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Two-mode squeezing in Floquet-engineered power-law interacting spin models
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We study the nonequilibrium dynamics of a quantum spin-1/2 X XZ model confined in a two-dimensional bi-
layer system, with couplings mediated by inverse power-law interactions, falling off with distance r as 1/r%, with
spatiotemporal control of the spins enabled via local fields. An initial state of spins with opposite magnetization
in the two layers is dynamically unstable resulting in exponential generation of correlated pairs of excitations.
We find that scalable generation of entanglement in the form of two-mode squeezing between the layers can
generically be achieved in power-law models. We further demonstrate that spatially temporally engineered
interactions allow one to significantly increase the generated entanglement and in fact achieve Heisenberg
limited scaling. This work is relevant to a wide variety of experimental atomic, molecular, and optical platforms,
which realize power-law spin models, and demonstrates the advantage of spatiotemporal control to maximize
the generation of metrologically useful entanglement, with potential applications in quantum-enhanced sensing.
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Introduction. Long-range interacting spin models realized
in quantum gases of polar molecules [1-3], magnetic atoms
[4], Rydberg atoms [5,6], or trapped ions [7] are emerg-
ing as promising platforms for quantum simulation [7-10],
computation [11-13], and quantum metrology [14]. These
systems with the advent of quantum gas microscopes and
tweezers [15-20] now combine the presence of long-range
interactions with the capability to control, manipulate, and
measure at the single-particle level in a site-resolved fashion.
In addition to spatial control and resolution the ability to
design the interactions is required to realize fully programable
quantum simulators. A particularly powerful approach to the
engineering of spin interactions is time-periodic driving or
Floquet engineering [21,22] and control of the interactions via
pulse sequences [23,24]. Indeed, this temporal control enables
the desired programability of the interactions as demonstrated
in cavities [25], Rydberg atoms [26-28], polar molecules
[18,29], and trapped ions [30].

One particular direction in the quest for quantum ad-
vantage enabled by these advances is the enhancement of
sensitivity of measurements via entanglement in the form
of spin squeezing [31,32]. While spin squeezing had been
achieved for infinite-range interactions and via quantum non-
demolition (QND) measurements [33—38], only recently have
experiments demonstrated this for finite-range interactions in
trapped ions and Rydberg arrays [39-42]. The majority of
these works has thus far focused on homogeneous globally
collective initial states interacting via homogeneous interac-
tions and global controls, not exploiting the advantage offered
by fully controllable quantum platforms.

We go beyond this paradigm and demonstrate how spa-
tiotemporal control, i.e., spatially dependent temporal control,
applied to spatially patterned, structured initial states con-
fer additional tangible benefits for entanglement generation.
Specifically, we demonstrate how to achieve Heisenberg lim-
ited scaling of two-mode squeezing via Floquet-engineered
spatially anisotropic interactions in bilayers of power-law
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interacting XXZ spin models. Two-mode squeezing (TMS)
[43-45] is a process generating entanglement via the produc-
tion of pairs of particles, a process underlying phenomenona
from the fundamental in the Einstein-Podolsky-Rosen (EPR)
paradox [46], over Unruh thermal radiation [47] and the
Schwinger effect [48,49] to the applied in parametric am-
plification in quantum optics [43]. Two-mode squeezing is
well established in photonic systems [43,50] and has been
realized in thermal gases [51,52], and in Bose-Einstein con-
densates of ultracold atoms interacting via contact interactions
[53-59], where it has been successfully used for EPR steering
[60-62]. More recently it has been proposed as a mechanism
to generate metrologically useful entanglement between spin
ensembles in cavities via light-mediated interactions [63] and
in dipolar systems [64,65]. There long-range interactions nat-
urally create entanglement in spatially separated ensembles,
with the additional benefit of single-site single-particle control
over these entangled states.

Here, we investigate the two-mode squeezing dynamics
of spin-1/2 bilayers with power-law interactions, scaling as
r~* with the distance r. We find that finite-range interactions
(¢ =1,2,3) achieve the same amount of squeezing as
infinite-range (o« = 0) interactions for sufficiently widely sep-
arated layers. By Floquet engineering spatially anisotropic in-
teractions adapted to the initial state and desired entanglement
dynamics we improve the 1/+/N scaling of the sensitivity in
system size N to the ultimate Heisenberg limit of 1/N.

Our work thus opens up new opportunities to exponentially
generate metrologically useful entanglement in a variety of
platforms including Rydberg atoms (o = 3, 6) [5,6], polar
molecules (o = 3) [1-3], magnetic atoms («¢ = 3) [4], and
trapped ions (1 < « < 3) [7], wherein single site [18], layer
selective control [66], and Floquet engineering [23,26,29]
have been demonstrated and which can realize bilayer struc-
tures [29,66-68].

