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We study an unconventional many-body phase, i.e., a chiral odd-Chern-number lattice supersolid (CLSS)
state, in a single-component Rydberg-dressed Fermi gas in an optical lattice. We find that in such a CLSS
state, contradicting the common sense that typically the density modulation [charge-density-wave (CDW)]
and superfluid (SF) orders compete against each other, there is an essentially different interplay between the
coexisting two types of orders. The CDW order not only abnormally enhances the coexisting SF, but also
provides a scheme to tune the topology of SS through changing the winding of the phase of SF order along
the CDW-modified Fermi surface. It thus can support multiple number-tunable chiral Majorana fermions. We
develop a scheme of designing the specially spatial dependence of the effective Rydberg-dressed interaction,
which turns out to induce an unveiled odd-Chern-number lattice supersolid state confirmed by both mean-field
and Monte Carlo calculations. The result may provide an alternative way for manipulating the chiral Majorana
fermions, which would be useful in topological quantum computation.
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The pursuit of chiral Majorana fermions (CMFs) has at-
tracted intensive interests in recent years [1]. The non-Abelian
braiding of CMFs is considered as the basic building block for
fault-tolerant topological quantum computations [2–4]. So far,
several systems were proposed to realize CMFs. One example
of hosting the chiral Majorana fermion mode (CMFM) is the
two-dimensional (2D) topological superconductor, such as the
px + ipy superconductivity/superfluidity in both condensed
matter [5–7] and atomic systems [8–11]. However, the fate of
that in both electronic and atomic matter remains debatable.
Another approach proposed to get around is to hybridize ma-
terials of topological and superconducting properties [12–18].
This approach nevertheless requires advanced material engi-
neering.

Here, we report the discovery of an unconventional many-
body phase, i.e., a chiral odd-Chern-number lattice supersolid
(CLSS) state, which can support number-tunable CMFMs.
Such a CLSS state is characterized by two independent
spontaneously broken symmetries, i.e., U (1) and discrete
translational symmetries with corresponding superfluid (SF)
and charge-density-wave (CDW) orders. It possesses a chi-
ral superfluid order where an unconventional SF order
spontaneously develops an angular momentum and breaks
time-reversal symmetry, which provides the basic building
block for constructing the topological nontrivial properties of
CLSS. More interestingly, it is shown that the unusual inter-
play between the coexisting two types of orders here provides
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a tool, which is absent in topological superconductors, for
manipulating the number-tunable CMFMs in CLSS.

It will be shown with a specific model of Rydberg-dressed
Fermi atoms in an optical lattice described below. Recently,
the research of Rydberg atoms and Rydberg-dressed atoms
has evolved rapidly [19–23], where an effective Rydberg-
dressed interaction (RDI) shows high controllability, and thus
have been recognized for their potential in quantum simula-
tion and quantum information [24–30]. Numerous interesting
many-body phases induced by the RDI, such as a super-
solid droplet phase, a bright soliton, a topological superfluid,
and topological density waves, have been predicted [31–41].
Distinct from previous studies, the idea here is to design
a specially spatial dependence of RDI, which can not only
substantially enlarge the tiny parameter regime supporting
the CDW for the case only including the nonlocal attraction
[42,43], but also precludes the instability of SF order caused
by the phase separation for the case only considering the
nonlocal attraction [44]. It thus leads to the coexistence of two
types of orders, i.e., CDW and SF, and provides a mechanism
for achieving the supersolidity (SS). Furthermore, our de-
signed RDI-induced CDW not only abnormally enhances the
SF in CLSS contradicting the common sense where these two
orders typically compete against each other, but also provides
a scheme to tune the topology of SS through changing the
winding of the phase of SF order along the CDW-modified
Fermi surface. Therefore, this mechanism frees up the compli-
cated requirements in previous studies [45,46] and provides a
much easier way to realize topological supersolidity via only
engineering the interaction.

