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Thermodynamic properties of small aggregates of rare-gas atoms*
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The thermodynamic properties of small clusters of rare-gas atoms are determined from a biased
random-walk Monte Carlo procedure. The cluster sizes studied range fro.n N = 3 to N = 13 at-
oms. The internal energy is calculated as a function of temperature. Each cluster exhibits an abrupt
liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-

liquid transition is also observed for N = 11 and 13. The entropy of fusion is S = 1.76 e.u, For
smaller clusters, the solid-liquid transition is more gradual. The bond-length distributions are calcu-
lated for each cluster at various temperatures. The fluctuations of bond lengths from their average

valu:" increase gradually with temperature until the melting temperature is reached, at which point
there is a large, abrupt increase. The indications are that a harmonic normal-mode analysis is ap-
plicable only at temperatures substantially below the melting point and even there, the frequency spec-
trum is temperature dependent. For N = 3, the equilibrium structure is an equilateral triangle. An
N = 5 cluster forms a trigonal bipyramid and for N = 7 the form is a pentagonal bipyramid. The
nine-particle structure has symmetry C» and is a pentagonal bipyramid with two additional atoms,
and the N = 13 cluster forms an icosahedron.

I. INTRODUCTION

Small aggregates of atoms or molecules have
not been investigated to the same extent as very
large systems because of a very fundamental dif-
ference in the boundary conditions. For large
systems it is common practice to ignore the effect
of the boundary (surface) in calculating most phys-
ical properties. The supporting argument is that
the number of particles within range of the dis-
torted local field, produced by the surface dis-
continuity, is negligibly small when compared
with the total. For small clusters of atoms the
situation is just the opposite. Surface effects
dominate the system's behavior. As an example,
consider a 1055-particle system organized on an
fcc lattice. Over 800 of those particles are within
two nearest-neighbor lengths of the surface and
500 are within one nearest-neighbor distance.

There are a number of phenomena in which small
clusters of atoms are believed to play a central
role. In the gas-liquid phase transition, the for-
mation of small clusters in the gas is a precursor
to the transition. ' Hence, a description of the
thermodynamic properties of these clusters is an
essential element in analyzing the phase change.
Some other areas where the properties of small
aggregates manifest themselves are in the descrip-
tion of high-speed fluid jets, ' Mossbauer recoil
from small systems, ' dense fluids, fine powders,
normal and superconducting metallic crystal-

lites, 4 and possibly in providing insight into the
regime of validity for cluster-expansion methods
used in the analysis of many-body systems.

Of the limited number of previous works dealing
with the thermodynamic properties of small ag-
gregates, microscopic calculations have almost
exclusively been limited to one of two different
approaches. The normal-mode approach, for
example, has been used by Burton in a series of
calculations' designed to determine the thermo-
dynamic properties of argon clusters as small as
13 atoms. In these works the atoms are initially
located on an fcc lattice and their positions are
varied until the total potential energy is mini-
mized. With the location of the atoms thereby
established, a normal-mode analysis is used to
obtain the frequency spectrum and hence the
thermodynamic properties. One interesting result
of this work is that the entropy and free energy
are not monotonic functions of the cluster size.
For example, at temperatures T~ 100 K, the
free energy shows a local minimum for cluster
sizes of about N=43 atoms, as does the entropy.
One aspect of this work that is particularly dif-
ficult to understand is the part dealing with tem-
peratures in excess of the bulk liquid-gas phase
transition temperature [T~(~)= 87 K] . If, as one
would expect, clusters do not form a bound state
above T~(~), the normal-mode analysis is mean-
ingless for T ~ T~(~). In fact, the liquid-gas
transition temperature for an N-atom cluster,
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T~(N), should be substantially lower than its bulk-
value for small clusters because the number of
bonds per atom are not saturated. It will be shown
that this is indeed the case. We suspect that the
anomalous behavior of the entropy and free energy
results from this deficiency in the theory. This
view is fortified by recognizing that the anomalous
entropy was calculated at T =93 K, and the local
minimum in the free energy was also observed
only for temperatures T~ Ts(~)

An inherent feature in the normal-mode analysis
is the limitation that the equilibrium positions of
the atoms are calculable only at T =0 K. Hence, in
order for the resulting frequency spectrum to be
justifiably used at nonzero temperatures, it must
be assumed that the relative equilibrium positions
of the atoms are temperature independent. It will
be shown that this assumption is, in fact, not
correct. Only for temperatures well below Ts (N)
are the equilibrium atomic positions insensitive
to temperature changes. It is clear that the in-
ability of this method to calculate the temperature
dependence of the frequency spectrum seriously
limits its reliability at higher temperatures and
negates the possibility of observing any phase
transition.