Model. We consider a two-dimensional bilayer of spins
interacting via long-range interactions as shown in Fig. 1(a).

©2024 American Physical Society
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FIG. 1. (a) Illustration of spin-1/2 model confined in a bilayer in-
teracting via power-law interactions with Ising V* and spin-exchange
V+ and intralayer (AA, BB) and interlayer (AB) terms. Spins can
be locally addressed via fields A;(z). (b) Layer pulse sequence in
toggling frame (see text) to symmetrize intralayer Ising and cancel
interlayer Ising interactions. (c) Bloch sphere of mixed quadratures
that are squeezed by the interplane spin-exchange interactions.

The two layers, denoted as A and B, both have a square
geometry with lattice spacing aj, and are separated by a
tunable distance az. The spins have two internal states and
the dynamics is governed by a spin-1/2 XX Z Hamiltonian
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where i, j are three-dimensional indices (iy, iy, iz), specifying
the layer-index iz and positions iy, iy in the layer of size
L x L with N = L? spins in each layer. The spin operators
5 = &i“ /2, with the Pauli matrices 6", act on the spin at
site . We consider power-law interactions of the form V;; =
[ri —r;|™% and V| and V; describe the relative strengths of the
spin-exchange and Ising interactions. While these interactions
only depend on distance to appeal to a range of systems,
spatial anisotropy, as natural for dipolar (¢ = 3) interactions
and studied before [65], is not expected to change the results
of this work. We include time and position dependent fields to
control the spins in the second line of Eq. (1).

Engineering optimal two-mode squeezing. Starting from
oppositely polarized layers, §,7 = Zien 5; = £N/2Z, the goal
is to utilize spin-spin interactions to generate entangled pairs
of collective excitations between the layers.

The initial state is an eigenstate of intralayer Heisenberg
(8; - 5j) interactions, which will protect the collective layer
spin by energetically penalizing noncollective excitations. In
contrast, the interlayer spin-exchange interactions will create
pairs of flipped spins and the interlayer Ising interactions will
energetically penalize the creation of spin flips [64,65], even-
tually arresting pair production. Thus Heisenberg intralayer
interactions are required to realize collective dynamics (for
finite-range interactions), whereas Ising interactions between
layers are detrimental. This suggests two strategies: (i) uti-
lizing Heisenberg interactions and canceling the interlayer
Ising interactions to leading order by a static field or (ii) fully
removing only the Ising interlayer interactions, while keeping
Heisenberg intralayer interactions.

The first strategy corresponds to fully symmetric Heisen-
berg interactions (V, = V) and a staggered layer-dependent z

field, i.e.,

Ay =1/2) V55 +h(S; - 53). (2)
ij

where the local z field exactly cancels the energy cost
due to the interlayer Ising interactions of creating one col-
lective spin flip in each layer on top of the initial state,
h=1/2N) Y ica jep Vii = NVave/2-

The second strategy corresponds to engineering
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where the first term describes intralayer Heisenberg and the
second term interlayer spin-exchange interactions.

We achieve this by extending interaction design via global
pulses [23] to layer-dependent pulse sequences utilizing local
control of the spins. Starting from Ising interactions, 553,
applying a rotation from z to direction «(8) to the first (sec-
ond) spin transforms the interactions to $73”. The resulting
interactions under a sequence of rotations can therefore be
represented by the orientation of the z operator during the kth
step of the sequence, i.e., in the toggling-frame representation
[23]. Using the six step layer-dependent sequence illustrated
in Fig. 1(b), Ising interactions are successively transformed
into xx, yy, and zz interactions in steps 1 to 3, both within and
between the layers. Crucially, in step 4 by applying different
pulses to layers A and B we obtain positive intralayer zz,
but negative interlayer zz interactions, followed by yy and
xx interactions in steps 5 and 6. Thus this sequence fully
symmetrizes the intraplane Ising to Heisenberg interactions
and only generates xx + yy interlayer interactions from the
original interlayer Ising interactions. The average Hamilto-
nian then is Eq. (3) with an overall prefactor of V, /3, which is
absorbed in V.

In the following we will work directly with the target
Hamiltonian, rather than the explicit pulse sequence. We have
checked convergence of the dynamics under this multistep
Floquet protocol to the desired dynamics as a function of the
Floquet period [69], which shows good agreement if the total
sequence takes about half of a nearest-neighbor interaction
time, 7 =~ 0.6Vxn/h, which is well within reach of experi-
mental platforms [23,29].

