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Mixture of hard spherocylinders and spheres in the virial expansion
0

Goran Agren*
Department of Chemistry, Georgetown University, 8'ashington, D. C. 20007

(Received 23 May 1974)

A mixture of hard spherocylinders and spheres is studied in a virial expansion. The introduction of
spheres into a partially aligned system of spherocylinders induces, via a small two-phase region, a

transition to an isotropic phase. The dependence of this transition upon the size of particles is studied.

I. INTRODUCTION

As is well known, the theoretical predictions for
pure liquid crystals by the lattice model and the
virial expansion' are qualitatively similar while
quantitatively different. Mixtures of mesomorphic
substances have been studied with the lattice model
by Peterson, Martire, and Cotter' and by Alben. '
Agren and Martire' recently studied the effect of a
nonmesomorphic substance on the nematic-iso-
tropic transition using the lattice model. In this
paper we report the results for the same system,
but studied in a virial expansion.
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is the excluded volume between two spherocylinders
pointing in directions 0 and Q', respectively, and

y is the angle between 0 and O'. We make one
more simplification, namely, replacing isinyi in

Eq. (2) by sin'y. This has very little influence
on the results, ' but simplifies the calculations con-
s iderably.

The distribution function f (0) is determined by

II. MODEL

Our system consists of n spherocylinders with
diameter D and total length L+D and nz spheres
with diameter d contained in a volume V. The only
forces between the particles are that the particles
are impenetrable. Let f (0) be the distribution
function for the long axis of the spherocylinders.
Following Onsager' we can then write down the
following expression for the Helmholtz free energy
I', truncating after the second virial coefficient,

p
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the condition that the Helmholtz free energy must
be stationary with respect to variations of f (0).
Using the modified form of Eq. (2), straightforward
calculations give

f (0) = g exp)2(n/V)DL'S cos'8], (3)

where S is the order parameter defined through

S = —,
'

dQ f (Q)(3 cos'6 —1) (4)

and ( is a normalization factor. It is easily shown

that Eqs. (3) and (4) also make the Gibbs free
energy stationary. If we had used the exact form
of Eq. (2), we would have obtained a nonlinear

integral equation for f (0) instead of Eq. (3). Equa. -
tions (3) and (4) always have the solution S =0,
f(0) =1/4)) (an isotropic phase), and this is the

only solution for sufficiently low densities and

sufficiently short rods. Above some critical den-

sity, which depends upon the length of the rods,
two new solutions 0 &S, &S, & 1 appear (an aniso-
tropic phase), where the solution S, corresponds
to a maximum and the solution S, to a minimum in

the free energy. At some still higher density

S, =0, thus leaving us with only two solutions S =0
and S =S,.

III. RESULTS

In systems of hard particles only the ratio of the
temperature and pressure appears as an indepen-
dent variable. Therefore in what follows we will

assume that the pressure is held constant and that
variations in the temperature-pressure ratio are
due to variations in temperature only. In particu-
lar, we will be concerned with the reduced tern-
perature &f&* =T/T„, , where T~, is the transition
temperature for a pure rod system. The effect of
the insertion of the spherical solute molecules is
to lower the transition temperature. We also find,
in addition to the usual nematic and isotropic
phases, a small two-phase region. The limits of
this two-phase region were determined by equating
the chemical potentials of the rods and the spheres,
respectively, in the two phases. The transition-
temperature depression at the limit between the
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nematic phase and the two-phase region can be
represented by -sf*/sx, or -Bp*/Bv„where x,
is the mole fraction of solute and v, the solute
volume fraction of the total occupied volume. For
small temperature depressions (P*~ 0.95),
—8 &(&*/Bx, and -Bg*/Bv, are nearly independent of