In another recent calculation on argon clusters
by McGinty, a molecular dynamics technique was
employed which numerically solves the classical
equations of motion. ' Artificial boundary con-
ditions were used to define the cluster size. To
what extent the artificial boundary condition affects
the low-temperature results is not certain. We
suspect, however, that many of the high-temper-
ature data correspond to an artificially contained
gaseous phase rather than to a free cluster bounded
only by the mutual interaction of its constituents.
A test of the sensitivity of the results to the di-
mensions of the boundary would help resolve this
question. McGinty has recognized the probable
existence of a solid-liquid phase transition but
was unable to observe it. However, solidlike
particle motions were observed at low temper-
atures and liquidlike motions were observed at
high temperatures.

Burton has also performed a molecular dynam-
ics calculation on a 55-atom argon cluster. ' An

abrupt change in the internal energy is observed
at T =42 K and the diffusion coefficients indicate
that the change corresponds to a solid-liquid
phase transition. There is no discussion of the
boundary conditions. Assuming they are similar
to those used by McGinty, the questions raised in
relation to that work also hold here. Nevertheless,
the solid-liquid phase transition is probably being
observed in these calculations.

This article reports on the equilibrium thermo-

dynamic properties of small clusters of xenon,
krypton, and argon atoms, determined from a
biased random-walk Monte Carlo procedure.
The cluster sizes studied range from 3 to 13
atoms. A central conclusion of this work is that
proper representation of boundary conditions is
very important for evaluating small bounded ag-
gregates. Unless it is done with care the system
modeled is other than what was intended. This
calculation takes full cognizance of that fact.

II, METHOD

The biased random-walk Monte Carlo method,
used here to determine system properties, has
been fully described by Wood. ' A very brief de-
scription of that method follows.

The thermodynamic expectation value of a func-
tion f(r), r =(r„r„.. . , r~), for an N-particle
system at temperature T in the Gibbs canonical
ensemble is

ff (r)P(r) dr

fP(r)dr

where P(r) is the Maxwell-Boltzmann probability
distribution,

P(r) =exp[-PU(r„. . . , r„)] .

The potential energy of the system is given by
U(r), P= (kT) ', and k is the Boltzmann constant.
In practice, the averages are obtained by forming
the sum

(f) & Q f(ry( r2( ~ ~ ~ rsvp) (3)

for a sequence of n configurations, each specified
by a 3N-dimensional point fr„, . . ., r„,},i = 1, . . . , n,
obtained as a result of a particular random-walk
procedure called a Markov chain. The first index
on the vectors Pr„, . . . , rN&) identifies the particle
and the second index specifies a particular 3N-
dimensional point. A physically meaningful ex-
pectation value is obtained by generating a Markov
chain in which each 3N-dimensional point recurs,
in the asymptotic limit of large n, with a frequency
proportional to the Maxwell-Boltzmann probability
distribution e ~~. The prescription for achieving
this is as follows: Initially the N particles are
arbitrarily positioned spatially and those positions
are specified by N vectors. Hence, a configura-
tion is defined. The energy U(r) and the probabil-
ity e 8 of that configuration are calculated. A
randomly chosen particle is then allowed to ran-
domly move to a new location. This specifies a
new configuration for which the energy and prob-
ability are calculated. According to a set of cri-
teria relating to the relative probability of the new
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configuration in relation to the previous one, the
new configuration is either accepted or rejected.
If accepted, that value of f (r) is incorporated into
the sum [Eq. (3)] and the entire procedure is
repeated using the new configuration as a starting
point. If rejected, the f(r) of the previous con-
figuration is added to the sum and the entire pro-
cedure is repeated, starting again with the old
configuration. These criteria ensure that phase
space is sampled ergodically and that the average
value of any observable quantity so determined is
of physical significance.

