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When the interactions are scale invariant, the quantum dynamics of a quantum gas are strongly constrained by
a resultant conformal symmetry. In this Letter we study the expansion dynamics of strongly interacting quantum
systems in a shallow harmonic trap in one and three spatial dimensions while interparticle interactions break the
scale symmetry explicitly. Our main finding is that in one dimension the dynamics can be strongly constrained by
an emergent infrared conformal dynamics (EIRCD) which significantly reduces entropy production, as opposed
to three dimensions where there is no EIRCD in the strong coupling limit. We investigate the possibility and
signatures of EIRCD in terms of the damping rate of the large amplitude oscillations of the gas, as well as the
work done following a two-quench protocol. We find that the damping and the work done are constrained by
the EIRCD, and become vanishingly small in the infrared limit when the final harmonic trap frequency is small.
Our analysis is based on a close connection between the renormalization group equation flow and expansion
dynamics in real space, and as such can be readily applied to a wide range of strongly interacting systems, like
one-dimensional (1D) quantum gases and the three-dimensional (3D) unitary Fermi gas.

DOI: 10.1103/PhysRevA.109.L051303

Introduction. There have been intensive efforts to un-
derstand scale symmetry in strongly interacting quantum
gases [1–21]. One remarkable consequence is that the expan-
sion of strongly interacting quantum gases in free space and
harmonic traps can exhibit unique features which we denote
as conformal dynamics; the unitary evolution can be equiv-
alent to a time-dependent dilation of the many-body wave
function [4,6] up to a time-dependent gauge transformation.
Normally, the appearance of conformal dynamics requires
that the interactions be fully scale invariant. This requires
fine-tuning the atomic interactions using Feshbach [22] or
confinement-induced resonances [23].

One important parameter to characterize conformal dy-
namics and its breaking is the (thermodynamic) entropy
production rate. Conformal symmetry implies that there exists
a class of expansion or contraction dynamics that are isen-
tropic. In contrast, the expansion of generically interacting
gases is usually accompanied with finite entropy production
and is irreversible [19].

The amount of entropy production for a nearly scale-
invariant system depends on how these interactions rescale
as one approaches long wavelengths or long timescales, i.e.,
the infrared (IR) limit. If the effects of breaking scale sym-
metry are IR irrelevant, entropy production is restricted to
short timescales, while the long time dynamics can still be
isentropic and conformal. Such emergent infrared conformal
dynamics (EIRCD) are not associated with the exact symme-
try of the microscopic interactions, rather it is an IR symmetry
which only appears in the long wavelength dynamics. How-
ever, if the scale-breaking interactions are IR relevant, one
expects an appreciable entropy production rate at long times.

The study of entropy production is important as it can
play a pivotal role in thermalization. Zero entropy production,
which only occurs in conformal dynamics, is a sufficient, but
not necessary, condition for the absence of thermalization. For
instance, one-dimensional (1D) quantum gases are integrable
in free space [24–26] and cannot thermalize, yet they can have
finite entropy production for generic interactions [27]. Recent
evidence seems to suggests this integrable system thermalizes
towards the standard Gibbs ensemble [28,29] in the presence
of a harmonic potential when one includes a finite diffusion
term which is present in the gradient expansion unless the
interactions are scale symmetric, as conformal symmetry for-
bids entropy production. It has yet to be understood how the
vanishingly small entropy production rate appears when the
scale symmetry is broken explicitly and there are EIRCD. In
this Letter we investigate the general possibility of EIRCD in
the expansion dynamics of strongly interacting d-dimensional
quantum gases and how EIRCD appears in the dynamics.
As described in Fig. 1, we consider a strongly interacting
d-dimensional gas in a time-dependent harmonic trap with
frequency ω(t ). At t = 0, we quench the harmonic trapping
potential from ω1 to ω2 � ω1, allowing the gas to expand.
After a hold time th we then quench back to ω1. We show
that for strongly interacting gases in one dimension, there are
EIRCD in the IR limit, when ω2/ω1 � 1, even if the micro-
scopic interactions break scale symmetry, i.e., the long-time
dynamics are fully dictated by the infrared stable scale sym-
metric interactions and are isentropic. This is in comparison
to a strongly interacting three-dimensional (3D) quantum gas,
which does not exhibit EIRCD, and there is a finite entropy
production rate in the long-time dynamics. The main foci of
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FIG. 1. (a) Schematic of the experimental protocol with (b) a
time-dependent frequency. (a) A scale-invariant gas is prepared in
thermal equilibrium in a harmonic trap with frequency ω1. It is then
released to a much broader trap with frequency ω2 causing the gas to
expand and oscillate. After a hold time th the trap is quenched back
to ω1. (b) The time dependence of the trapping potential.