Effective model. Let us consider a single-species Fermi gas
held in a 2D square optical lattice, where atoms are coupled
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to their Rydberg states through the double Rydberg-dressing
scheme [39–41] to generate an effective RDI. Here, the
ground state atom is simultaneously coupled to two Rydberg
states by applying one blue-detuned laser and one red-detuned
laser together. Through tuning the Rabi frequency and detun-
ing of the off-resonant light, the RDI between dressed-state
atoms can be captured by the following form [39],

V (r) = U1(r) + U2(r), (1)

where Uj (r) = C̃( j)
6 /(r6 ∓ R̃ j ) with j = 1, 2 describing the

distinct RDI induced by the coupling to different Rydberg
states |R̃ j〉. C̃( j)

6 = R̃6
j�

4
j/8|� j |3 is the interaction strength,

where the averaged soft-core radius R̃ j = (C( j)
6 /2|� j |)1/6 and

C( j)
6 > 0 denotes the van der Waals (vdW) interaction strength

of the Rydberg state |R̃ j〉, which is assumed to be positive
in this work. � j and � j stand for the corresponding Rabi
frequency and detuning, respectively. The plus and minus
signs refer to the red- and blue-detuned lasers, respectively.

When the lattice depth is large enough, the above system
can be described by the following Fermi-Hubbard model in
the tight-binding regime,

H = −
∑
〈i, j〉

t (c†
i c j + H.c.) − μ

∑
i

c†
i ci

+1

2

∑
i �= j

Vi− jc
†
i c†

j c jci, (2)

where t is the hopping amplitude describing tunneling in the
2D plane. i ≡ (ix, iy) is the site index denoting the lattice
site Ri ≡ (aix, aiy) with a being the lattice constant. μ is the
chemical potential. The RDI is given by Vi− j = V (Ri − R j )
and J ≡ C̃(1)

6 /R̃6
1t captures the interaction strength. In the

double Rydberg-dressing scheme, there is a critical distance
Rres determined by the relation 2�1 + C(1)

6 /R6
res = 0, at which

the Rydberg atom pairs are resonantly excited [39–41]. The
idea here is through tuning the ratio Rres/a to design the spe-
cially spatial dependence of RDI, which can be achieved via
tuning the Rabi frequency and detunings of the off-resonant
light with a fixed lattice constant. For instance, considering
Rres/

√
5 < a < Rres/2, the RDI shows the following unveiled

features: (i) When |Ri − R j | < Rres, the RDI is attractive;
(ii) when |Ri − R j | > Rres, the RDI is repulsive (assuming
�4

1/|�1|3 > �4
2/|�2|3). Therefore, the nearest-neighbor VN,

next-nearest-neighbor VNN, and next-next-nearest-neighbor
VNNN interaction in Eq. (1) are attractive, while other long-
range interactions are repulsive. Furthermore, it is also shown
that the longer-range attraction VNNN is engineered to be
stronger than both VNN and VN. Interestingly, it will be shown
that such a designed RDI provides a scheme to lead to the
coexistence of CDW and SF orders and thus induces a CLSS
state, which is confirmed by both mean-field and Monte Carlo
studies in the following.

First, under the mean-field approximation, to describe the
CDW, we rewrite the density distribution of the system as
ni = n0 + C cos(Q · Ri ), where Q represents the periodicity
of the density pattern and n0 = ∑

i〈c†
i ci〉/NL is the average

filling with NL being the total lattice site. Therefore, the
CDW order parameter can be defined as δ±Q = V (±Q)C
with V (k) = ∑

n �=0 Vn exp(−ik · rn). We also introduce the

FIG. 1. (a) Mean-field energy as a function of Q for J = 0.18,
n0 = 0.6. (b) The superfluid pairing and CDW order parameters
marked by the dashed and solid lines, respectively, where n0 = 0.64.
(c) The Fourier series expansion of the superfluid order parameter
for n0 = 0.64. (d) Superfluid density ρx (see details in SM [47]) as a
function of the average filling n0 for J = 0.47. Other parameters are
the same as in Fig. 2.