In previous works using this Monte Carlo
scheme, ' a finite number of particles are located
inside a box of volume commensurate with the
density of the system. The behavior of the bulk

system is then simulated by replicating this box
and its contents in all directions. This procedure
establishes periodic boundary conditions. It must
be understood that this or some equivalent pro-
cedure is absolutely necessary to properly sim-
ulate the infinite system. In the analysis of small
clusters, the situation is entirely different. The
boundary is free. .Atoms must be allowed to search
out the equilibrium configuration at each tem-
perature considered, encumbered only by their
mutual interaction as manifested in the probability
distribution e . It is a general feature of the
method that displaced atoms will gravitate toward
locations of highest probability. This, of course,
is a consequence of the bias introduced into the
random walk by the Boltzmann probability dis-
tribution. The atoms do not, however, move
monotonically toward regions of maximum proba-
bility, and occasionally an atom will be found a
large distance away from a location of high proba-
bility. If the cluster intrinsically forms a bound

state (liquid or solid) at the temperature at which

the calculation is being performed, the atoms will
eventually settle down into a spatially well-defined
region with a well-defined binding energy. For
aggregates investigated in this work, on the order
of 2~ 10' configurations are necessary to obtain
fully reliable data.

The use of free-surface boundary conditions in-
troduces a conceptual situation that is not present
when the system is enclosed in a well-defined
volume. Equation (1) vanishes for f (r) = U(r), when
integrated over all space, corresponding to an
infinitely long random walk. That is, any finite
system will ultimately decompose and the binding
energy will approach zero as ~r, -r, ~-~, for all
i, j. Physically, this is not unexpected. If there
exists no external containing force, such as walls,
or if the system's own vapor pressure is not suf-
ficiently great, there will be a net escape (evap-
oration) of atoms from the surface. The rate of

evaporation depends on the relative strength of
the binding energy compared to OT. As the tem-
perature of the sample is increased, the probabil-
ity that an atom will have energy enough to escape
from the surface region increases until, at T~(N),
this probability is so high that rapid dissociation
takes place. The point is that all finite bound-
state samples with free surfaces have only a
"metastable" existence. Nevertheless, equilibrium
properties of such systems can be determined
provided the evaporation rate is slow compared to
the relaxation time of physical properties. For
example, an open beaker of alcohol at room tem-
perature evaporates slowly enough so that its
equilibrium properties are measurable, although
it does not remain a bound-state liquid indefinitely.
Ultimately, it evaporates into an essentially in-
finitely rarified gas. The situation is obviously
more critical for small N, where the evaporation
of one or two atoms is an appreciable fraction of
the total. Under such circumstances the small
system is substantially altered by the evaporation
where, for a large system with N= 10", it is not.

The key question with regard to a Monte Carlo
simulation is not that ( U(r)) vanishes for an infin-
itely long random walk, as it surely must, but
rather whether or not a meaningful average of
system properties can be obtained for the sample
in its so-called "metastable" bound state. In this
regard, we have established a list of stringent
criteria which must be satisfied before the results
of any run are accepted as physically significant.

Before these are listed it is instructive first to
describe a typical run. The initial configuration
of N particles is generally taken to be on an fcc
lattice with a bulk nearest-neighbor separation.
Other starting configurations are discussed later.
For approximately the first 10' configurations,
predicted system properties change drastically.
We call this the "initial transient, " which is not
included in the averaging process. If T& T~,
the system settles down after the transient and
remains that way until the run is terminated. This
is the region of the "metastability" which is in-
terpreted as giving evidence of a well-defined
bound state. Up to 5& 10' configurations are
computed per run. If T& T~, there is never a
region of metastability. The initial transient de-
velops very quickly into a situation where all
atoms are separated by large distances and ( U)

goes rapidly toward zero. That is, the configura-
tion of highest probability is (r&) =~, for all i, j,
which is appropriate for an unbounded gas. The
system is thus characterized by a well-defined
bound state at the lowest temperatures but, at
some point as the temperature increases, the
characteristics of an unbounded gas begin to man-
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ifest themselves. For cluster sizes investigated,
this transition is fairly abrupt and it occurs at
temperatures well below the liquid-gas transition
temperature for the bulk system, T~(~).

The criteria for acceptance of a run are as
follows.

