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Antiferromagnetic behavior in self-bound one-dimensional composite bosons
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The structure of self-bound one-dimensional droplets containing a mixture of ytterbium fermionic isotopes
(!3Yb, 171Yb) is calculated by means of a diffusion Monte Carlo technique. We considered only balanced setups
in which all the atoms of one isotope are spin polarized, while the atoms of the other can have up to three different

spin values. Our results indicate that these droplets consist of consecutive “molecules” made up of one '3Yb
and one '7'Yb atom. The fermionic nature of those Yb atoms makes pairs with identical spin composition avoid
each other, producing an effective antiferromagnetic coupling between different kinds of composite bosons. This
antiferromagnetism is different than the one induced by an external optical lattice potential within the framework

of the Hubbard model reported in previous literature, and different from the standard ferromagnetic behavior

typical of bosonic arrangements.
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The study of self-bound Bose-Bose droplets can be traced
to a seminal paper by Petrov [1] that suggested that binary
bosonic arrangements with both attractive and repulsive inter-
actions could avoid collapse due to purely quantum effects.
Petrov’s conclusions gained substantial support through the
experimental realization of these droplets [2-5], and origi-
nated an extensive body of theoretical work on such systems
(see, for instance, Refs. [6,7] and references therein). An
obvious follow-up to this line of research is the consideration
of Bose-Fermi ensembles, already stable in the mean-field
picture [8—12]. Recent experimental work attests to the very
rich phase diagram of those Bose-Fermi composite systems
[13].

The next logical step involves the exploration of Fermi
droplets. Focusing specifically on cold atom systems with
only short-range attractive interactions in strictly one-
dimensional (1D) environments, to have an stable droplet
we would need atoms of at least two different spin types.
The problem is that under such circumstances, these atoms
pair up to form bosonic molecules that repel each other due
to the dual Pauli avoidance exhibited by fermions within a
pair with respect to their counterparts with the same spin in
other molecules [14,15]. That repulsion makes the molecules
separate until their effective interaction is zero. So a set of
balanced (with the same number) spin-up and spin-down 1D
fermions cannot be self-bound.

In spite of that, there is a way to produce 1D Fermi self-
bound drops. The recipe implies to have atoms with at least
three different spin flavors, as have been proved to work in
small clusters with mixtures of fermionic ytterbium ('’>Yb
and '71Yb) isotopes [15]. We will show that in those systems,
the attractive interactions between atoms of different isotopes
produce as many kinds of bosonic molecules as the different
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spin combinations we can assemble to create them. Thus,
the Pauli-like avoidance between identical composite bosons
creates an effective antiferromagnetic interaction that depends
exclusively on the nature of the units formed, not being engi-
neered via an external potential as in previously considered
Bose systems loaded in 1D optical lattices and described by a
Hubbard model or one of its extensions [16—18]. In that last
case, the antiferromagnetic interactions appear only for partic-
ular values of the parameters that define the model. Since the
Hubbard Hamiltonian is itself an approximation strictly valid
only for deep potential lattices, the possibility indicated in this
Letter is more general.

The 1D clusters in this Letter will be described by the
continuous Hamiltonian [15,19,20],
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where N, is the total number of fermions, while Ny73 and N7
are the total number of '>Yb and "' YDb atoms. In this work,
Ni73 = Ni71 = N,/2. m is the mass of the atoms, judged to
be close enough in both isotopes to be described by a single
parameter. No confining external potential in the x direction
was imposed. 1173 45 and 171 4 are the number of atoms with
spins a and b. Identical fermions avoid each other by Pauli’s
exclusion principle. The gip parameters depend on the 1D
scattering lengths a;p via gofb’g = —2h2/ma1D(oc, B), with a;p
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defined by [21]
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with A = 1.0326 and (o, B8) = (173, 171). 0, = /li/mw] is
the oscillator length in the transversal direction, depending
on the transversal confinement frequency w, taken to be in
the range 27 x 40-100 kHz, tight enough to produce a quasi-
one-dimensional system. asp(c, ) are the three-dimensional
experimental scattering lengths between isotopes [22]. The
nature of the interactions depends on the sign of those asp’s:
attractive for the '7>Yb-71Yb and '7'Yb-!"1Yb pairs and re-
pulsive in the '3Yb-173Yb case.

