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Mesoscopic non-Hermitian skin effect
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We discuss a generalization of the non-Hermitian skin effect to finite-size photonic structures with neither
gain nor loss in the bulk and a purely real energy spectrum under periodic boundary conditions (PBCs). We
show that despite being Hermitian in the bulk, such systems can still have significant portions of eigenmodes
concentrated at the edges and that this edge concentration can be linked to the nontrivial point-gap topology
of the size-dependent regularized PBC spectrum, accounting for the radiative losses due to photon emission
through the edges. We focus on a particular example of an array of atoms chirally coupled to the waveguide, but
our results are also applicable to other systems with losses through the edges.
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Introduction. The non-Hermitian skin effect (NHSE) is
manifested by the concentration of the eigenmodes at the edge
of a finite structure under open boundary conditions (OBCs),
that is related to the nontrivial point-gap topology under pe-
riodic BCs (PBCs) [1–7]. The energy spectrum drastically
changes under the OBCs, contrary to the usual Hermitian
systems. A paradigmatic example is the Hatano-Nelson model
of a one-dimensional lattice with different left- and right-
tunneling coupling constants t1 �= t2 [8] [see Fig. 1(a)]. Its
PBC spectrum has a loop in the complex plane with a nonzero
area, that under OBC collapses into a line corresponding to
edge-concentrated eigenmodes.

Particular realizations of NHSE can be very different, such
as tight-binding lattices, photonic crystals [9,10], continuous
media [11], and even lattices in synthetic dimensions [12].
One of the simplest inherently non-Hermitian setups is an
optical cavity. Indeed, if the cavity has a finite size and the
permittivity of its material is finite, there is always a nonzero
possibility of the photon emission in the far field [13]. This
translates into the finite quality factor and non-Hermitian
effective Hamiltonian H for the cavity eigenmodes. Here,
however, we would like to stress a difference between the non-
Hermiticity arising due to the emission into the far field and
the non-Hermiticity because of the internal loss or gain (as in
the Hatano-Nelson case). In the former case the structure has
no loss or gain in the bulk. It becomes effectively Hermitian
in the limit of infinite size, and its energy spectrum is real
valued. On the other hand, as long as the structure is finite, it
is still non-Hermitian. We find that despite the absence of bulk
gain or loss, periodic chiral Hermitian photonic structures can
still exhibit an analog of the NHSE, but a very special one:
The imaginary part of the eigenfrequencies and the localiza-
tion length will depend on the structure size. We term this a
mesoscopic NHSE.

As a particular example we consider the mesoscopic NHSE
in a chiral waveguide quantum electrodynamics (WQED)
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setup, that is, an array of natural or artificial atoms, chirally
coupled to the waveguide [14–18]. An infinite periodic array
has a purely real PBC spectrum and neither loss nor gain in
the bulk [see Figs. 1(b) and 1(d)]. When a number of emitters
is finite, an array acquires radiative losses due to the photon
escape into the waveguide, so the OBC spectrum becomes
complex. These OBC eigenmodes can also concentrate at one
edge when the structure is chiral. We aim to link this concen-
tration to the nontrivial point-gap topology of dispersion law
ω(K ) for complex wave vectors K . To this end, we propose a
regularization of the ω(K ) dependence for a finite structure.
The real-valued PBC spectrum is dramatically modified by
this regularization. It becomes complex and encircles the OBC
spectrum [see the horseshoe contours in Fig. 1(d)], just as in
the usual NHSE case of Fig. 1(c).

While such arrays are known to have eigenmodes concen-
trated at the edges [19–24], we believe that the size-dependent
connection to the NHSE is not yet fully understood. In partic-
ular, while Ref. [20], with one of us as a coauthor, analyzed
the eigenmodes in great detail, this work has not mentioned
any topological spectral features. References [23,24] consid-
ered a very similar setup for magnons that, however, had
a nonzero internal nonradiative loss. References [21,22] did
discuss NHSE in substantially different chiral atomic systems,
where the primary loss mechanism was not at the edges.
Thus, despite significant progress, the general consequences
of having only radiative loss at the edge for NHSE and for
non-Hermitian physics apparently remain unclear.