superfluid pairing order parameter as �(k) = 1
NL

∑
k′ V

(k − k′)〈c−k′ck′ 〉 and 〈· · · 〉 stands for the expectation value
in the ground state. Through minimizing the ground state
mean-field energy, the order parameters defined above can be
obtained (see details in the Supplemental Material (SM) [47]).
We find that there is a threshold of the interaction strength J
for supporting the coexistence of superfluid and CDW orders,
for instance, as shown in Fig. 1(b). Regarding the CDW order,
it is shown that the mean-field ground state energy is mini-
mized at Q = (π/a, π/a) [Fig. 1(a)], indicating that there is
a checkerboard density pattern and the CDW order parameter
can be written as δ ≡ δ(π/a,π/a). For the superfluidity, there is a
complex superfluid order parameter with odd parity. As shown
in Fig. 1(c), we apply a Fourier series expansion to the su-
perfluid order parameter, i.e., �(k) = ∑

m,n �m,n sin(mkxa +
nkya), and it is found that when J increases, the dominant
component of �(k) behaves as �[sin(2kxa) + i sin(2kya)],
since we find that � ≡ �2,0 = −i�0,2. Because the checker-
board CDW order breaks the discrete translational symmetry
and the superfluid order breaks the U (1) symmetry, the coex-
istence of these two orders will lead to a SS phase. We thus
obtain the zero-temperature phase diagram as shown in Fig. 2.
When fixing a certain average filling, there is a threshold of
interaction strength J separating the SF and SS.

To further verify the existence of CDW and SF orders,
we have performed a variational Monte Carlo (VMC) calcu-
lation on a 12 × 12 lattice system with a periodic boundary
condition [48,49]. Regarding the superfluid order in the
ground state, we study the pairing correlation through the
VMC method. For instance, considering the dominant pairing
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FIG. 2. Zero-temperature phase diagram as a function of the
average filling n0 and interaction strength J . For certain n0, there
is a threshold of J . Beyond that, three topologically distinct SS
phases appear. Here, J ≡ C̃ (1)

6 /R̃6
1t and other parameters are chosen

as Rres/a = 2.08, R̃2/R̃1 = 1.5, C̃ (1)
6 /C̃ (2)

6 = 1.

component �[sin(2kxa) + i sin(2kya)], the correlation can be
defined as

P(R) = 1

2NL

∑
Ri

〈�†(Ri )�(Ri + R)

+ �(Ri )�
†(Ri + R)〉, (3)

with �(Ri ) ≡ cici+2ex − cici−2ex + i(cici+2ey − cici−2ey ). R is
a 2D vector in the xy plane. As shown in Fig. 3(a), the
long-ranged saturation behavior of the pairing correlation
P(R) indicates the existence of the off-diagonal long-range
order (ODLRO) [50,51] associated with the superfluid pairing
between fermions in the ground state. While verifying the
existence of the diagonal long-range order (DLRO) [50,51],
i.e., CDW order, we calculate the density structure factor
defined as

S(Q) = 1

N2
L

∑
i, j

〈c†
i cic

†
j c j〉eiQ·(Ri−Rj ). (4)

S(
Q

x,Q
y)
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FIG. 3. (a) Pairing correlation P(|R|) as a function of |R|. P(|R|)
shows saturated long-ranged correlation, indicating the existence of
superfluid pairing order. (b) Structure factor S(Q) as a function of the
momentum, where its peak is located at (π/a, π/a), indicating that
there is a checkerboard density pattern. Here, J = 0.14, n0 = 0.6,
and other parameters are the same as in Fig. 2.
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FIG. 4. The winding of the phase of the SF order along the
CDW-modified Fermi surface (solid line), determined by the relation√

ξ 2
k + δ

2−μ = 0. (a) For J = 0.17, n0 = 0.6 in the region with
C = 3 and (b) for J = 0.47, n0 = 0.82 in the region with C = 1.
Other parameters are the same as in Fig. 2.

The peak in the density structure factor provides information
on the CDW order. As shown in Fig. 3(b), when J beyond the
threshold, the structure factor S(Q) is peaked at (π/a, π/a),
indicating the existence of a checkerboard density pattern
in the ground state, which is consistent with our mean-field
calculations as shown in Fig. 2.