this work are the following: (i) the origins of EIRCD; (ii)
characterizing the entropy production rate in EIRCD; and
(iii) an experimental protocol for detecting EIRCD using a
two-quench protocol.

(i) Origins of EIRCD: We discuss the possibility of
EIRCD using a model Hamiltonian for a quantum gas (either
spin-1/2 fermions or bosons) with zero-ranged interactions
in d dimensions and inside a time-dependent harmonic
trap of frequency ω(t ): Hω(t ) = H + ω2(t )C, where C =∫

dd r r2

2 ψ†(r)ψ (r) [30]. We also define the Hamiltonian H:

H =
∫

dd r
1

2
ψ†(r)

(
−1

2
∇2

)
ψ (r)

+
∫

dd r g(�)ψ†(r)ψ†(r)ψ (r)ψ (r), (1)

where ψ†(r) is the creation operator and g(�) is the coupling
constant which depends on the ultraviolet (UV) scale of the
theory �. (We suppress the spin indices for spin-1/2 fermions
and set h̄ = m = 1.)

Since the dynamics are related to the behavior of scale-
breaking interactions in the IR limit, it is beneficial to recall
how Eq. (1) behaves under a scale transformation. To empha-
size the scaling, we express the Hamiltonian in units of �2

and we rewrite the interaction as g(�)�d−2 = cd g̃(�) where
g̃ = g̃∗ + δg̃ and cd is a nonzero positive constant that depends
on the dimension d . The scale-invariant part of the inter-
action is g̃∗ while δg̃ breaks scale symmetry. Physically, g∗
corresponds to the interaction at the Feshbach or confinement-
induced resonance, while a finite δg̃ is related to the detuning
from the resonance. The value of g̃∗ can be obtained via the
renormalization group equations (RGEs) [31]. Apart from the
trivial noninteracting fixed point g̃∗ = 0, there is a strongly
interacting fixed point g̃∗ = (2 − d ) when d = 1, 3.

We expand the dimensionless Hamiltonian as H = H∗ +
δHI , where H∗ is the scale-invariant part while δHI breaks
the scale symmetry and is proportional to δg̃(�). Thus under
a scale transformation δHI transforms nontrivially

� → �

λ
, δHI → 1

λη
δHI , (2)

where λ is a scaling factor larger than unity, i.e., λ > 1, as this
generates a flow towards the IR limit. The scaling dimension
of δHI , η = η(d, g̃∗), is universal; it only depends on the
spatial dimension d and g̃∗. It can be obtained from solving
the RGEs around g̃∗.