Model. We consider single-excited eigenstates in an array
of N periodically spaced emitters described by the effective
non-Hermitian Hamiltonian [19] H = ∑N

m,n=1 Hm,nσ
†
n σm with

σ †
m being the raising operators and

Hm,n = ω0δm,n − i

⎧⎪⎨
⎪⎩

γ→eiϕ|m−n|, m > n,
γ→+γ←

2 , m = n,

γ←eiϕ|m−n|, m < n,

(1)

where γ→ = 2γ1D/(1 + ξ ) and γ← = 2γ1Dξ/(1 + ξ ) are the
spontaneous emission rates into the waveguide in the forward
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FIG. 1. (a), (b) Schematics of (a) the Hatano-Nelson model with
spatially distributed gain and loss and (b) a chiral waveguide-QED
model with radiative loss on the edges. (c), (d) Spectra under peri-
odic boundary conditions (PBCs, colored lines) and open boundary
conditions (OBCs, black dots) in these models. The Hatano-Nelson
model corresponded to t1 = 1 + 0.5i, t2 = 1 + i, and N = 102 sites.
Two horseshoe-shaped lines in (d) are regularized PBCs for N = 101
and N = 351. Magenta arrows indicate how the spectrum transforms
when N grows. The inset illustrates the complex K contour used
for regularized PBCs avoiding the two poles at K = ±ϕ (blue dots).
Calculated for ξ = 1/2 and ϕ = π/2.

and backward directions. The phase ϕ = ω0d/c is the phase
gained by light between the two emitters. We use the Marko-
vian approximation, valid for γ1D � ω, so that the frequency
dependence of ϕ is ignored. Notably, the Hamiltonian Eq. (1)
features long-range photon-mediated coupling between dis-
tant emitters. The parameter ξ is the ratio of emission rates
in the forward and backward directions. Under the PBC, the
Hamiltonian matrix Hmn has the eigenstates ψm = eiKm with
the eigenenergies

ω(K ) = ω0 + γ1D
sin ϕ + χ sin K

cos K − cos ϕ
, (2)

where

χ = 1 − ξ

1 + ξ
.

Importantly, the energy spectrum Eq. (2) is purely real. It
features a singularity near the light line, K = ϕ, and a polari-
tonic band gap near the resonance frequency ω0. We can also
rewrite the dispersion law in the effective-medium approxima-
tion, assuming ϕ � 1, K � 1, that leads to K2 = ϕ2ε(ω, K )
where εeff (ω, K ) = 1 + (2γ1D/ϕ)(1 + χK )/(ω0 − ω) is the
resonant permittivity. The breakdown of the time-reversal
symmetry for χ �= 0 is manifested by the linear-in-K term in
εeff .

The OBC spectrum can be obtained either by diagonalizing
Eq. (1) or by solving the Eq. [20,25]

r↪→r←↩e
i(K+−K− )(N−1) = 1, r ↪→

←↩
= −e±iK± − eiϕ

e±iK∓ − eiϕ
, (3)

where r↪→/←↩(ω) are the reflection coefficients of the po-
laritons from the inside of the structure and K±(ω) are the
solutions of Eq. (2). Equation (3) describes standing waves
in the cavity made of resonant chiral material with the (ef-
fective) permittivity εeff . The chiral WQED is related to the

nonreciprocal waveguide system [26], that has attracted a lot
of interest [27–30].

Mescoscopic NHSE. Figure 2 presents the eigenstates and
the OBC spectra calculated for the finite arrays with N =
101 emitters for two different asymmetry parameters ξ = 0.5
[Figs. 2(a) and 2(b)] and ξ = 0.05 [Figs. 2(c) and 2(d)]. In
both cases, the structures feature superradiant modes with a
much larger decay rate than the single atom decay rate γ1D

[20].
The eigenmodes in Figs. 2(a) and 2(c) are ordered by the

decreasing radiative decay rate. It is clear that they become
pinned to the edges for a higher decay rate. In the more chiral
case [Fig. 2(c)], a large fraction of eigenmodes is concentrated
at just one edge, which looks like the hallmark of the NHSE.
The eigenmode spatial profile is given by an exact analytical
Eq. [20]