To solve the Schrodinger equation derived from the Hamil-
tonian in Eq. (1), we used the fixed-node diffusion Monte
Carlo (FN-DMC) algorithm, that gives us the exact ground
state (7' = 0, no excitations) of a 1D system of fermions
[23,24] starting from an initial approximation to the exact
wave function. Following Refs. [15,19,20], we used
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where A[¢(ri11)p(r2n) - - - (rny55.0,5,)] 1S the determinant of a
square matrix whose dimension is Ny73 X Nj7; [25] and takes
care of the interactions between pairs of particles of different
isotopes separated a distance r;;. The terms (xg, —xj ;) in
the denominator of Eq. (3) correct the spurious nodes be-
tween atoms of the same isotope with different spins (see
Refs. [15,19] for further details). ¢(r;;)’s are the solutions of
the Schrodinger equation for a pair of 1D particles interacting
via an attractive delta potential [26],
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On the other hand, ¥ (x7; — xj ;)’s are Jastrow functions that
introduce the correlations between pairs of particles of the
same isotope belonging to different spin species a, b. For the

repulsively interacting '7>Yb-!73Yb pair, we have [27]

vl —x]) =cos k[l =57 = Ra]). )
when the distance between atoms, |)cl73 xé?ﬁl, was smaller
than a variationally obtained parameter, R,,, and 1 oth-
erwise, k being the solution of the transcendental equa-
tion kap(173, 173) tan(kR,,) = 1. When the pair of particles
of the same isotope attract each other, as in the Typ- 171y
case, the Jastrow has the form of Eq. (4) [19,27], but with a
different value of the defining constant, g\/*'"!

In this work, we considered 1D arrangements with N, in
the range 16—48. This means Nj7; = N;73 going from 8§ to
24. We have chosen clusters that contain up to three different
spin types for !>Yb (out of six available), and up to two for
171'yb (all the possible types for this fermionic isotope). In all
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FIG. 1. Energy per Yb atom in units of E, for balanced
clusters with different compositions. The clusters are named as
O miz3.a)/ Q)7 mizp), with s the number of spin types. The
error bars are of the size of the symbols and not shown for simplicity.
The dashed line corresponds to a set of noninteracting '>Yb-'7'Yb
molecules. The range of the |gip| parameters corresponds to the
range of w, and can be deduced from them via Eq. (2).

cases, one of the Yb isotopes, the majority component, was
spin polarized. That those clusters are stable irrespectively of
their spin composition can be shown in Fig. 1: The energy
per atom is displayed as a function of | gm 171 "that depends
on the transverse confinement via Eq. (2). We can see that
the energy per particle is always lower (more negative) than
the corresponding to a set of identical bosonic pairs, E,/2 =
(& 173, 171)2/(8hwlol) [26]. In that case, the pairs behave as
a set of hard bodies due to the double avoidance of the two
atoms of the molecule of the same kind of atoms in other pairs.
This means that the molecules separate from each other until
the interaction between molecules is zero.

However, for nonidentical pairs, there is a relaxation of the
Pauli’s restrictions between atoms of the same isotope and dif-
ferent spins belonging to different ytterbium molecules. This
makes those different molecules attract each other, producing
the self-bound droplets. When the spin-polarized component
is 71'Yb, we have to add to the total count of the cluster energy,
the repulsive interaction between !"3Yb atoms of different
spins. That repulsion increases with the transverse confine-
ment (see Ref. [15]), and decreases the binding energy of the
entire cluster. On the other hand, when the majority compo-
nent is '73Yb, there is a residual attraction between the spin-up
and spin-down atoms of the '7'Yb, being that the interaction
is basically constant with @, (see again Ref. [15]). However,
that energy gets smaller and smaller in comparison to Ej, and
hence the shape of the energy of those clusters displayed in
Fig. 1. In all cases, we have checked that the molecules formed
are stable with respect to thermal excitations at the tempera-
tures used in the experiments: For w, = 27 x 100 Hz, E;, ~
1200 nK, an order of magnitude larger than the ~90 nK of the
experimental setup in Ref. [28]. Since the energies displayed
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FIG. 2. Probability of having j consecutive sites occupied by
atoms of the majority component for clusters of different compo-
sitions. Symbols, simulation results; dotted line, values for those
probabilities in a random distribution. Error bars are of the size of
the symbols and not shown for simplicity.

in Fig. 1 are of the order of E,, this also implies that those
clusters can be stable under typical experimental conditions.
Moreover, the fact that the energy per particle is more negative
for larger clusters [compare the values for the (4 4+ 4)/8 and
(6 4+ 6)/12, for instance] makes them stable with respect to
splitting into smaller units.

The next step will be to study the actual distribution of the
Yb atoms in those 1D ensembles. To do so, we started by
assigning each atom an index i that corresponds to its rela-
tive position in the collection of atoms that form the cluster,
i.e., for the atom with the lowest x coordinate we have i = 1,
the one with the second-to-lowest x gets i =2, and i = N,
for the Yb atom at the end of the 1D row. After that, we
introduce the variable n; that takes the value 1 if the atom
with index i belongs to the majority (spin-polarized) compo-
nent and O otherwise. With that parameter, we can build the
correlators,

Np—j+1 j—1

Ntk
; H Tt (©6)

to characterize the atom ordering inside the cluster. ¢; can be
defined as the probability of having a set of j consecutive
majority component atoms. For instance, ¢4 is the average
of the product n;n;yn;1on; 3 for all the possible values of
i, divided by the total number of sets of four consecutive
positions, N, — 3. The results are given in Fig. 2 for c;—cy,
c1 being simply the ratio of the majority to the total number
of atoms, i.e., 0.5 for all the arrangements considered in this
Letter. We represent there different examples of clusters with
N, = 36, but the results for other arrangements are virtually
identical to those shown.