Chiral odd-Chern-number lattice supersolids. In the fol-
lowing, we will study the topological nature of the SS
phase. As shown in Fig. 2, there are three topologically dis-
tinct CLSS phases. One topological trivial region and two
topologically nontrivial regions can be distinguished by the
Chern number C = i

2π

∑
En<0

∫
dkxdky(〈∂kyφn(k)|∂kx φn(k)〉

− 〈∂kx φn(k)|∂kyφn(k)〉), where φn(k) is the eigenstate with en-
ergy En of Eq. (2) under the mean-field approximation. We
find that the topological trivial region SS-I phase is character-
ized with a zero Chern number. More interestingly, it is shown
that both SS-III and SS-II are characterized with an odd Chern
number, i.e., C = 1 and C = 3, respectively.

To gain more insight into the topological property of the
system, we have applied a series of unitary transformations
(see details in SM [47]) to reform the Bogoliubov–de Gennes
(BdG) Hamiltonian in a much clearer way as

HBdG ≡
(

H ′
SF 02×2

02×2 H ′′
SF

)
, (5)

with H ′
SF = (

√
ξ 2

k + δ
2−μ �(k)

�∗(k) −
√

ξ 2
k + δ

2 + μ
) and H ′′

SF

= (
−

√
ξ 2

k + δ
2−μ �(k)

�∗(k)
√

ξ 2
k + δ

2 + μ
). Here, to simplify the analysis,

we take the dominant component of superfluid order and
�(k) is approximated as �[sin(2kxa) + i sin(2kya)]. It
is shown that, first, H ′′

SF is always topologically trivial
when μ > 0. Second, there are three distinct topological
regions for H ′

SF: (i) μ >
√

δ2 + 16t2 or 0 < μ < δ, where
H ′

SF is engineered in the topological trivial region; (ii)√
δ2 + 4t2< μ <

√
δ2 + 16t2, where H ′

SF is tuned in

topological regions with C = 1; (iii) δ < μ <
√

δ2 + 4t2

gives another topological region with C = 3. The tunability
of distinct topological regions can be understood through
analyzing the winding of the phase of the SF order along
the CDW-modified Fermi surface, which is determined by
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FIG. 5. (a) and (b) Energy spectrum of the system with open
(periodic) boundary conditions in the x (y) directions. In (a), there are
three pairs of chiral edge modes in SS-II, where J = 0.27, n0 = 0.64.
In (b), there is one pair of chiral edge modes in phase SS-III, where
J = 0.53, n0 = 0.82. Other parameters are the same as in Fig. 2.

the relation
√

ξ 2
k + δ2−μ = 0. As shown in Fig. 4, along

the different CDW-modified Fermi surface, the winding
of the phase of �(k) shows distinct behaviors. The winding
of that, defined as w = 1

4π

∫
S · (∂kx

S×∂ky S) with the vector
S ≡ {Re[�(k)], Im[�(k)]}, gives a Chern number of H ′

SF.
Therefore, through tuning the interaction only, such as shown
in Fig. 2, the interplay between CDW and SF orders provides
a much easier way, compared with previous studies [45,46],
to adjust the topology of SS. Furthermore, contradicting
the common sense that typically these two types of order
compete against each other, as shown in Fig. 1(d), the CDW
order unusually boosts the superfluid density (see details in
SM [47]).

Multiple number-tunable chiral Majorana fermions. The
CLSS possesses a chiral SF order, which breaks the time-
reversal symmetry and thus can support branches of CMFMs
at their edges [52]. To show that, a cylinder geometry, i.e.,
the open (periodic) boundary condition along the x (y) di-
rection, is chosen. The edge excitations can be obtained (see
details in SM [47]). As shown in Fig. 5(a), in SS-II with
C = 3, there are three pairs of chiral edge states located at
the two outer edges of the system, satisfying the so-called
bulk-edge correspondence. More interestingly, since the zero-
energy edge state wave function (u0

ky,ix
, v0

ky,ix
, u0

k′
y,ix

, v0
k′

y,ix
)

1700300

0.04

0.04

0.00

0 2000
ix

FIG. 6. The wave function of the zero-energy state in Fig. 5(a).
Here, we choose kya = 0. It turns out that the zero-energy edge state
is a chiral Majorana fermion mode.