[p*(x,) at the two-phase boundaries is slightly
convex. ] They were calculated using a least-
squares fit to the concentrations at different p*
(i.e., &f&* =0.990, 0.980, 0.971, 0.962, 0.952, 0.943,
and 0.935). They are displayed in Fig. 1 as a func-
tion of d/D for L/D =5 and 10. Qualitatively as
well as quantitatively they differ very little from
the same curves for the lattice model. In some
other respects, too, there are similarities to the
lattice model. The order parameter at the transi-
tion is virtually independent of solute concentra-
tion. The largest variations are from 0.540 for
L/D =5 and 0.585 for L/D =10 in the pure rod sys-
tem to 0.563 and 0.601, respectively, for Q*
=0.935 and d/D =2. In the lattice model it was
found that the extension of the two-phase region,
in mole-fraction terms, at a fixed reduced tern-
perature was nearly independent of the size of the
solute molecules and could be expressed by the
function

d4
dx

2.0

d4
dv

40.0

30.0

1.0 20.0

0.5 10.0

model for d/D =1.0 and 54% at d/D =2.0. For
L =10 the same variation is from 23% to 37%. In

view of the above-mentioned difficulties we think
this is a reasonable agreement, and one could
certainly improve upon it by playing around a little
with the sizes.

Thus the interesting conclusion to be drawn from
the comparison between the lattice model and the
virial expansion is that the responses of the two

models to the introduction of a solute are mostly

~x, = ~(1 —y*). (5) 0.0
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The values of K are given in Table I. In the lattice
model v =0.30 for L/D =5 and 0.47 for L/D =10.

The volume fraction of the total volume occupied
by rods at the transition varies by less than 1.5%,
being 0.633 for L/D = 5 and 0.307 for L/D =10 in a
pure rod system, when d/D and P* are varied,
which is also found in the lattice model.
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IV. DISCUSSION

The agreement between the theory and experi-
ments, which is fairly good, is discussed else-
where. ~

The main point we want to stress is the behavior
of the lattice model and the virial expansion with

respect to the solute. Although the relative density
changes at the transition differ by up to a factor of

2, the density changes are in both cases almost
(less than 5% variation) independent of the solute
concentration. The degree of order in the two

models is quite different, but the variation with
added solute is the same. To compare dP*/dx,
and dQ*/dv, from the virial expansion with those
from the lattice model is less trivial, however.
The problem is that because of the different shapes
of the particles in the two models there is no ob-
vious way to relate exactly their sizes. But if we

compare directly the values of Fig. 1 for I = 5 we

see that dQ*/dx, is 23% greater in the lattice
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FIG. 1. (a) —BP*/8v& and —BP*/~x& at the nematic-
two-phase boundary for the virial expansion as a function
of solute size. Curve a: ~*/&v2, I =10; curve b:
8$*/Bv2, L =5 curve c: 8p*/&x2, L =5; curve d: 8ftt*/

x2, & =10. (b) Same as for (a) but for the lattice model
(from Ref. 4, where L is the length-to-breadth ratio of
the rods and D is ratio of the cube side to the breadth of
the rod).
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TABLE I. Coefficient for the extension of the two-
phase region for different solute and solvent sizes.

L/D= 10

0 4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.316
0.330
0.343
0.354
0.365
0.373
0.382
0.389
0.400

0.370
0.382
0.392
0.403
0.413
0.423
0.432
0.441
0,450

very similar and always much closer than the re-
sults for the pure rod systems, which often show
great quantitative differences due to the use of
discrete orientations in the first case and a con-
tinuous range of orientations in the second. Qr,
expressed differently, if A. , and A„, is a property
of the system at the phase transition (e.g. , the
order parameter) calculated in the lattice model
and the virial expansion, respectively, then A,
and A.„, can differ considerably, but derivates of

the type sA, „/sx, and BA„,/sx, are nearly equal.
The similar predictions of the lattice model and

the virial expansion can be contrasted with those
made by Humphries, James, and Luckhurst, ' who
studied the same system using a mean field treat-
ment of the Maier-Saupe type. They, of course,
also obtained the same constancy of the order
parameter at the transition, but, on the other
hand, they predict dQ*/dx, = -1 for all solvents
and solutes. This and other aspects of their theo-
ry are discussed more extensively elsewhere. '

With the relatively high densities, p =0.633 at
the transition for L/D =5 and 0.307 for L/D =10,
a virial expansion that only retains the second
virial coefficient is of course questionable. We
think that it is, however, justified by its close
agreement with both experiments and the lattice
model. The latter is perhaps not so surprising
since both describe systems of hard rods in a
mean field approximation.
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