In three dimensions or d = 3, there is a scale-invariant
attractive interaction g̃∗ = −1, which represents a Feshbach
resonance with an infinite scattering length a3D = +∞ [31].
The scaling dimension for δHI is η = −1 < 0. The scale-
invariant fixed point Hamiltonian H∗ is IR unstable under a
scale transformation; any small but finite δHI will be ampli-
fied during the course of rescaling towards the IR limit [16]. In
one dimension, the scale-invariant interactions are repulsive,
g̃∗ = +1, and represent infinite strength contact interactions,
i.e. the 1D scattering length a1D = 0. The associated scaling
dimension is η = +1 > 0, and the effect of δHI diminishes
as the running scale � is lowered; H∗ is IR stable. Similar
arguments apply to the noninteracting fixed point. In three
dimensions the noninteracting fixed point is IR stable, while
it is unstable in one dimension. In two dimensions, there is
only a single noninteracting fixed point which is also stable.
This can be seen by from the RG and noting η = 0 in two
dimensions.

In the expansion dynamics of strongly interacting nearly
scale-invariant gases, the particle density n(t ) depends on
time t and can dramatically differ from their initial values
at t = 0. We quantify the effects of δHI on the dynamics by
evaluating it at the energy scale n2/d (t ), or equivalently at a
momentum scale set by the instantaneous Fermi momentum:
kF (t ) ∝ n1/d (t ). It is then natural to define a time-dependent
running momentum scale at which we evaluate δHI that is
proportional to the ratio of the density at time t to the initial
density kF (t ) ≈ [n(t )/n(0)]1/d kF (0). In this way we define the
time-dependent rescaling factor λ(t ) ∼ [n(t )/n(0)]1/d .

From this point of view, expansion or contraction dynamics
can probe the renormalization group flow of the symmetry
breaking term δHI [32]. To observe substantial renormal-
ization effects during the dynamics, it is thus imperative to
consider the far-away-from-equilibrium expansion (contrac-
tion) dynamics, so that the rescaling factor λ(t ) can be much
larger (smaller) than unity. This is in contrast to the perturba-
tive linear response regime where λ(t ) always remains close
to 1.

One can then directly study exactly conformal dynamics
(CD) and the possibility of EIRCD by considering a ther-
mally equilibrated quantum gas in an isotropic d-dimensional
harmonic trap that is quenched from from a frequency ω1 to
ω2. Provided ω2 � ω1, one can then generate an appreciable
dynamic renormalization group flow towards the IR limit.

When the interactions are exactly scale symmetric, there
are CD. In this case the dynamics of the density matrix are
completely self similar with a time-dependent rescaling fac-
tor [4,11,16,19]

λ2(t ) = cos2(ω2t ) + 1

ω̃2
2

sin2(ω2t ), ω̃2 = ω2

ω1
. (3)

Equation (3) is a periodic function with period T2 = π/ω2.
It takes on values λ(t ) ∈ [1, λmax], with a maximum value
λmax = 1/ω̃2 and a minimum value λmin = 1.

We now examine the effects of δHI on the aforementioned
CD. At leading order in δHI , the scale-breaking perturba-
tion becomes effectively time dependent during the dynamics.
We can capture the time dependence by rescaling δHI (t ) by
λ(t ) defined in Eq. (3). In three dimensions, η = −1 and
δHI (t ) is appreciable over the entire period and becomes more
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relevant when λ(t ) approaches λmax, i.e., when t � T2/2. In
one dimension, η = +1 and δHI (t ) is only appreciable for
small time windows δt ∼ 1/ω1 near t = 0 or t = T2 when the
scaling factor λ(t ) ∼ 1 is at a minimum and the gas is most
dense; δHI is strongly suppressed around t = T2/2 when the
gas is most dilute, λ(t ) ≈ λmax. Accordingly, there are EIRCD
in one dimension, provided ω̃2 is sufficiently small, while in
three dimensions EIRCD are absent.