(a) Over the entire run, except for the initial
transient, the average bin energy never fluctuates
by more than 5 /o. A bin contains about 300 con-
figurations. Moreover, the over-all statistical
error associated with any expectation value must
be less than 1 /o.

(b) The results are indePendent of steP size
The maximum allowed displacement of an atom
from one configuration to the next (step size) is
normally varied during the run so that a trial con-
figuration is accepted about 50/o of the time. This
condition seems to speed up convergence of the
predicted physical quantities. Step sizes are gen-
erally on the order of 0.3 A. In test cases we
varied the step length from 0.01 to 30 A. The re-
sults are always the same; only the rate of con-
vergence is affected. The observed transition
temperature Ts(N) is independent of the step length
used. With regard to choosing step lengths that
are extremely small, the initial transient will not
be exhausted in 10' steps. U the step size is too
large, that part of phase space corresponding to
a bound state of the cluster may not be sampled in
an acceptably small number of configurations. In
the extreme then some care must be taken, a
problem common to all Monte Carlo calculations.
In fact, the biased random-walk scheme is useful
only if the physically important part of phase space
is sampled in a manageably small number of con-
figurations. This is why it is important to choose
a step length which optimizes this sampling.

(c) The results are independent of the initial
configuration. We have used various initial con-
figurations, such as an fcc lattice, where the
nearest-neighbor distance has been varied by an
order of magnitude. We have chosen random
initial conditions with the restriction that

~ r, & ~
~R,

all i, j. The range 0.5 «R & 10o has been used.
Results for the physical quantities always remain
unchanged. The number of configurations required
to overcome the initial transient is affected, how-
ever. In fact, if the initial positions of the par-
ticles are chosen absurdly, for example, such as
that the initial particle separations are very large,
it is clear that an unacceptably large number of
configurations may be required to bring the par-
ticles close enough to establish a bound state.
Some modest care must be taken in this regard.

(d) Results are not accepted if evaporation of
one or more particles takes place during the run.

When T~ —T& 1.0 K, evaporation of one or two

particles may take place during the course of a
run. What this means is that bound state is on
the verge of instability and reliable thermody-
namic averages are hard to obtain.

To summarize, any finite physical system sub-
ject to free-surface boundary conditions is at
best metastable. Surface atoms will ultimately
escape (evaporate) from the material. The rate
of evaporation depends on the strength of the bind-
ing forces in relation to the temperature. As the
temperature is increased the probability that an
atom will have energy enough to escape from the
surface region increases. At high enough tem-
peratures this probability is very high and the
substance dissociates very rapidly. The Monte
Carlo method is apparently simulating this phys-
ical fact accurately.

A more conventional approach to this investiga-
tion is to enclose the cluster in a box of finite
dimensions. Only configurations in which all
particles remain inside the box are accepted in
the averaging process fEq. (3)]. Thus, the cluster
volume is defined and any particle found outside
of this volume is no longer considered part of the
cluster. Upon rejecting a configuration, another
random move is initiated from the previous con-
figuration. Using this approach there is no ques-
tion about the convergence of the integrals in Eq.
(1) because the volume integrations are constrained
to the region enclosed by the box.

The influence of the box boundary condition on
calculated system properties is predictable. For
T& T~, results should be independent of the box
size providing its dimensions are greater than the
largest bond length (interparticle separation) en-
countered in the averaging process. Since par-
ticles never reach the boundary under such circum-
stances, they cannot be influenced by it. For
boxes smaller than this minimum size (—,L & o'

for N= 13), the system properties must be affected
by the walls because they act to compress the
cluster and hence they correspond to an external
pressure. For T& T&, the calculated system
properties are expected to depend strongly on the
dimensions of the box boundary condition. For
any box size, the particles ultimately distribute
themselves uniformly inside the box. Hence, the
larger the box, the less dense the system, and
the smaller the internal energy. This condition,
of course, corresponds to an artificially con-
strained gas.