= (Uky,ix e
iθky ,ix ,Vky,ix e

−iθky ,ix ,Uk′
y,ix e

iθk′
y ,ix ,Vk′

y,ix e
−iθk′

y ,ix ) satisfies
u0

ky (k′
y ),ix

= v0∗
ky (k′

y ),ix
on the left edge and u0

ky (k′
y ),ix

= −v0∗
ky (k′

y ),ix
on

the right edge, for instance, as shown in Fig. 6, these six zero-
energy eigenstates support three unpaired CMFMs. For the
SS-III phase, as shown in Fig. 5(b), since the Chern number
C = 1, it is found that there are two zero-energy eigenstates
which support one unpaired CMFM. Such number-tunable
unpaired CMFMs in CLSS would offer an intriguing pos-
sibility pointing to braiding statistics and applications to
topological quantum computing.

Discussion and conclusion. In the current experiments, for
example, considering 6Li, through tuning the Rabi frequency
�1 around from 20 to 30 MHz, the interaction strength J can
be changed from 0.1 to 0.55 and other parameters can be fixed
as shown in Fig. 2 when considering C(1)

6 = 150 MHz µm6,
C(2)

6 = 1000 MHz µm6, �1 = −250 MHz, �2 = 200 MHz,
�2 = 15 MHz, and the lattice depth VL/ER = 14 with lat-
tice constant a ≈ 410 nm. Our proposed CLSS can thus be
achieved through a single-component Rydberg-dressed Fermi
gas in an optical lattice. To design the specially spatial de-
pendence of the effective RDI is the key idea here. Such a
scheme thus shows another way of achieving different types
of many-body phases through engineering RDI, which should
be observable in future experiments.
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[39] Z. Lan, J. Minář, E. Levi, W. Li, and I. Lesanovsky, Phys. Rev.

Lett. 115, 203001 (2015).
[40] C. Ates, B. Olmos, W. Li, and I. Lesanovsky, Phys. Rev. Lett.

109, 233003 (2012).
[41] W. Li, C. Ates, and I. Lesanovsky, Phys. Rev. Lett. 110, 213005

(2013).
[42] P. Gurin and Z. Gulacsi, Philos. Mag. B 76, 827 (1997).
[43] S. Capponi and A. M. Läuchli, Phys. Rev. B 92, 085146

(2015).
[44] P. Corboz, S. Capponi, A. M. Läuchli, B. Bauer, and R. Orús,

Europhys. Lett. 98, 27005 (2012).
[45] O. M. Yevtushenko and A. M. Tsvelik, Phys. Rev. B 98,

081118(R) (2018).
[46] H.-Y. Wang, Z. Zheng, L. Zhuang, Y.-H. Tai, J.-S. Shi, and

W.-M. Liu, J. Phys.: Condens. Matter 32, 235701 (2020).
[47] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.109.L051302 for the details of mean-field
method and variational Monte Carlo calculation, detailed
derivation to obtain the reformed BdG Hamiltonian and the
superfluid density, detailed calculation of edge excitations.

[48] D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16,
3081 (1977).

[49] C. Gros, Ann. Phys. 189, 53 (1989).
[50] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[51] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
[52] A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).

L051302-5

https://doi.org/10.1021/cr2003568
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevLett.111.147202
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1038/nphys1614
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1088/1367-2630/17/5/053046
https://doi.org/10.1126/science.1258351
https://doi.org/10.1038/nphys3835
https://doi.org/10.1126/science.aaw4150
https://doi.org/10.1103/PhysRevX.7.041063
https://doi.org/10.1038/nphys3487
https://doi.org/10.1103/PhysRevX.8.021069
https://doi.org/10.1103/PhysRevLett.124.063601
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevLett.98.060404
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1103/PhysRevLett.106.170401
https://doi.org/10.1103/PhysRevA.90.013631
https://doi.org/10.1038/ncomms8137
https://doi.org/10.1103/PhysRevLett.115.203001
https://doi.org/10.1103/PhysRevLett.109.233003
https://doi.org/10.1103/PhysRevLett.110.213005
https://doi.org/10.1080/01418639708241146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1209/0295-5075/98/27005
https://doi.org/10.1103/PhysRevB.98.081118
https://doi.org/10.1088/1361-648X/ab7871
http://link.aps.org/supplemental/10.1103/PhysRevA.109.L051302
https://doi.org/10.1103/PhysRevB.16.3081
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1070/1063-7869/44/10S/S29