(ii) EIRCD and entropy production: When the interactions
break scale symmetry, the oscillatory conformal dynamics
in Eq. (3) will become damped, a signal of thermodynamic
entropy production λ2(t ) ∝ e−	I (t )t , where 	I (t ) is the instan-
taneous damping rate. We quantify the extent of the breaking
of scale symmetry and the onset of EIRCD using the the dis-
sipation rate of the oscillatory conformal dynamics averaged
over one period, 	(ω̃2) = 1

T2

∫ T2

0 	I (t )dt . When ω̃2 → 0, we
can expand 	(ω̃2) in terms of ω̃2:

	(ω̃2) = 	0 + 	1ω̃2 + 	2ω̃
2
2 + · · · ;

	0,1,2 = ω2
1τF γ0,1,2

[(
a2

sc

τF

)2−d

, T τF , ω1τF

]
, (4)

where τF ∝ n(0)−2/d is a Fermi time defined in terms of the
initial density at the center of the trap. The general structure
of the dimensionless functions γ0,1,2 are highly complex and
we will focus on the limit (a2

sc/τF )2−d � 1, with asc being
the d-dimensional scattering length asc = a3D for d = 3 and
asc = a1D for d = 1.

When H is fine-tuned to have scale-invariant interactions,
H = H∗, 	 = 0 for all values of ω̃2 and arbitrary tempera-
tures T [16,19]. This is a signature of CD. For generically
interacting systems 	 will be finite and will be proportional to
(a2

sc/τF )2−d near the strongly interacting fixed point.
The leading behavior of 	 for finite δHI (t ) in the IR

limit depends on the scaling dimension η defined in Eq. (2).
When η = −1, as in three dimensions, the symmetry-breaking
action of δHI (t ) is relevant as the gas expands. Entropy pro-
duction occurs approximately uniformly over the entire period
T2 leading to an ω f -independent average dissipation rate, i.e.,
a finite 	0. Thus 	 → ω2

0τF γ0 is approximately a constant
as ω̃2 → 0, as in generic strongly interacting systems. This
signifies finite dissipation in the IR limit and the absence of
EIRCD. Instead when η = 1, as in one dimension, δHI (t )
becomes strongly suppressed in the bulk of the period when
λ(t ) � 1. Dissipation due to δHI (t ) is then confined to a
small time window of δt ∼ π/ω1 � T2 when λ(t ) ≈ 1, i.e.,
t = 0, T2, 2T2, and so on. The averaged dissipation rate there-
fore is inversely proportional to T2 or proportional to ω2. So
we expect that γ0 = 0 while γ1 remains finite. This scaling
implies that if one approaches the IR limit, ω̃2 → 0, 	 be-
comes vanishingly small indicating an unexpected dynamical
phase with EIRCD. Such nearly dissipationless dynamics can
be directly studied in experiments of strongly interacting 1D
quantum gases.

To provide more evidence for this phenomenology, we
evaluate the instantaneous dissipation rate to leading order
in the scale-breaking interactions using hydrodynamics. We
solve the Navier-Stokes equation [33] for a d-dimensional gas

FIG. 2. The time-dependent damping coefficient b(t ), Eq. (6),
as a function of time for one period of the conformal dynamics in
both one (blue) and three dimensions (red). In one dimension the
dissipation is only appreciable near t = 0, T2, while in three dimen-
sions there is appreciable dissipation over the entire period. The
arrows points towards the IR limit. The inset shows the instantaneous
damping rate 	I (t ) over one period.

in a harmonic trapping potential

n(∂t + v · ∇r )v = −∇rP − nω2
2ri + ∇r(ζ∇r · v). (5)

n, v, and P are the local density, velocity, and pres-
sure, respectively. The last term in Eq. (5) describes
dissipation and defines the bulk viscosity, ζ [34]. Equa-
tion (5) can be solved using a scaling ansatz for the
density n(r, t ) = λ−d (t )n[r/λ(t ), 0] and for the velocity field
v(r, t ) = rλ̇(t )/λ(t ). For scale-invariant interactions the so-
lution of Eq. (5) for λ(t ) is also Eq. (3). This ansatz can be
obtained by applying an SO(2, 1) conformal field theory to the
dynamics at the scale-invariant fixed point [19,20]. For finite
δHI , we can still use the scaling ansatz, but the oscillations in
λ(t ) will now be damped due to the dissipation.