The results of our calculations, using box bound-
ary conditions, totally corroborate the expecta-
tions cited in the previous paragraph. Moreover,
the results are entirely consistent with data ob-
tained using free-surface boundary conditions.
Detailed results are presented in Sec. III.
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The potential energy of the aggregates inves-
tigated here is represented by a Lennard-Jones
6-12 pair interaction

U(r„. . . ., r„)=4m Q (
—

)
— —

)
The parameters (o, e) are approximately Ar (3.40
A, 119.8 K), Kr (3.6 A, 171 K), and Xe (4.06 A,
229 K)." The internal kinetic energy for the N-
particle system is (K) = (3N 6)kT-j2, or it can be
obtained from the virial theorem. The six degrees
of freedom associated with the translation and ro-
tation of the cluster as a whole are not considered.

III. RESULTS

Results were obtained by omitting the first 3
&& 10' configurations and then taking statistical
thermodynamic averages over additional config-
urations until the standard error in the interna. l
energy was approximately 0.5% or less. To
achieve this accuracy approximately 1.2&& 10' con-
figurations were necessary for the smaller clus-
ters at low temperatures, but for larger clusters
at high temperatures 4&& 10' configurations mere
sometimes required.

Figure 1 shows the temperature dependence of
the total internal energy for different-sized clus-
ters. The data terminate at the liquid-gas tran-
sition temperature. Thirteen-particle clusters
show an abrupt change in the internal energy at
T = 34, 49, and 66 K for Ar, Kr, and Xe, re-
spectively. Belom these transition temperatures
the clusters are characterized by small atomic
displacements from spatially well defined posi-
tions. Operationally this information is obtained
by observing the change in the vectors which lo-
cate each particle spatially, as the number of
configurations are increased. Typically, in the
first fem thousand configurations of the Markov
chain the particles move from their initial posi-
tions into locations of high probability, and there-
after oscillate about these positions with an amp-
litude small compared with the distance between
neighboring atoms. In summary, these clusters
exhibit solidlike behavior. Above the transition
temperature, the atoms exhibit no preferential
location in space but move about in a well-defined
volume of the same dimensions as the cluster.
This information, coupled with the fact that the
clusters have negative internal energy, is inter-
preted as evidence of a liquid state. Hence, these
abrupt energy changes apparently represent the
liquid-solid phase transition. This viewpoint is
fortified by comparing the ratios of the melting
temperatures for bulk Ar, Kr, and Xe to those
calculated for the 13-particle clusters. They
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FIG. 1. Binding energy of different-sized clusters
PV =3 to %=13), as a function of temperature.

compare closely. The entropy of fusion is S= 1.76
e.u. (1 e.u. =1 cal/mole deg) compared with 3.35
e.u. for the bulk sample. " We have also observed
an abrupt melting transition for N= 11, although
the change in internal energy is less than for N
=13. For cluster sizes smaller than N= 11, no
abrupt transition is observed. Instead, a gradual
transition from solid to liquid occurred over a
fairly broad range of temperatures. In order to
verify that the observed melting transition is
physical rather than a computational artifact, the
configuration of the high-temperature liquid phase
was used as an initial condition for the 13-particle
cluster, at temperatures well below the apparent
melting point. Then up to 4.8&10' configurations
were generated, with the result that the atoms
relaxed back to the previously determined lattice
configuration. This experiment was repeated with
the same result for several different cluster
sizes, The converse of this experiment was also
performed. In all cases, there is no indication
that the initial configuration influences the ul-
timate outcome of the calculation.

Figure 2 contains a plot of the liquid-gas tran-
sition temperature T~(N) for N-particle rare-gas
clusters. For example, Ts(3) =20 K and Ts(13)
=45 K for Ar. For bulk argon Ts(~) =87 K, which
is displayed by the uppermost dashed line for
comparison purposes. " As for the liquid-solid
transition temperature, the different ratios of
T~(~) bulk Ar, Kr, and Xe agree closely with the
same ratios for the clusters. The liquid-gas
transition occurs abruptly, apparently over a
temperature range of less than 1 K. As discussed
earlier, the transition manifests itself, at tem-
perature T ~ T&, by a monotonic decrease in the
binding energy toward zero, as the number of
configurations generated is increased. This be-
havior is accompanied by an increasing separa-
tion of the particles from one another. The clus-
ters simply fall apart.
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Figures 3-8 contain the thermodynamic ex-
pectation values for the number of bond lengths
(interparticle separations) as a function of inter-
particle separation. This quantity is directly
proportional to the pair distribution function. Fig-
ure 3 shows the bond length distribution for N=13,
in arbitrary units, at three different temperatures.
For Ar, the temperatures are 1, 10, and 33 K,
which span the solid regime. The first peaks
occur for separations in the vicinity of x&, = 1.12o.
This is precisely the position of the minimum in
the pair potential. At T =1.0 K, there are two

peaks in this region. However, as the temper-
ature is increased from 1 to 10 K, they slowly
move together into a single broad maximum.