ψm ∝ eiK+(m−N ) + r←↩e
iK−(m−N )

∝ eiK+(m−1)r↪→ + eiK−(m−1), (4)

where z± = exp[iK±(ω)] are found by inverting Eq. (2) at the
mode eigenfrequency ω and can be approximated by

K± ≈ ±π

2
+ (χ ∓ 1)

γ1D

ω − ω0
. (5)

Equation (5) shows that modes with larger radiative losses
are also the more localized modes, that is, with a larger
| Im K±|. The difference between Im K+ and Im K− also in-
creases with chirality. This results in the concentration of the
brightest eigenmodes (that is, with the largest radiative decay
rate − Im ων) at one particular edge (see also Supplemen-
tal Fig. S3 [31] for more detail). For |ω − ω0| 	 γ1D and
ϕ = π/2 we can obtain from Eq. (3) an approximate OBC
spectrum

ω±
ν − ω0 = − iNγ1D

Wν (±2N/
√

1 − χ2)
, ν = 0,±1, . . . , (6)

of the most superradiant modes, which is shown by open
circles in Figs. 2(b) and 2(d) and well describes the numerical
results. Here, Wν (z) is the Lambert function, satisfying the
equation WνeWν = z.

While the eigenmodes in Fig. 2(d) are concentrated at one
edge, there are two important distinctions from the conven-
tional NHSE case. First, only one of the eigenvalues z± ≡ eiK±

in Eq. (4) is larger than unity by the absolute value, and the
other one is smaller than unity. From now on, we will label
the larger eigenvalue z2 and the smaller one z1. Hence, the
eigenfunction ψm in Eq. (4) contains two exponents, localized
at the left and right edges of the structure. It is still prefer-
entially localized at just one edge, because the amplitudes of
these two exponents are different for nonzero chirality. This
is quite distinct from the conventional NHSE such as in the
Hatano-Nelson model, where |z1| = |z2| and either |z1,2| > 1
or |z2,1| < 1, with certain special exceptions for the case of
local perturbations or modification of boundary conditions
[32–35]. The conventional complex tight-binding model with
open boundary conditions will have |z1| = |z2| except at the
edge states as per the generalized Brillouin zone condition
[4]. A second difference is more subtle. Not only do we have
|z2| > 1 and |z1| < 1, but the values of z2 and z1 also depend
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FIG. 2. (a), (c) Eigenmodes and (b), (d) energy spectrum of the structure with N = 101 emitters and (a), (b) ξ = 0.5 and (c), (d) ξ = 0.05.
Solid circles correspond to the numerical solution, and open circles are calculated according to Eq. (6). The eigenmodes in (a) and (c) are
presented in descending order of the radiative decay rate − Im ω. The PBC spectrum is shown by colored lines in (c) and (d). The inset in
(d) schematically illustrates the complex K contour used for the PBC calculation. Calculated for ϕ = π/2.

on N . It follows from Eqs. (5) and (6) that − Im ω ∝ N/ ln N
and |z±| − 1 ∼ ln N/N for large N . Such behavior of z(N )
leads to the different scaling for the edge-localized states with
N . In the conventional case, the amplitude at the center of
the structure is exponentially suppressed as compared to the
one at the edge, |ψN/2/ψ1|2 = exp(−N/Lloc), where Lloc is the
localization length, independent of N . Here, however, we find
|ψN/2/ψ1|2 ∼ 1/N . This is why we term the considered effect
a mesoscopic NHSE. We note that this mesoscopic NHSE
is qualitatively different from the critical NHSE [33,35–37],
where |ψN/2/ψ1| = const(N ).