In this hydrodynamic framework the instantaneous dissi-
pation rate of the monopole oscillations is defined as 	I (t ) =
| 1

E
d〈Ek〉(t )

dt | where E is the total energy per particle and 〈Ek〉(t )
is the kinetic energy of the macroscopic flow per particle.
	I (t ) is related to the thermodynamic entropy production rate
since ∂t S(t ) = T −1d〈Ek〉/dt . From Eq. (5) the change in the
kinetic energy is itself proportional to the bulk viscosity as
d〈Ek〉/dt = −d

∫
dd r
N ζ (r, t )( λ̇(t )

λ(t ) )2. Near the scale-invariant
fixed point the bulk viscosity possesses a simple scaling
form [35–37] which allows one to write

	I (t ) = b(t )λ̇2(t ), b(t ) = ed

ω1λ2(t )

(
kF asc

λ(t )

)2η

. (6)

In Eq. (6), η = 2 − d for d = 1, 3 and ed is a time-
independent constant that depends on the equation of state of
the initial gas. kF is the Fermi wave number defined at the
center of the trap (kF = √

2/τF ∝ n(0)1/d ).
The time dependence of the damping coefficient b(t ) over

one period of the dynamics is shown in Fig. 2 near the strongly
interacting scale-invariant point in one dimension [Fig. 2(a)]
and three dimensions [Fig. 2(b)]. In one dimension the damp-
ing coefficient is strongly suppressed save for two tiny time
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windows near t = 0, T2, while in three dimensions it remains
close to unity over the entire period. Taking the average of
	I (t ) over the period T2, we verify the prediction that the
leading term in Eq. (4) is γ0 in three dimensions while it is
γ1 in one dimension.

(iii) Measurement scheme: When the system has EIRCD,
the dynamics are nearly reversible as the entropy production is
localized to short time windows near λ(t ) = 1. A convenient
way to study the reversibility of the dynamics is to examine
the work done following a second quench after hold time th
which returns the system to the original harmonic trap of ω1,
see Fig. 1.

The total work done in this two-quench protocol sensitively
depends on the value of th and whether there are EIRCD.
Generally, the work done is given by

W =
(
ω2

1 − ω2
2

)
2

(
λ2

C (th) − 1
)〈C〉(0),

λ2
C (th) = 〈C〉(th)

〈C〉(0)
. (7)

Here we introduce λC (th) as a measure of the actual size of
the quantum gas at t = th, which, in general, differs from λ(th)
defined in Eq. (3), but coincides with λ(th) for CD. The work
done can also be directly related to the size of quantum gases
at infinite times [39]. W in this two-quench protocol is positive
semi-definite, i.e., W � 0 for all ω1 and ω2.

When ω2 � ω1, the work done reaches a minimum, W =
0, if λ2

C (th) = 1, i.e., when the dynamics are fully reversible,
when th = nT2 n = 1, 2, 3, . . . [38]. If there is entropy produc-
tion, the amount of work done at any hold time th > 0 shall
always be larger than zero, W (th > 0) > 0, as λC (th) now has
to be larger than unity.

The amount of work done after one cycle in this two-
quench scheme can be used as an effective probe of EIRCD.
In three dimensions the action of δHI (t ) is enhanced in the IR
limit, leading to entropy production and conventional thermal-
ization as ω2 approaches zero. So when ω2 → 0, the scaling
parameter approaches an equilibrium value λ2

C (th = T2) →
λ2

eq = 1/(2ω̃2
2 ) which is much bigger than λ2(t = T2) = 1.

This results in W ∝ ω̃−2
2 , as ω̃2 approaches zero. However,

in one dimension near the strong coupling fixed point, dissi-
pation occurs during a short-time window, δt ∼ 1/ω1, that is
parametrically small compared to T2. This indicates λ2

C (th =
T2) = 1 + O(	1/ω1) which is very close to unity as 	1/ω1 ∼
ω1τF � 1 in the many-body limit.