Figure 4 shows the bond length distribution for
N= 11. The curve at kT/e =0.3333 in Fig. 4 is in
the liquid regime of the cluster, whereas the plot
at kT/e =0.2083 represents the solid phase below

FIG. 2. Liquid-gas transition temperature as a function
of cluster size. The circles represent the data and the
dashed 1ines are an observational aid.

the melting temperature. The results for cluster
sizes ~=3, 5, 7, and 9 are shown in Figs. 5-8.

A general feature of the clusters is that the
peaks in the bond length distributions are all well
resolved at the lowest temperatures, correspond-
ing to a small half-width at half-maximum 4„..
This indicates a definite lattice structure. In-
creasing the temperature shifts the maxima to
larger bond separations x„.. However, only the
outermost maxima (long bond lengths) a,re sub-
stantially affected. As mentioned earlier, the
innermost peak stays close to x„=1.12@ for all
temperatures considered.

The half -widths, however, al/ increase steadily
with temperature. Figure 9 illustrates the be™
havior of the peak at x„.= 1.8a for the 13 particle
system. The half-width increases linearly until
kT/e =0.2833. At this temperature, the last peak
(x„=2.16o) is very badly resolved and at higher
temperatures it cannot be seen at all. Conse-
quently, the half-width of the peak at -1.8v in-
creases dramatically, changing from 0.061o at
kT/e =0.2833 to 0.124o at kT/e =0.2916—an in-
crease of more than 100/p for a degree rise in
temperature for argon. The half-width of the
other peak (-1.12o) also increases abruptly at
this temperature, as does the internal energy.

These are indications of a major structural
change within the cluster —the resulting disorder
corresponding to the entropy increase during
melting. Similar results are obtained for smaller
clusters, except that the abrupt change near the
melting temperature becomes more diffuse.

Our observations are in agreement with Fisher, "
who states that the half-width of the first peak in
the pair distribution function increases abruptly
during melting and that the position of the first
peak is temperature independent.
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greement with Burton's' results of 1.117o and
1.173o. Similarly, our binding energy compares
very closely to Hoare and Pal, ' 44.35 and 44.327,
respectively, in units of E. The agreement is re-
markable and extends to all other cluster sizes
as well. For N= 13, we observe no lattice phase
change from the icosahedron structure below the
melting temperature, although disorder does in-
crease with increasing temperature. Similar
results are reported for the smaller clusters.
Table I displays the equilibrium vector locations
of all atoms for clusters with N=3-13, in units of
Q.

The Monte Carlo method provides further ev-
idence that a structure having fivefold symmetry
is preferred over an fcc arrangement, for small
values of N. The existence of such structures in

condensing metal vapors has been experimentally
reported by several investigators. "

Figure 10 shows the binding energy per particle,
in units of e at kT/e = 0.0083, as a function of N.
The dashed line is a least-squares fit through the
data points, which are represented by the circles.
For systems containing a small number of inter-
acting particles, it is generally argued that the
total system energy should be directly proportion-
al to the total number of bonds, i.e., E -N(N -1).
In that case, a plot of E/N versus N is represented
by a straight line, which should continue until the
number of bonds per particle become saturated.
Figure 10 does not conform to this simple argu-
ment; E/N is not linear in N.

In order to determine the quantitative effect of
finite box boundary conditions on predicted phys-
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ical properties, the average potential energy was
determined for clusters enclosed in boxes with
different volumes, as discussed in Sec. II. The
results are shown in Fig. 11 for N= 3, at various
temperatures. At temperatures below the liquid-
gas transition the energy is independent of box
size, unless the enclosed volume is made too
small. The critical box size, below which the
energy is volume dependent, increases with in-
creasing temperature. For kT/c =0.0413 (5 K
for argon) the critical box radius is -0.8o, where-
as, for kT/m =0.0828 (10 K for argon), it is -1.3o'.