Mesoscopic versus conventional NHSE. We now consider
nonzero propagation losses in the waveguide. This means
setting Im ϕ > 0 in Eq. (1) so that the coupling ∝ exp(iϕ|m −
n|) becomes finite ranged. Then the PBC spectrum ω(K ) in
Eq. (2) becomes complex valued with a nonzero point-gap
winding number for χ �= 0 [23,24], enabling conventional
NHSE. Figure 3 describes how the OBC eigenstates depend
on Im ϕ and N . The color in Fig. 3(a) encodes the smallest
eigenvalue for the brightest state |z1| − 1 = min(|z+|, |z−|) −
1. The blue color corresponds to mesoscopic NHSE (|z1| < 1,
and |z2| > 1), and the red color corresponds to conventional
NHSE, where |z1| > 1, and |z2| > 1. Figures 3(b) and 3(c)
show the spatial profile of the brightest state for the two
representative cases of mesoscopic and conventional NHSE,
indicated in Fig. 3(a) by a circle and a diamond. It is clearly
seen that for the conventional NHSE the localization is much
stronger. Moreover, for the mesoscopic case, there exist two
components of the eigenstate, localized at the left and right

edges, although localization at the right edge is much more
obvious. These components are depicted by red and blue lines
in Fig. 3(c), and were calculated from Eq. (4). The insets in

FIG. 3. (a) Minimal value of |z(ω)| depending on the number of
emitter N and loss Im ϕ. The thin black line shows the boundary
between mesoscopic and ordinary NHSE at min |z| = 1. Two char-
acteristic points {N, Im ϕ} = {30, 0.05}, {100, 0.35} are indicated by
solid symbols. (b), (c) Symbols show wave functions |ψn|2 of the
states with largest − Im ω for two characteristic parameters in (a).
The red and blue lines show the two components of wave functions
∝|z1|2n and ∝|z2|2n, found from Eq. (4). The insets in (b) and (c) show
by red circles and blue diamonds the eigenvalues z2,1 = exp(iK2,1)
for the OBC spectrum in the complex z plane. The black circles
correspond to the Brillouin zone boundary, |z| = 1. Other calculation
parameters are Re ϕ = π/2 and ξ = 0.5.
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Figs. 3(b) and 3(c) show the complex values of z1,2 for all the
eigenstates. In the conventional NHSE, the values of z1,2 with
|z1| = |z2| form the generalized Brillouin zone (GBZ) [4,38]
that lies outside the unit circle, |z| = 1 [see Fig. 3(b)]. On the
other hand, for the mesoscopic NHSE, one has |z1| < 1 and
|z2| > 1.

Regularization of the PBC. Our central result is the link
between the observed mesoscopic NHSE and the analytical
properties of the PBC spectrum ω(K ) in Eq. (2). We start
by noting that the N → ∞ limit of infinite structure with
purely zero loss is not well defined. Even in vacuum, the
photon propagator 1/[(ω/c)2 − K2] has two poles at K =
±ω/c that have to be carefully treated. There are two similar
prescriptions, either deforming the integration path C in the
complex K plane or adding infinitesimal losses, that lead
to the same result: The integral is determined by just one
pole, corresponding to either the retarded or advanced Green’s
function [39]. Here, the dispersion law Eq. (2) has poles at the
reservoir eigenmodes, K = ±ϕ. Building on the same idea,
we rigorously prove in the Supplemental Material [31] that if
the contour C in the complex plane of z = exp(iK ) satisfies
the two conditions: (i) It surrounds only one of the poles and
(ii) it is inversion symmetric, that is, ∀z ∈ C also 1/z ∈ C (or,
equivalently, ∀K ∈ logC also −K ∈ logC), the image of this
contour in the frequency plane ω(C) has a nonzero point-gap
winding number around a certain reference energy ε only for
a chiral structure. In particular, the eigenmodes which decay
in time (which have Im ω < 0) correspond to the contour
surrounding the pole at exp(iϕ) (see Supplemental Figs. S8
and S9 [31]). Our proof essentially generalizes the theorem
in Ref. [38] for the waveguide-mediated coupling case. This
is needed because Eq. (2) has different analytical properties
compared to the tight-binding case. It is also relevant because
of the recent interest in expanding the non-Hermitian skin
effect to models beyond tight binding [43–45]. The winding
number of ω(C) − ε acts as a point-gap topological index.
One of the possible ways to construct C is to consider points
exp(iK ) ∈ C with complex K defined by