Another way to visualize this physics is to consider the
average power P̃ = W ω2. Following our discussions on the
work, P̃ is proportional to ω̃2 in one dimension and becomes
vanishingly small in the IR limit, while in three dimensions
the average power diverges as P̃ ∝ 1/ω̃2. We numerically con-
firm this behavior for the average power and for the work, by
solving the Navier-Stokes equation, Eq. (5), using the scaling
ansatz [19,20]. The results of the simulation are presented in
Fig. 3.

Before concluding, we want to make two remarks. First, we
parametrized this EIRCD using the dissipation rate, Eq. (4).
We illustrate that in one dimension the leading contribution to
the decay rate is 	 ∝ ω̃2 as ω̃2 → 0 while in three dimensions
	 is approximately constant. This difference controls whether

FIG. 3. Dynamic simulation of the average power of the work
done following a two-quench protocol: P̃ = W ω2 as a function of
ω̃2 = ω2/ω1 in three dimensions (red) and one dimension (blue) for
dimensionless bulk viscosity ζ̃ = d2

∫
dd rζ (r, 0)/[2Nω1〈C〉(0)] =

0.1. In the IR limit, ω̃2 → 0, the average power vanishes as ω2 in
one dimension, while it diverges as ω−1

2 in three dimensions.

there are EIRCD or not. Equation (4) ought to be contrasted
to linearized hydrodynamics when λ(t ) = 1 + δλ(t ) with
|δλ(t )| � 1. This limit is opposite to the deep scaling regime
we focuson in this Letter where λmax � 1. In the IR scal-
ing regime (ω̃2 → 0), the dynamics are highly nonlinear but
are self-similar and conformal. The linearized hydrodynamic
limit can be realized when ω̃2 ≈ 1 or |ω2 − ω1| � ω1; and
the damping is given by 	c.m. ≈ ω2

1τR, for a relaxation time
τR. Extending our results to the linear response limit naturally
reproduces the previous literature on collective modes [40,41].

Second, Eqs. (4) and (6) also imply that the thermalization
rate will be parametrically smaller for systems with EIRCD.
This means that the thermalization rate for 1D Bose gases in
the strongly interacting limit is smaller than in the weakly
interacting limit. Some numerical simulations of the Lieb-
Liniger model seem to suggest that the thermalization rate
is an order of magnitude larger in the weakly interacting
limit [29]. We also verified that the phenomenology associated
with the EIRCD is consistent with generalized hydrodynamics
in the presence of a diffusion term, which provides an accurate
description of 1D Bose gases [27,28,42–55]. Similarly, one
expects the thermalization rate for strongly interacting 3D
Fermi gases to be much larger than weakly interacting systems
due to the lack of EIRCD in the strongly interacting limit.

In summary, we investigated the dynamics of strongly
interacting quantum gases in quenched harmonic traps in
d = 1, 3 dimensions. Although we focused on the pragmatic
case of strongly interacting gases in d = 1, 3, we note that
our formalism is quite general and can also apply for weakly
interacting gases, two dimensions (d = 2), and to other types
of scale-breaking interactions, like effective range corrections
and three-body interactions.

For the strongly interacting 1D and 3D gas, we found
that the expansion dynamics in one dimension generates a
renormalization group flow towards the IR limit which renders
the breaking of scale invariance irrelevant. Since the strongly
interacting fixed point in one dimension is IR stable and ro-
bust, EIRCD can be viewed as a dynamical phase that remains
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to be further studied in experiments examining the scaling
dynamics discussed here. It also remains to further explore in
a more quantitative manner the relation between the point of
view of EIRCD in the proximity of infrared stable fixed points,
which can also occur in higher spatial dimensions, and the
fascinating microscopic dynamics of 1D integrable systems
such as the Lieb-Liniger model but in a harmonic trap.
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