This increase is undoubtedly due to thermal ex-
pansion of the cluster.

A potential-energy minimum occurs for box
radii near 0.8o, which deepens with increasing
temperature. This is due to the boundary con-
ditions artificially constraining the particles to
positions near the minimum of the potential and
does not correspond to a physically realizable
state for a free cluster at nonzero temperature.
Further decrease of the box size compresses the
cluster and hence the interparticle distances,
forcing the atoms into the repulsive-core region
of the potential. As a result, the energy increases
rapidly. The important observation is that there
exists a region of stability, where the system
properties are not affected by the artificial con-
straint of the box.

Above the liquid-gas transition temperature,
there is rgo region where the internal energy is
independent of the enclosing volume, as indicated
by the curve at kT/e =0.1735 (21 K for argon) in
Fig. 11. As the radius of the box increases be-
yond 0.80, the cluster expands and the energy
rapidly approaches zero. The cluster is simply
not bound and the atoms distribute themselves
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more or less uniformly in the interior of the box.
The important observation is that, above the tran-
sition temperature, the system behaves like a gas
constrained by the enclosing volume of the bound-
ary condition.

IV. DISCUSSION CONCLUSIONS

It has been emphasized that the nature of the
surface boundary conditions, imposed on small
aggregates, is of central importance in deducing
the systems properties. Our position is that free-
surface boundary conditions are mandatory in
investigating the thermodynamics of stable clus-
ters. It is not our objective to deduce the dis-
tortion to system properties introduced by arti-
ficial boundaries. It has been common practice in
previous works' ' to use some sort of boundary
condition to enclose the cluster in a well-defined
volume. It is then argued that this artificially im-
posed condition does not appreciably affect sys-
tem properties.

We have explored the effects of box boundary
conditions, which are summarized in Fig. 11 for
N = 3. It is clear that for T& Te(N) there is a crit-
ical box size, such that larger boxes will not
affect system properties. Moreover, free-sur-
face boundary conditions (infinitely large box)
give identical results. This information confirms
that clusters with free-surface boundary con-
ditions are sufficiently metastable below Te(N) to
calculate meaningful thermodynamic properties.
The increase in critical box size with temperature
indicates that the clusters undergo substantial
thermal expansion. For T& T3(N), Fig. 11 shows
that all finite box sizes seriously affect predicted
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8.0 27.0 64.0 I 25.0 2I6.0 8x IO
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kT/e
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system properties. The energy approaches zero
as the box size becomes large and the particle dis-
tribution inside the box is nearly uniform. The
temperature at which such behavior first appears
is identical to the liquid-gas transition temper-
ature, predicted in Sec. II and displayed in Fig. 2.
To summarize, there is no metastable bound
state for T& Ts(N). The results discussed in con-
nection with Fig. 11 qualitatively apply to all
cluster sizes investigated.

The very close agreement between our work,
in the limit of 0 K, and that of Hoare and Pal"
was presented in Sec. III. The structure spec-
ifications, bond lengths, and binding energies
agree almost exactly, for all cluster sizes. Fin.-
ite-temperature calculations cannot be compared
because their work is limited to 0 K. This re-
markable agreement is further evidence that the
Monte Carlo method, with free-surface boundary
conditions, is accurately simulating system prop-
erties.

Evidence indicating the existence of solid, liquid,
and gaseous phases for these clusters comes from
the observation of atomic positions. By following
the position changes with succeeding configura-
tions, the part of phase space preferred by the
atoms implies the state of matter. The details
of the position-change observations were pre-
sented in Sec. IH. In addition, the solid-liquid
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FIG. 11. Average potential energy as a function of box
size for N =3 at different temperatures.
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transition is characterized by an abrupt change in
the width of peaks in the bond length distributions,
as depicted for N=13 in Fig. 9. These changes
are accompanied by an abrupt change in the in-
ternal energy. Since these effects all occur at
the same temperature, for a given cluster, the
evidence is that a major structural change occurs
within the cluster —the resulting disorder cor-
responding to the entropy increase during melting.
Similar results are obtained for smaller clusters,
except the abrupt changes near the melting tem-
perature become more diffuse.