For both scenarios the fully collective regime can be
understood in terms of Holstein-Primakoff bosons [70] of
the collective layer spins, which in first order are S5 =
—N/2+d'a, ST =a,S; =at, 5 = N/2 — b'b, Sy = b,and
S; = b'. In terms of these we obtain Hpys = N Vavg(fﬂl;T +
ab)/2, which is the desired two-mode squeezing Hamiltonian
[43—45]. The number of generated entangled excitations nex =
ata +b'h = S5 — S5 + N within TMS is predicted to grow
exponentially nex = 2 sinh?[N Vavet /(21)] [43-45]. The gen-
erated entanglement results in squeezing of mixed quadratures
between the collective layer spins. The squeezed quadratures
correspond to S} + S, and S — Sy, while the antisqueezed
quadratures correspond to S5 — Sy and S + Sj. These show
exponentially decreasing or growing variances Var[OF] =
N/2 e*NVoel/l WWe illustrate these quadratures on the Bloch
sphere for the initial state, as well as the squeezed state in
Fig. 1(c).
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FIG. 2. Pair creation and two-mode squeezing via Floquet-
engineered spatially anisotropic interactions. (a) Number of created
excitations ne = S5 — S; + N. (b) Time evolution of variance of
the squeezed quadrature. In both panels for the Floquet-engineered
model (solid lines, V) and for the staggered field model (dashed,
h) for a range of interaction power-law exponents « at fixed layer
distance ay = 2.

The main difference between these two approaches is that
in the staggered field case the interlayer Ising interactions
were canceled by the & field up to quadratic order, whereas
in the Floquet-engineered case the Ising interactions were
removed at the Hamiltonian level. Thus, in quadratic order,
both approaches are equivalent; however, we will show that
the second approach provides dramatic improvements over the
first.

To substantiate the arguments based on the mapping to
bosons in the collective limit we simulate the quantum many-
body nonequilibrium dynamics of the spin model using the
discrete truncated Wigner approximation (dTWA) [71,72] for
up to 2N =2 x 70? = 9800 spins. This semiclassical phase
space method is expected to be good in the collective regime
and has been shown to be accurate even for nearest-neighbor
interactions in two-dimensional systems [73]. We provide
benchmarks for the current model in the Supplemental
Material [69].

Pair creation and squeezing. In Fig. 2(a) we show the
generated excitations for infinite-range (¢ = 0) and finite-
range (o = 3) interactions for the staggered z field (dashed)
and the Floquet-engineered model (solid). The Floquet model
for infinite-range interactions creates the maximal number
of possible excitations, nex = 2N, fully flipping the layer
spin, in contrast to the staggered field case which saturates
at a lower number due to the detuning of the pair creation
process at finite number of excitations. The same advantage
is observed for finite-range interactions, with the Floquet
model reaching a significantly higher number of generated
pairs. The fully collective model (o = 0) here follows the
TMS prediction (not shown), until corrections due to the
finite spin length become relevant. In contrast, the dipolar
case (o = 3) at this layer separation azy = 2 quickly devi-
ates, which we understand to be due to noncollective spin
dynamics as we will confirm below [69]. We next investi-
gate the squeezing behavior under the same circumstances. In
Fig. 2(b) we demonstrate the exponential decrease of the vari-
ance of the squeezed quadratures, Var[S} + Sy] = Var[S) —
Sg] = Var[O~], for different interaction ranges. We see that
the spin dynamics follows the two-mode squeezing prediction
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FIG. 3. Collective two-mode squeezing with finite-range inter-
actions. (a) Length of collective layer spins (SQA2 + 532) with S‘Af(B) =
> icaw 5i - (b) Time evolution of variance of the squeezed quadra-
ture. In both panels for the Floquet-engineered model (solid lines,
V) and for the staggered field model (dashed, /) for a range of layer
spacings az with fixed power-law exponent o = 3.

Var[O~] = N/2 e NVee! /7 yp until a saturation point of mini-
mal variance. Interestingly, the noncollective spin dynamics of
the finite-range model observed in the increased pair number
does not seem to affect the variance, suggesting that noncol-
lective spin excitations, affecting the spin polarization, but
not the variance, occur on top of the collective squeezing
dynamics. While all models show identical short-time evolu-
tion, the saturation point depends on the model and interaction
exponent «. The Floquet model achieves a significantly lower
variance and thus a larger amount of squeezing and sensitivity
for all interaction ranges. This is most notable for the infinite-
range case, where we observe a two orders of magnitude
improvement, but holds true for all interaction ranges «. The
reduced improvement for finite-range interactions is again
explained by noncollective dynamics as we show next.
Achieving the infinite-range limit. Despite the significant
improvement of the achievable squeezing using the Floquet
protocol, we observe that the finite-range interaction cases do
not saturate to the infinite-range model. This is due to the
strong spatial inhomogeneity of the interlayer interaction at
short interlayer separations az = 2 and the resulting noncol-
lective excitations. We therefore explore the tunability of the
layer spacing az to overcome this limitation in Fig. 3 in the
case of dipolar interactions. We first study the collectiveness
of the dynamics in terms of the length of the layer spins,
(S‘% + 3?3 ), in Fig. 3(a), demonstrating that as the layer spacing
increases the dynamics changes from a regime in which the
collective layer spin rapidly dephases at short layer distances
to fully collective behavior at larger spacings, where the layer