From Fig. 2 we can see that the distribution of atoms is
far from random and independent of the cluster composition.
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FIG. 3. Ratio between the distances between consecutive
(i,i+1)and (i+ 1,7+ 2) pairs with i odd for clusters of different
compositions as a function of the |g|3~'"!| parameter. See further
explanation in the text.

In particular, it is impossible to have more than two '7'Yb
(in the first example) close together. In addition, the fact that
¢y # 0 also implies that we do not have a perfect ordering
in which each '71Yb is necessarily followed by a '"3Yb atom
and vice versa. On the other hand, if we calculate the same
correlator, but only for i = 1 (not considering the entire sum,
only the first term), we find ¢j = 0 and the same happens
when i = N, — 1. Moreover, if we calculate ¢, = 0 for atoms
other than in the majority component, we get also ¢), for i =
I,N, — 1, i.e., the first two (and the last two) atoms belong
to different isotopes. All of this necessarily implies that the
atoms distribute themselves in consecutive !"3Yb-71Yb units
with different orientations.

Unfortunately, this does not necessarily mean that the
atoms will form '>Yb-!"'Yb (in whatever order) molecules in
which the atoms in the pair are closer together than a couple
of atoms belonging to different units. To check whether we
really have those couples, we have calculated the ratio of the
distances for all the consecutive (i,i+ 1) and (i 4+ 1,i+2)
pairs with i odd. This means that we divided the distance
between the first and second atom in a cluster by the distance
between the second and third and so on. The average of those
ratios should be smaller than one if (i, i 4+ 1) pairs with i odd
are formed. This is exactly what we see in Fig. 3 for clusters
of different sizes and compositions. Thus, it is safe to say
that atoms of different isotopes always pair together to form
composite bosons well separated from their adjacent couplets.
We can see also that the relative distance between separate
molecules depends on the nature of the spin-polarized isotope
and not on the size of the cluster nor on the number of spin
types. Reasonably enough, we also observe that when the
interactions between nonpolarized components are attractive,
the distance between molecules decreases and the ratio dis-
played in Fig. 3 increases, as in the 18/(9 4+ 9) cluster. To
serve as a stick for comparison, the intermolecular distance
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FIG. 4. Probability of having an identical molecule as a tth
topological neighbor for clusters of different sizes and com-
positions. Error bars are of the size of the symbols and not
displayed by clarity. Since the majority component is spin polarized,
this is equivalent to considering correlations between two equal
spins in the minority component as a function of the topological
distance.

between the molecules displayed in Fig. 3 ranges in the inter-
val 650-1300 nm.

So far, we have established that all the clusters considered
here are made up of molecules consisting of atoms of different
isotopes. However, we do not know how those molecules
distribute themselves inside the clusters. To address that ques-
tion, we calculated the probability of having two identical
molecules at different topological distances. So, in Fig. 4,
nearest neighbors correspond to an abscissa equal to one
(t = 1), next-to-nearest neighbors to two (f = 2), and so on.
In a random distribution, that probability is the ratio between
the number of pairs of a particular kind to the total number of

pairs in the cluster. This means 1/2 or 1/3 depending on the
number of pair types. In Fig. 4, we can see that the simulation
results for several clusters are very close to those values for
t > 4. However, the deviations from the random limits are
evident for closer neighbors. In particular, there is a “hole”
in the probability of having two identical nearest neighbors.
This decrease extends to ¢ = 2 for clusters with three kinds of
molecules. On the other hand, it is more probable to have a
next-to-nearest neighbor of the same type than what it would
correspond to a random pair ordering. The same can be said of
the third neighbor for the (6 + 6 + 6)/18 case. This is exactly
the same to what happens in all-'’>Yb fermionic clusters
[29] and has its origin in the antiferrromagnetic interactions
characteristic of systems of fermions. We have then a set of
composite bosons with short-range (f < 4) effective antifer-
romagnetic interactions.

Summarizing, we have characterized the behavior of
strictly 1D clusters of fermionic mixtures of Yb atoms, mix-
tures that have already been produced experimentally [28,30].
Since the pairing of two fermions produces a boson, the 1D
arrangements considered in this work are composite bosons,
but with properties derived from their fermionic constituents,
in that, they are equivalent to any bosonic atom (for instance,
“He), itself a composite of different fermions. In particular,
those composite bosons exhibit a short-range avoidance of
identical bosonic molecules. This is completely at odds with
the standard ferromagnetic behavior one would expect from
a set of regular bosons [16]. In addition, this is an intrinsic
behavior that does not depend on a particular choice for the
values of the parameters that define the discrete model used to
model bosons in an optical lattice, as in reported Ref. [18] and
therefore more general.
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