Evidence for the liquid-to-gas transition is based
primarily upon the observation that above T~(N)
the clusters do not form a stable bound state. The
density and binding energy decrease monotonically
toward zero as the number of configurations gen-
erated is increased. This result is based upon
free-surface boundary conditions. If box boundary
conditions are imposed, the atoms distribute
themselves approximately unif ormly throughout
the enclosed volume, and the energy of the cluster
is a function of the box volume. For example, see
the curve at kT/& = 0.1735 in Fig. 11.

A direct comparison of our results with recent
molecular dynamics (MD) calculations on argon6
is not possible because there are no cluster sizes
in common. However, we believe the artificial
boundary conditions used in that work interfere
with the intrinsic behavior of the cluster. An ex-
ample illustrates the point. McGinty' confines
the clusters to a spherical box of radius propor-
tional to N"'. According to this formula, the box
volume for N= 3 would be 52o'. It is obvious from
Fig. 11 that, for any argon temperature T & 15 K
(kT/e & 0.125), this small box size would interfere
with the cluster's behavior. In order to make
comparisons with the MD work, ' we have extrapo-
lated our results for smaller clusters to N=15.
Figure 2 shows that T~(15)= 50 K for argon
(kT/e =0 416'T) T.here i.s no evidence of gaseous
state above 50 K in the MD results' because the
small confining volume acts to hold the cluster
together, resulting in a well-defined internal en-
ergy. It is wrong to construe properties, derived
in this manner, as that of a stable bound-state
cluster. Above T~, the MD results must cor-
respond instead to an artificially constrained gas.
Other points of disagreement are that no sharp
solid-fluid phase transition is observed, contrary
to the evidence summarized in Figs. 1 and 9 and
to Burton'; nor do the energies agree well. At
25 E our results give E/Ne = -2.85 for N= 13, al-
most identical to the MD' results for N = 15
(E/¹= -2.82). Again, an extrapolation of Fig. 1

to N=15 indicates that we would claim a sub-
stantially greater binding energy.

In the limit of 0 K, the normal-mode bond lengths
and internal energy, calculated by Burton" for
argon with N= 13, do not agree with our results
and consequently, not with Hoare and Pal" either.
Since thermodynamic properties are calculated
using the 0-K normal-made frequencies, which
in turn depend upon the 0-K bond lengths, the
numerical accuracy of Burton's work is open to
question. Based upon our results, the normal-
mode calculations above Ts(N) are surely meaning-
less. The anomalous behavior reported' for the
entropy and free energy, at temperatures in ex-
cess of Ts(~), is undoubtedly an artifact of the
attempt to use normal-mode methods in a fluid
regime. The situation is even more critical than
this, however. A simple calculation shows" that
a harmonic normal-mode analysis is valid only if
( ~ u, ~) & 0.06R„, where R„=1.12o is the nearest-
neighbor separation. An inspection of Fig. 9
shows that, with N=13, ( ~u, ~) = 0.06R„at an argon
temperature T = 33 K, the normal-mode analysis
is, therefore, not justifiable unless T& 33 K.
More precise limits of validity necessitate a de-
tailed calculation of anharmonic contributions.
As shown in Fig. 3, the bond length distribution
and hence the frequency spectrum are temperature
dependent even at the lowest temperatures. Pre-
vious works have not been capable of accounting
for this effect. '

In conclusion, we again emphasize the impor-
tance of a correct description of the boundary
conditions. If artificial boundaries are used, they
must not be allowed to interfere with the dynam-
ical behavior of the aggregate.

One of the more surprising results of this work
is the slow rate at which system properties ap-
proach bulk behavior as the cluster size is in-
creased. This is particularly evident in Figs. 2

and 9 for the liquid-gas transition and the binding
energy per atom, as a function of N.

The biased random-walk method has proved to
be a valuable tool, particularly in determining
the structures of small aggregates at different
temperatures, the existence and character of
solid-liquid and gas-liquid phase transitions, and
in providing a basis for calculating other prop-
erties, such as specific heats, free energies,
entropies, etc. Calculations of these latter quanti-
ties are in progress.

A valid criticism of this and all other work cited
herein is the neglect of zero-point motion. Al-
though it is of negligible importance for Xe and
Kr, its neglect introduces calculational errors
on the order of 10% for some argon properties at
low temperatures. ' At higher temperatures,
thermal effects tend to mask out the zero-point
motion.
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