K = Re K − iδK (N ) sin Re K, −π � Re K < π. (7)

for the dispersion law Eq. (2). This is illustrated by the insets
in Figs. 1(d) and 2(d). Note that the contour for K goes below
one pole at K = +ϕ and above another pole at K = −ϕ.
This means that the contour C = exp(iK ) will encircle only
the pole at exp(iϕ). For each N we can choose δK (N ) and
obtain C with ω(C) encircling the OBC spectrum (in the chiral
case) or with a zero winding number (in the nonchiral case).
The ω(C) contour is exactly the horseshoelike regularized
PBCs shown in Figs. 1(a), 2(b), and 2(d). The gradient line
color encodes the value of Re K . For vanishing chirality, when
ω(K ) = ω(−K ), the horseshoe shrinks to a line with zero area
and for larger chirality it expands to a full circle [Fig. 2(d)].
The curves in Figs. 1(d) and 2 have been calculated for δK =
4/N . A more precise scaling is δK ∝ ln N/N , which reflects
the dependence of the z values on N , |z| − 1 ∝ ln N/N . We
stress that the winding number does not depend on δK or on
the particular choice of the regularization, even though the
regularization parameter δK in Eq. (7) to get ω(C) around
the OBC is not universal. This is because the regularized
PBC probes a deeper fundamental aspect, which is how the

FIG. 4. Riemann surface of the dispersion law ω(K ). Color en-
codes Re K . Dots show the values of K± for the eigenfrequencies of
the finite structure ω. The thick black line corresponds to the contour
K = Re K − i0.13π sin Re K. Calculation has been performed for
ξ = 0.5, ϕ = π/2, and N = 20.

modes sit on the complex Riemann surface of ω(K ). It is
shown in Fig. 4 together with the OBC energy spectrum and
the regularization path Eq. (7). The color of the Riemann
surface encodes the value of Re K . A clear distinction from
the conventional NHSE is that the Riemann surface consists of
the two leaves with the opposite signs of Im K , corresponding
to |z+| > 1 and |z−| < 1.

Summary. The summary of our results is sketched in Ta-
ble I. We distinguish between chiral and nonchiral structures
and also between the structures with and without internal loss
in the reservoir (Im ϕ = 0 and Im ϕ > 0). The latter are con-
ventional non-Hermitian structures. They have a well-defined
GBZ in the z plane, and the loop in the image of the Bril-
louin zone ω(BZ) is a signature of NHSE. For structures
without internal loss, the distinction is more subtle. Naive
PBC consideration predicts that the GBZ coincides with the
Brillouin zone and ω(BZ) − ε has zero winding independent
of chirality. The spectrum of eigenvalues (dotted magenta line
in Table I) depends on the structure size and is not described

TABLE I. Schematic summary of the results for the complex
spectra in z = exp[iK (ω)] and ω planes. The thin black circles in
the z plane correspond to the BZ, |z| = 1, and the thick red circle to
the GBZ. The dotted magenta line corresponds to OBC eigenstates,
and green and cyan lines illustrate the contour C = {C1, C2} and its
image ω(C).
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by the conventional GBZ. However, the winding number of
the regularized contour C = {C1, C2} image ω(C) still acts as a
signature of a mesoscopic NHSE.

Outlook. Our results are not restricted to the waveguide
quantum electrodynamics platform but apply to a broader
class of non-Hermitian periodic systems. Namely, we find that
the mesoscopic NHSE is present even for a relatively weak
non-Hermiticity when the losses (or gain) are present only at
the edges and not in the bulk. Formally, we mean here by
weak non-Hermiticity that rank(H − H†) � rank(H + H†).
For example, for the Hamiltonian Eq. (1) rank(H − H†) = 2,
corresponding to the two loss channels [46]. In the Supple-
mental Material [31] we present two tight-binding models
with edge losses, also exhibiting mesoscopic NHSE. The
first model describes an array chirally coupled to a one-
dimensional infinite lattice (playing the role of waveguide)

and the second model describes a lossless array of sites
with nearest-neighbor coupling linked to the lossy reservoirs
at the edges (see also Refs. [34,35] considering localized
non-Hermitian impurity). In the second model, the system
is reciprocal and hence does not exhibit nontrivial point-gap
topology even after regularization. Thus, the origin of the
mesoscopic NHSE there may differ from the WQED case and
requires further investigation. We can also expect mesoscopic
NHSE beyond one-dimensional models, for example, in chiral
all-dielectric metasurfaces [47,48].
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