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Retarded interaction of two nonidentical atoms*
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We extend our recent work on the causal aspects of two-atom spontaneous decay to the case of
nonidentical atoms.

In a recent paper, ' we considered the problem of
spontaneous emission from a system of two iden-
tical atoms a fixed distance x apart, one of which
is excited at t=0. Our solutions for the various
probability amplitudes exhibit the effects of all
the retardation times nr/c (n = 0, 1,2, . . .) due to
the causal exchange of the excitation between the
atoms. These solutions reduce to the familiar re-
sults for the resonant, or "cooperative, " interac-
tion after a large number of retardation times have
elapsed. Earlier work' on the problem showed
the dependence of the probability amplitudes only
on the first retardation time x/c, and did not make
the connection with the allied problem of coopera-
tive decay. The causal aspect of this simple sys-
tem has played a venerable heuristic role in the
development of the nonrelativistic quantum theory
of the interaction of light with atoms. '

Interest in this problem seems to have been
revived after Arecchi and Courtens' treated the
retardation problem in an appendix to a recent
paper. In a recent study of superradiance' it was
found that the retardation times nx/c appear natu-
rally if the Markov approximation is not made
(the memory implied by a non-Markovian process
is reflected in the dependence of each atom's evo-
lution upon the dynamics, at an earlier time r/c,
of the other atom). In addition, the results we

derived in Ref. 1 were later obtained independently

by Schuurmans. ' In view' of this interest, we feel
it worthwhile to present a straightforward exten-
sion of the results of Ref. 1 in order to compare
these more recent results with the much earlier,
and frequently quoted results of Fermi' and Breit'
on the causal exchange of excitation between non-
identicaL atoms.

All of the treatments referred to use the two-
level approximation: if atom 1 is initially in its
first excited state and atom 2 in its ground state,
then it is assumed that the only remaining states
of importance are the ground state of atom 1 and
the first excited state of atom 2. This approxima-
tion is meaningful only if the atoms have a near
resonance of their respective transition frequen-
cies, or are identical. Recent work" ' has been
concerned with cooperative decay and assumed the

two atoms to be identical. On the other hand, both
Fermi' and Breit, ' in what have become the "stan-
dard" treatments of the problem, assumed that the
two two-level atoms may have different transition
frequencies and natural linewidths.

We therefore consider here the case of noniden-
tical atoms. Let atoms 1 and 2 have (circular)
transition frequencies ~, and ~„respectively,
and corresponding free -atom natural linewidths

P, and P, . Following the notation of Ref. 1, let
b,(t) denote the probability amplitude for the state
with atom 1 in its first excited state, atom 2 in its
ground state, and the radiation field in the vacuum
state, and let b, (t) be the corresponding ampli-
tude for the state with atom 1 in its ground state
and atom 2 in its first excited state. Our initial
condition will be b, (0) = 1, b, (0) = 0.

The Hamiltonian is

b (i) = g (—1)"F'""(fy')I"„'(t—(2n+1)r/c),
n=O

where
(2)

H=H~+H~ —ik g, kx 0, +g
l=l, 2 ky

x [a(k„)—at(k„)],
where the notation follows Ref. 1, to which the
reader is referred for fuller explanation. We will
use Fermi's choice of orientation for the dipoles:
The interatomic axis defines the z axis, and both
transition dipoles are oriented along the x axis.
We choose to work with the same "essential states"
as those in Ref. 1, with the obvious generalization
to different transition frequencies for the atoms.

Following the same approach and approxima-
tions used previously, ' the coupled equations of
motion for the probability amplitudes derived from
the Schrodinger equation can be solved by Laplace
transform. We find that
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k 2
= (do/C = ((di + (d2)/2 C .

We have used the approximation' (u, + +2)2= 4~,~,
in deriving Eq. (3); the integrals I~„'~ and I~„"are

obtain from (7), for kor» 1, the amplitude that
the second atom be excited:

b2(t) = (3i/2kor)e "o"p(t r/c—)U(t —r/c)e ' " '+ ~ ~ ~,

I(,) 1 I'" dze '"
2mi J „(z-iQ,)""(z-iQ,)" '

() 1
"

dz '"
2v „(z-iQ,)""(z—iQ, )"" '

b2(t) = F(k,r)I~O'(t r/c), -
~2~t -r/c) e -Q y(t -r/c)

= F(kor) U(t —r/c)
2 1

(7)

where U is the unit step function. The retention
of only this term can be justified by assuming that
the atoms are very far apart (k,r» 1). Then
F(k,r) ca.n be approximated by its far-field part:

F(k,r) = —(3i/2k, r)(p, p2)'"e "0".

With these approximations, the probability that
atom 2 is excited is

(8)

9P, P, U(t —r/c)

-28'(t-r/c) -282(t -r/c)[8 +e

-2e """"~' cos((u2 —&u, )(t —r/c)j .

(9)

This is just the result given by Breit. ' Fermi's
discussion' is restricted to the case p„»p2 and for
times such that P,(t r/c)»1, b-ut P2(t —r/c)«1.
If we impose these restrictions on (9) we obtain

9p, p2 U(t —r/c)
2()l 4k22 ( )2 P2 (10)

which, under the previously used assumption' that
(~, +&@2)'=4&v,~„is Fermi's result. The appa. rent
discontinuity in Eq. (10) is seen to be spurious,
since in approxima. ting the result (9) by (10) it is
assumed that i» (r/c) + 1/P, . For this reason,
Eq. (10) exhibits the reta. rdation-time causal ef-
fects in a. less convincing form than (9).

For the opposite condition P, -P» co, - ro„we

with Q, = p, i+((u, —(u2)/2, Q, = p2 —i((u, —(g2)/2.
The integrals I„'(r) and I„'(T) vanish for T & 0.
For 0,=0„the case of identical atoms, we re-
cover our previous results of Ref. 1.

The older work on this problem was aimed at
showing that b2(t) =0 for t&r/c. This aspect of the
system can be seen by retaining only the first
term on the right-hand side of Eq. (2):

and the probability

I b2(t) I' = (3/2kor)'U(t r/c-)(p(t r/-c) J2e 2 ~' "~'+ ~ ~ ~ .

(12)

This is exactly our previous result for identical
atoms.

Equation (9) only applies for times t&3r/c, but
may be regarded as an accurate approximation if
kor» 1, since successive terms in the series (2)
are multiplied by further powers of (kor) '. Argu-
ments of this kind were invoked'' to justify the
approximation

(13)

used right from the start of the calculation in the
earlier work. Note, however, that the second
term on the right-hand side of Eq. (1), although of
order (k,r) ', still contributes to Ib, (t)I2 a term of
order (kor) ' due to an interference cross term
with the first term of Eq. (1). If terms of order
(kor) ' are kept in Ib2(t) I', they should be retained
in Ib, (f)l'.

Of course, the two atoms need to have quite
closely matching transition frequencies before
they can exchange excitation energy, and this is
reflected in the sharply peaked resonance behavior
exhibited in Eq. (9)."

Finally, we should mention that neither the ap-
pearance of retardation times nor the phenomenon
of cooperation are inherently quantum mechanical
in origin. It can be shown quite straightforwardly
that both effects are exhibited by a system of two
classical dipoles a distance ~ apart, coupled by
their radiation fields.

To summarize, we have pre sented a formal so-
lution to the problem of spontaneous radiative de-
cay from a pair of nonidentical atoms which ex-
hibits all of the retardation times nr/c. As was
the case with our earlier work on identical atoms,
the truncated solutions involving only the first re-
tardation time r/c reduce to previously reported
results.
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