Xz) = (2/k«t)'/'(kr)j, (kr) Th. e
continuum normalization factor is thus

is given by

C, (x,) = (2/A. ')(-1)("e "Oy*(-I ——,', -x,), (A18)

B(@) x((+1)/ze-x/2 (A1 3)
where"

where again E = k'/2 =!(.'x/2.
The equivalent quadrature analysis of Sec. III C

can now be carried out, giving

y*(a, x) = e 'e' 'dt.x'
I'(a) (A19)

(u,. = (u,"'"/p(x ) (A14) APPENDIX B: POLLACZEK POLYNOMIALS

/ -a
Lag t / J I (+1/z( z) I l+I/z(

)
X Xf

J
oo Nx"'/'e "p(x) dx = Q (u" Ip(x, ),

0
(A16)

(A15)
where p(x) =x" 'e ' is the Laguerre weight func-
tion. The ~~~'" are the Gauss-Laguerre quadrature
weights:

The polynomials P„"'(x,z) discussed in Sec. IV A
in connection with the discretization of the repul-
sive Coulomb Hamiltonian are a special case of
those introduced by Pollaczek' in the form
P„"(x;a,b), where a~ [!b ~. In the repulsive Cou-
lomb case a= b=2z/X-and the requirement that
a & ~(b ~

is equivalent to z o 0, which corresponds
to the repulsive case.

Here we give the properties of P„(x;z), while
those of P„(x;a, b) can be found in the literature. 9

P„(x;z) may be defined by their generating series

H(x z) =(1 —te(e)-&n-(«!(1 —te (e) &"+(«!

1 —te"(t' —pxt+1) =exP l txee)

= (t' —1«t+1) "exp ——(1 —x) Q t )""4z
" U„x

= Q P„(x;z)t", ) t [ &I
n=o

(B1)

where x = cos 8, y = -(2z/p)[(l —x)/(1+x)]' ', and U (x) is the Chebyschev polynomial. Another way of
defining the polynomials is recursively:

P, (x, z) =0, Po~(x;z) =1,
(n +1)P„„—2[x(n + o!+2z/A) —2z//(]P„+ (n +2n —1)P„,=0, (B2)

and explicitly the polynomials are given by [-1,+1] with weight function

„( .
)

I'(n +2o.) g„()

n!I (2n)

&&,F,(-n, n iy;2o.;1-—e " ),
with the important special case

P„(x;0)=C„(x).

(B3)

(B4)

p (x; z) = (1/)«)2'" 'e"' "'«(I - x') '/'ll (c( +iy)I'

(B5)

and the orthogonality relation is

f P„"(x;z)P."(x;z)p"(x, z) dx =
I"(n+2 u) 5„,

n! n+++2Z A.

These polynomials are orthogonal on the interval (B6)
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