spins stay fully collective with §,72 = N?/4. We note that as
expected longer-ranged interactions (smaller «) achieve the
collective regime for shorter layer distances; we provide data
for « = 1, 2, 3 in the Supplemental Material [69]. As a direct
consequence in Fig. 3(b), which shows the time evolution
of the variance of the squeezed quadrature, we observe that
the achievable squeezing increases with layer distance. We
note that the variance is actually more sensitive than the
spin length, showing increases of the minimal squeezing in a
regime where the spin length appears fully collective already.
Most importantly, the achievable squeezing in the dipolar
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FIG. 4. Heisenberg scaling of sensitivity. Main panel: system
size scaling of scaled sensitivity. Different symbols indicate exponent
of interactions «, filled symbols for Floquet-engineered model (V),
and open symbols for staggered field (). Solid lines are a guide to
the eye for 1/4/N scaling (light gray) and Heisenberg 1/N scaling
(dark gray). Inset: time dependence of scaled sensitivity for different
system sizes L = 5, 10, 20, 40, 70 (top to bottom) at fixed o and az
for the Floquet model.

(o = 3) saturates to the infinite-range model [cf. Figs. 2(b)
and 3(b)] at sufficiently large layer spacings. Thus finite-range
interactions are able to achieve the same amount of squeezing
as infinite-range, fully collective interactions.

Heisenberg scaling of sensitivity. The squeezed variance of
the generated entangled state directly results in an improved
sensitivity of measuring a phase of rotation ¢ around 85 — S5
in Ramsey protocols [63] as

(AP = ———— )

and a corresponding enhancement over using 2N unentangled
particles 2N(A¢)?. As the state gets squeezed the variance
decreases exponentially; however, at the same time the po-
larized spin component is reduced decreasing the sensitivity.
Using the two-mode squeezing prediction for the variance
and number of excitations the optimal scaled sensitivity is
27/(8N) showing Heisenberg limited scaling [69].

The inset of Fig. 4 shows the time evolution of the scaled
sensitivity for a range of different system sizes, demonstrating
superlinear sensitivity gains beyond the standard quantum

limit. In the main panel of Fig. 4 we analyze the scaling of
the optimal sensitivity with system size for both the staggered
z field (open symbols) and the Floquet-engineered model
(filled symbols) for different power-law exponents «. Notably,
for large layer spacings all power-law exponents collapse
onto the same scaling. However, we observe two distinct
scaling behaviors: the staggered field model shows 1/+/N
scaling, whereas the Floquet-engineered model achieves the
optimal Heisenberg limit of 1/N scaling. Thus using Floquet-
engineered interactions provides a significant improvement in
sensitivity for all system sizes and achieves the best possible
scaling.

Outlook. Our work demonstrates the scalable and robust
generation of entanglement in the form of two-mode squeezed
states separated in bilayers of power-law interacting quantum
spin models.

This extends the feasibility of two-mode squeezing to
generic power-law models, making it accessible in a signifi-
cantly larger number of experimental platforms. In particular,
we show that finite-range interactions (¢ = 1,2,3) can
achieve the same amount of entanglement and squeezing as
infinite-range interactions (o = 0).

We further develop a Floquet protocol utilizing spatiotem-
poral control to engineer the spin-spin interactions. This has
a number of immediate benefits. It extends the applicability
of our results to models with Ising interactions in systems,
which may not naturally realize Heisenberg interactions. In
addition, the Floquet-engineered model achieves the optimal
Heisenberg scaling of the sensitivity, providing potentially
orders of magnitude improvements. Finally, it also allows one
to implement time reversal by reversing the interlayer spin-
exchange interactions, which may be used for time-reversal
based metrological protocols.

This establishes spatiotemporally engineered interactions
adapted to the initial state and the desired dynamics as a viable
pathway to unlocking significant quantum advantage beyond
that present in naturally occurring interactions. It highlights
the great potential in making full use of the control inherent in
state-of-the-art current experimental platforms realizing fully
controllable quantum spin systems for entanglement genera-
tion and quantum sensing.
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